1
|
Brown CJM, Curry RA, Gray MA, Lento J, MacLatchy DL, Monk WA, Pavey SA, St-Hilaire A, Wegscheider B, Munkittrick KR. Considering Fish as Recipients of Ecosystem Services Provides a Framework to Formally Link Baseline, Development, and Post-operational Monitoring Programs and Improve Aquatic Impact Assessments for Large Scale Developments. ENVIRONMENTAL MANAGEMENT 2022; 70:350-367. [PMID: 35596789 PMCID: PMC9252955 DOI: 10.1007/s00267-022-01665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In most countries, major development projects must satisfy an Environmental Impact Assessment (EIA) process that considers positive and negative aspects to determine if it meets environmental standards and appropriately mitigates or offsets negative impacts on the values being considered. The benefits of before-after-control-impact monitoring designs have been widely known for more than 30 years, but most development assessments fail to effectively link pre- and post-development monitoring in a meaningful way. Fish are a common component of EIA evaluation for both socioeconomic and scientific reasons. The Ecosystem Services (ES) concept was developed to describe the ecosystem attributes that benefit humans, and it offers the opportunity to develop a framework for EIA that is centred around the needs of and benefits from fish. Focusing an environmental monitoring framework on the critical needs of fish could serve to better align risk, development, and monitoring assessment processes. We define the ES that fish provide in the context of two common ES frameworks. To allow for linkages between environmental assessment and the ES concept, we describe critical ecosystem functions from a fish perspective to highlight potential monitoring targets that relate to fish abundance, diversity, health, and habitat. Finally, we suggest how this framing of a monitoring process can be used to better align aquatic monitoring programs across pre-development, development, and post-operational monitoring programs.
Collapse
Affiliation(s)
- Carolyn J M Brown
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
| | - R Allen Curry
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Michelle A Gray
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Jennifer Lento
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
| | - Wendy A Monk
- Environment and Climate Change Canada @ Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Scott A Pavey
- Department of Biological Sciences and Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | - André St-Hilaire
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC, Canada
| | - Bernhard Wegscheider
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
- Institute of Ecology and Evolution and the Wyss Academy for Nature at the University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Kelly R Munkittrick
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada.
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
McMillan PG, Feng ZZ, Deeth LE, Arciszewski TJ. Improving monitoring of fish health in the oil sands region using regularization techniques and water quality variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152301. [PMID: 34902416 DOI: 10.1016/j.scitotenv.2021.152301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Trout-perch are sampled from the Athabasca River in Alberta, Canada, as a sentinel species for environmental health. The performance of trout-perch populations is known to be influenced by the quality of the water in which they reside. Using climate, environmental, and water quality variables measured in the Athabasca River near trout-perch sampling locations is found to improve model fitting and the predictability of models for the adjusted body weight, adjusted gonad weight, and adjusted liver weight of trout-perch. Given a large number of covariables, three variable selection techniques: stepwise regression, the lasso, and the elastic net (EN) are considered for selecting a subset of relevant variables. The models selected by the lasso and EN are found to outperform the models selected by stepwise regression in general, and little difference is observed between the models selected by the lasso and EN. Uranium, tungsten, tellurium, pH, molybdenum, and antimony are selected for at least one fish response.
Collapse
Affiliation(s)
- Patrick G McMillan
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Zeny Z Feng
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.
| | - Lorna E Deeth
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
3
|
Arciszewski TJ, Hazewinkel RRO, Dubé MG. A critical review of the ecological status of lakes and rivers from Canada's oil sands region. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:361-387. [PMID: 34546629 PMCID: PMC9298303 DOI: 10.1002/ieam.4524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
We synthesize the information available from the peer-reviewed literature on the ecological status of lakes and rivers in the oil sands region (OSR) of Canada. The majority of the research from the OSR has been performed in or near the minable region and examines the concentrations, flux, or enrichment of contaminants of concern (CoCs). Proximity to oil sands facilities and the beginning of commercial activities tend to be associated with greater estimates of CoCs across studies. Research suggests the higher measurements of CoCs are typically associated with wind-blown dust, but other sources also contribute. Exploratory analyses further suggest relationships with facility production and fuel use data. Exceedances of environmental quality guidelines for CoCs are also reported in lake sediments, but there are no indications of toxicity including those within the areas of the greatest atmospheric deposition. Instead, primary production has increased in most lakes over time. Spatial differences are observed in streams, but causal relationships with industrial activity are often confounded by substantial natural influences. Despite this, there may be signals associated with site preparation for new mines, potential persistent differences, and a potential effect of petroleum coke used as fuel on some indices of health in fish captured in the Steepbank River. There is also evidence of improvements in the ecological condition of some rivers. Despite the volume of material available, much of the work remains temporally, spatially, or technically isolated. Overcoming the isolation of studies would enhance the utility of information available for the region, but additional recommendations for improving monitoring can be made, such as a shift to site-specific analyses in streams and further use of industry-reported data. Integr Environ Assess Manag 2022;18:361-387. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Tim J. Arciszewski
- Environmental Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | | | - Monique G. Dubé
- Environmental Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
- Present address: Cumulative Effects Environmental Inc.CalgaryAlbertaCanada
| |
Collapse
|
4
|
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.
Collapse
|
5
|
Rotolo F, Vitiello V, Pellegrini D, Carotenuto Y, Buttino I. Historical control data in ecotoxicology: Eight years of tests with the copepod Acartia tonsa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117468. [PMID: 34062440 DOI: 10.1016/j.envpol.2021.117468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The calanoid copepod Acartia tonsa is one of the most frequently used organisms in acute, short-term bioassays to assess effects induced by marine matrices or chemicals on different life stages. Physiological responses in such tests can be highly variable and historical control data (HCD), values recorded from previous studies performed under similar conditions, can be useful to recognise the average responses over time. Here, we analysed egg hatching success and larval (naupliar) immobilisation/mortality of A. tonsa Mediterranean strain, cultured in laboratory conditions since 2008 and used as model organisms in ecotoxicology tests. Our aims were to evaluate the physiological response and sensitivity of A. tonsa over eight years of bioassays, and to compare our HCD with reference values, in order to assess the suitability of such a long-term culture for ecotoxicology studies. Acartia tonsa eggs were exposed for 48 h to the reference toxicant nickel chloride (NiCl2) and the % of egg hatching success and naupliar viability were compared to controls. A total of 59 acute tests, displayed in Shewhart-like control charts, showed a high mean percentage of egg hatching success (85.60% ± 5.90 SD) recorded for the whole period, and a low mean percentage of naupliar immobilisation/mortality (6.73% ± 6.38 SD) in controls. Effective concentration (EC50) for NiCl2 registered a stable mean of 0.14 mg Ni/L (± 0.047 SD) over time. Overall, our long-term dataset confirms the suitability of this copepod species for ecotoxicology studies even after years of culturing in laboratory conditions. It is advisable that other laboratories with long-term datasets made their own control charts, to allow data comparison and to improve test protocols. Considering our HCD, we suggest an EC50 of NiCl2 of 0.14 ± 0.09 mg Ni/L for acute tests with the Mediterranean strain of A. tonsa.
Collapse
Affiliation(s)
- Flavio Rotolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Valentina Vitiello
- Italian Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - David Pellegrini
- Italian Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Isabella Buttino
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Italian Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy.
| |
Collapse
|
6
|
Potential Influence of Sewage Phosphorus and Wet and Dry Deposition Detected in Fish Collected in the Athabasca River North of Fort McMurray. ENVIRONMENTS 2021. [DOI: 10.3390/environments8020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The health of fish is a primary indicator of ecosystem response in the Oil Sands Region of northeastern Alberta. However, industrial activity is accompanied by other stressors, such as the discharge of sewage, municipal activity, forest fires, and natural weathering and erosion of bitumen. To combat the spatial confounding influences, we examined white sucker (Catostomus commersonii) captured in the Athabasca River at sites over time (2011–2019) and included covariates to account for the possible sources of influence. The analyses suggest spatially heterogeneous influences of natural factors on fish, such as discharge and air temperature, but also the influence of sewage phosphorus and precipitation. Among the stressors examined here, precipitation may be the most complex and may include a mixture of sources including inputs from tributaries, urban activity, industrial development, and forest fires. Although suggestive, the attribution of variance and detection of changes are affected by sample sizes in some years; these analyses may have missed effects or misspecified important relationships, especially in males. Despite these limitations, the analyses suggest potential differences may be associated with precipitation and highlight the need to integrate robust information on known and suspected stressors in future monitoring of aquatic ecosystems in the oil sands region and beyond.
Collapse
|
7
|
Arciszewski TJ, McMaster ME, Munkittrick KR. Long-Term Studies of Fish Health before and after the Closure of a Bleached Kraft Pulp Mill in Northern Ontario, Canada. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:162-176. [PMID: 33074567 DOI: 10.1002/etc.4904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Changes in ecosystems after the removal of stress provide a rich source of information for conservation science. We used a long-term regional data set on the performance of white sucker (Catostomus commersonii) collected before and after the closure of a pulp mill to explore recovery in fish. Physiological indicators, including liver enzymes and plasma steroids, showed some compelling changes after the closure of the mill consistent with reduced exposure to pulp mill effluent but did not unequivocally demonstrate recovery. However, persistent signals in these fish may indicate effects of impoundment or discharge of sewage. We also used quantile regression with environmental covariates and bootstrap iteration to determine if systematic variation remained in relative body weight, liver weight, and gonad weight. In fish formerly exposed to pulp mill effluent, we found evidence of improvements (male gonad weight and liver weight of males and females), degradation (gonad weight of females), and no change (body weight). Although the observed patterns may be associated with closure of the mill, some differences were also found at regional locations, suggesting roles of additional stressors and challenging the clear association of change at the Mattagami River exposure site with the closure of the mill. However, fish captured at this location show responses consistent with regional locations, suggesting no residual impacts and highlights the challenges of identifying changes in fish even after large and known interventions. Environ Toxicol Chem 2021;40:162-176. © 2020 SETAC.
Collapse
Affiliation(s)
- T J Arciszewski
- University of New Brunswick (Saint John), Saint John, New Brunswick, Canada
| | - M E McMaster
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - K R Munkittrick
- University of New Brunswick (Saint John), Saint John, New Brunswick, Canada
| |
Collapse
|
8
|
Davidson CJ, Foster KR, Tanna RN. Forest health effects due to atmospheric deposition: Findings from long-term forest health monitoring in the Athabasca Oil Sands Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134277. [PMID: 31689668 DOI: 10.1016/j.scitotenv.2019.134277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 05/05/2023]
Abstract
Oil sands developments release acidifying compounds (SO2 and NO2) with the potential for acidifying deposition and impacts to forest health. This article integrates the findings presented in the Oil Sands Forest Health Special Issue, which reports on the results of 20 years of forest health monitoring, and addresses the key questions asked by WBEA's Forest Health Monitoring (FHM) Program: 1) is there evidence of deposition affecting the environment?, 2) have there been changes in deposition or effects over time?, 3) do acid deposition levels require management intervention?, 4) what are major sources of deposited substances? and 5) how can the program be improved? Deposition of sulphur, nitrogen, base cations (BC), polycyclic aromatic compounds and trace elements decline exponentially with distance from sources. There is little evidence for acidification effects on forest soils or on understory plant communities or tree growth, but there is evidence of nitrogen accumulation in jack pine needles and fertilization effects on understory plant communities. Sulphur, BC and trace metal concentrations in lichens increased between 2008 and 2014. Source apportionment studies suggest fugitive dust in proximity to mining is a primary source of BC, trace element and organic compound deposition, and BC deposition may be neutralizing acidifying deposition. Sulphur accumulation in soils and nitrogen effects on vegetation may indicate early stages of acidification. Deposition estimates for sites close to emissions sources exceed proposed regulatory trigger levels, suggesting a detailed assessment of acidification risk close to the emission sources is warranted. However, there is no evidence of widespread acidification as suggested by recent modeling studies, likely due to high BC deposition. FHM Program evolution should include continued integration with modeling approaches, ongoing collection and assessment of monitoring data and testing for change over time, and addition of monitoring sites to fill gaps in regional coverage.
Collapse
Affiliation(s)
| | | | - Rajiv N Tanna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Fennell J, Arciszewski TJ. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:968-985. [PMID: 31200313 DOI: 10.1016/j.scitotenv.2019.05.407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 05/05/2023]
Abstract
Seepage of oil sand process-affected waters (OSPW) from tailings ponds into surface waters is a common concern in the minable oil sands region of northeast Alberta. Research on seepage has been extensive, but few comprehensive treatments evaluating all aspects relevant to the phenomenon are available. In this work, the current information relevant for understanding the state of seepage from tailings ponds was reviewed. The information suggests the infiltration of OSPW into groundwater occurs near some ponds. OSPW may also be present in sediments beneath the Athabasca River adjacent to one pond, but there are no clear observations of OSPW in the river water. Similarly, most water samples from tributaries also show no evidence of OSPW, but these observations are limited by the lack of systematic, systemic, and repeated surveys, missing baseline data, standard analytical approaches, and reference materials. Waters naturally influenced by bitumen, discharge of saline groundwaters, and dilution also potentially affect the consolidation of information and certainty of any conclusions. Despite these challenges, some data suggest OSPW may be present in two tributaries of the Athabasca River adjacent to tailings ponds: McLean Creek and Lower Beaver River. Irrespective of the possible source(s), constituents of OSPW often affect organisms exposed in laboratories, but research in all but one study suggests the concentrations of organics in the surface water bodies assessed are below the standard toxicological effect thresholds for these compounds. In contrast, many samples of groundwater, irrespective of source, likely affect biota. Biomonitoring of surface waters suggests generic responses to stressors, but the influence of natural phenomena and occasionally nutrient enrichment are often suggested by data. In summary, valuable research has been done on seepage. The data suggest infiltration into groundwater is common, seepage into surface waters is not, and anthropogenic biological impacts are not likely.
Collapse
Affiliation(s)
- Jon Fennell
- Integrated Sustainability, Calgary, AB, Canada
| | | |
Collapse
|
10
|
Tanna RN, Redman AD, Frank RA, Arciszewski TJ, Zubot WA, Wrona FJ, Brogly JA, Munkittrick KR. Overview of Existing Science to Inform Oil Sands Process Water Release: A Technical Workshop Summary. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:519-527. [PMID: 30908840 DOI: 10.1002/ieam.4149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The extraction of oil sands from mining operations in the Athabasca Oil Sands Region uses an alkaline hot water extraction process. The oil sands process water (OSPW) is recycled to facilitate material transport (e.g., ore and tailings), process cooling, and is also reused in the extraction process. The industry has expanded since commercial mining began in 1967 and companies have been accumulating increasing inventories of OSPW. Short- and long-term sustainable water management practices require the ability to return treated water to the environment. The safe release of OSPW needs to be based on sound science and engineering practices to ensure downstream protection of ecological and human health. A significant body of research has contributed to the understanding of the chemistry and toxicity of OSPW. A multistakeholder science workshop was held in September 2017 to summarize the state of science on the toxicity and chemistry of OSPW. The goal of the workshop was to review completed research in the areas of toxicology, chemical analysis, and monitoring to support the release of treated oil sands water. A key outcome from the workshop was identifying research needs to inform future water management practices required to support OSPW return. Another key outcome of the workshop was the recognition that methods are sufficiently developed to characterize chemical and toxicological characteristics of OSPW to address and close knowledge gaps. Industry, government, and local indigenous stakeholders have proceeded to utilize these insights in reviewing policy and regulations. Integr Environ Assess Manag 2019;15:519-527. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Richard A Frank
- Water Science and Technology Directorate, Environment Canada, Burlington, Ontario
| | - Tim J Arciszewski
- Alberta Environment and Parks, Environmental Monitoring and Science Division, Calgary, Alberta, Canada
| | - Warren A Zubot
- Syncrude Canada Ltd, Edmonton Research Centre, Edmonton, Alberta
| | - Frederick J Wrona
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta, Canada
| | - John A Brogly
- Canada's Oil Sands Innovation Alliance, Calgary, Alberta
| | - Kelly R Munkittrick
- Cold Regions and Water Initiatives, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|