1
|
Moriya M, Noro K, Nagaosa A, Banno A, Ono J, Amagai T, Yabuki Y. Characterization of The Permeation Properties of Membrane Filters and Sorption Properties of Sorbents Used for Polar Organic Chemical Integrative Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2115-2121. [PMID: 39056746 DOI: 10.1002/etc.5957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Polar organic chemical integrative samplers (POCIS) are promising devices for measuring the time-weighted average concentrations of hydrophilic compounds in aquatic environments. However, the mechanisms underlying compound uptake by POCIS remain unclear. We investigated the permeation kinetics of polyethersulfone and polytetrafluoroethylene membrane filters, and the sorption kinetics of Oasis HLB (Waters), Envi-Carb (Supelco), and Oasis WAX (Waters) sorbents. The log octanol-water partition coefficient (KOW) values of the 19 targeted compounds ranged from -0.55 to 6.0. The overall mass-transfer coefficients were negatively correlated with KOW, indicating that interactions between hydrophobic compounds and the membrane inhibit permeation. The sorption rate coefficient showed no correlation with KOW and depended on the type of sorbent used. These results imply that the uptake of highly hydrophilic compounds by POCIS is determined by both the membrane and the sorbent kinetics; however, membrane kinetics dominate the uptake of hydrophobic compounds. Environ Toxicol Chem 2024;43:2115-2121. © 2024 SETAC.
Collapse
Affiliation(s)
- Miyu Moriya
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazushi Noro
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Aika Nagaosa
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Arisa Banno
- Research, Institute of Environment, Agriculture, and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Junko Ono
- Research, Institute of Environment, Agriculture, and Fisheries, Osaka Prefecture, Habikino, Japan
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshinori Yabuki
- Research, Institute of Environment, Agriculture, and Fisheries, Osaka Prefecture, Habikino, Japan
| |
Collapse
|
2
|
Fialová P, Šverclová K, Grabicová K, Grabic R, Švecová H, Nováková P, Vrana B. Performance comparison of three passive samplers for monitoring of polar organic contaminants in treated municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168153. [PMID: 37914129 DOI: 10.1016/j.scitotenv.2023.168153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Over the past decades, several types of passive samplers have been developed and used to monitor polar organic compounds in aquatic environments. These samplers use different sorbents and barriers to control the uptake into the sampler, but their performance comparison is usually not well investigated. This study aimed to directly compare the performance of three samplers, i.e., the Polar Organic Chemical Integrative Sampler (POCIS), the Hydrogel-based Passive Sampler (HPS, an upscaled version of o-DGT), and the Speedisk, on a diverse suite of pharmaceuticals, per- and polyfluoroalkylated substances (PFAS), and pesticides and their metabolites. The samplers were deployed side-by-side in the treated effluent of a municipal wastewater treatment plant for different exposure times. All samplers accumulated a comparable number of compounds, and integrative uptake was observed for most compounds detected up to 28 days for POCIS, up to 14 days for HPS, and up to 42 days for Speedisk. In the integrative uptake phase, consistent surface-specific uptake was observed with a significant correlation between samplers (r ≥ 0.76) despite differences in sampler construction, diffusion barrier, and sorbent material used. The low sampling rates compared to the literature and the low estimated overall mass transfer coefficient suggests that the water boundary layer was the main barrier controlling the uptake for all samplers. Although all devices provided comparable performance, Speedisk overcomes POCIS and HPS in several criteria, including time-integrative sampling over a long period and physical durability.
Collapse
Affiliation(s)
- Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Kateřina Šverclová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic.
| |
Collapse
|
3
|
Tarábek P, Vrana B, Chalupková K, Bednáriková A, Okšová L, Bystrický P, Leonova N, Konovalova O. Examining the applicability of polar organic chemical integrative sampler for long-term monitoring of groundwater contamination caused by currently used pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165905. [PMID: 37532041 DOI: 10.1016/j.scitotenv.2023.165905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The possibilities of expanding a groundwater quality monitoring scheme by passive sampling using polar organic chemical integrative sampler (POCIS) comprising HLB sorbent as the receiving phase were explored. Passive sampling and grab sampling were carried out simultaneously in the regions with vulnerable groundwater resources in Slovakia, between 2013 and 2021. For 27 pesticides and degradation products detected both in POCIS and the grab samples, in situ sampling rates were calculated and statistically evaluated. The limited effectiveness of the receiving phase in POCIS for sampling polar or ionized compounds was confirmed through a comparison of the medians of compound-specific sampling rates. For the majority of the monitored compounds the median sampling rates varied between 0.01 and 0.035 L/day. In some cases, the actual in situ values could be confirmed by parallel exposure of POCIS and silicone rubber sheet employed to obtain a benchmark for maximum attainable sampling rate. Sampling site and sampling period appear to have also some influence on the sampling rates, which was attributed in part to the groundwater velocity varying in both space and time. The influence of physico-chemical parameters (temperature, pH, electrolytic conductivity) remains mostly questionable due to the naturally limited ranges of recorded values over the entire duration of the study. Concentrations of pollutants in POCIS could be used for predicting time weighed average concentrations in water, provided the sampling rates were known and relatively constant. Generally, the compound-specific sampling rate cannot be considered constant due to a combination of naturally varying environmental factors that influence the actual in situ sampling rate. The relative standard deviation of concentration data from POCIS exposed in triplicates varied between approx. 5 %-50 %. Utilizing exploratory data analysis approach and tools enabled us to obtain a relatively complex picture of the situation and progress regarding pesticide pollution of groundwater in the monitored areas.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia.
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Katarína Chalupková
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Alena Bednáriková
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Linda Okšová
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Peter Bystrický
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia
| |
Collapse
|
4
|
Krupčíková S, Stiborek M, Šimek Z, Vrana B. Factors affecting diffusion of polar organic compounds in agarose hydrogel applied to control mass transfer in passive samplers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122470-122481. [PMID: 37968489 DOI: 10.1007/s11356-023-30929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Diffusive hydrogel-based passive sampler (HPS) based on diffusive gradients in thin films (DGT) is designed for monitoring polar organic contaminants in the aquatic environment. DGT technique controls the compound's overall uptake rate by adding a hydrogel layer of known thickness, which minimizes the importance of the resistive water boundary layer in the compound uptake process. In this work, we investigated several factors which may influence the diffusion of a range of aquatic contaminants in 1.5% agarose hydrogel. Diffusion in hydrogel was tested using the sheet stacking method. We demonstrated that a thin nylon netting incorporated into the diffusive hydrogel for mechanical strengthening does not significantly affect the diffusion of 11 perfluoroalkyl compounds. Further, we investigated the effect of pH in the range from 3 to 11 on the diffusion of a range of 39 aromatic amines (AAs) -36 aromatic, 2 aliphatic, and azobenzene in hydrogel. AAs were chosen as representatives of compounds with pH-dependent dissociation in water. Analysis of variance showed no significant difference in mean diffusion coefficient log D value at five pH values. The demonstration that the diffusion coefficient D and thus the sampling rate Rs are independent on pH simplifies the interpretation of data from field studies because we can neglect the influence of pH on the Rs. log D values (m2 s-1) of tested AAs ranged from to - 9.77 for 3,3'-dimethylbenzidine to - 9.19 for azobenzene. A negative correlation of log D with molar mass (log M) and molecular volume (log Vm) was observed (R = - 0.57 and - 0.56, respectively). The diffusion coefficient presents a critical parameter for the sampling rate estimation of HPS. Theoretical sampling rates Rs of AAs were calculated for a HPS using the average D values. Theoretical Rs values calculated for AAs at 22°C ranged from 29 mL day-1 for 3,3'-dimethylbenzidine to 106 mL day-1 for 2-aminopyridine. Our calculated values of Rs are in the same range as those already published for a range of low-molecular polar organic contaminants, which supports the possibility of deriving sampler performance parameters in the field from laboratory-derived diffusivity of analytes in hydrogel.
Collapse
Affiliation(s)
- Simona Krupčíková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Marek Stiborek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Zdeněk Šimek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| |
Collapse
|
5
|
Fialová P, Grabic R, Grabicová K, Nováková P, Švecová H, Kaserzon S, Thompson K, Vrana B. Performance evaluation of a diffusive hydrogel-based passive sampler for monitoring of polar organic compounds in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161071. [PMID: 36565860 DOI: 10.1016/j.scitotenv.2022.161071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
An upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm2) than a typical o-DGT sampler (3.14 cm2) was tested in several field studies. HPS performance was tested in situ within a calibration study in the treated effluent of a municipal wastewater treatment plant and in a verification study in the raw municipal wastewater influent. HPS sampled integratively for up to 14 days in the effluent, and 8 days in the influent. Sampling rates (Rs) were derived for 44 pharmaceuticals and personal care products, 3 perfluoroalkyl substances, 2 anticorrosives, and 21 pesticides and metabolites, ranging from 6 to 132 mL d-1. Robustness and repeatability of HPS deteriorated after exposures longer than 14 days due to microbial and physical damage of the diffusive agarose layer. In situ Rs values for the HPS can be applied to estimate the aqueous concentration of the calibrated polar organic compounds in wastewater within an uncertainty factor of four. When accepting this level of accuracy, the HPS can be applied for monitoring trends of organic micropollutants in wastewater.
Collapse
Affiliation(s)
- Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
6
|
Noro K, Endo S, Inoue D, Suzuki N, Kameoka H, Ono J, Nakamura S, Yabuki Y. Development of a New Polar Organic Chemical Integrative Sampler for 1,4-dioxane Using Silicone Membrane as a Diffusion Barrier. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:296-302. [PMID: 36349960 DOI: 10.1002/etc.5518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Efficient monitoring methods must be developed for 1,4-dioxane, which is suspected to be carcinogenic to humans and is highly mobile in aquatic environments. In this regard, polar organic chemical integrative samplers (POCIS) have been utilized extensively as passive samplers for determining time-weighted average concentrations of hydrophilic organic compounds. However, POCIS are difficult to apply to extremely hydrophilic known organic compounds with negative log octanol-water partition coefficient (Kow ) values due to their limited kinetic sampling time. Using an activated carbon-based sorbent with a high adsorption capacity and a bilayer of silicone and polyethersulfone membranes that inhibit mass transfer to the sorbent, we developed a POCIS device to measure 1,4-dioxane (log Kow -0.27) in the present study. Permeation and field calibration tests demonstrated that the use of silicone membranes effectively reduces the water-to-sorbent mass transfer rate. The sampling rate and kinetic sampling period determined by field calibration tests were 1.4 ml day-1 and >14 days, respectively. Finally, the developed POCIS device was applied to a landfill treatment plant to determine the 1,4-dioxane concentrations. Environ Toxicol Chem 2023;42:296-302. © 2022 SETAC.
Collapse
Affiliation(s)
- Kazushi Noro
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Research Institute of Environment, Agriculture, and Fisheries, Osaka, Japan
| | - Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa, Ibaraki, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, Suita, Osaka, Japan
| | - Natsumi Suzuki
- Faculty of Engineering, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Hiroshi Kameoka
- Research Institute of Environment, Agriculture, and Fisheries, Osaka, Japan
| | - Junko Ono
- Research Institute of Environment, Agriculture, and Fisheries, Osaka, Japan
| | - Satoshi Nakamura
- Research Institute of Environment, Agriculture, and Fisheries, Osaka, Japan
| | - Yoshinori Yabuki
- Research Institute of Environment, Agriculture, and Fisheries, Osaka, Japan
| |
Collapse
|
7
|
Wang S, Basijokaite R, Murphy BL, Kelleher CA, Zeng T. Combining Passive Sampling with Suspect and Nontarget Screening to Characterize Organic Micropollutants in Streams Draining Mixed-Use Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16726-16736. [PMID: 36331382 PMCID: PMC9730844 DOI: 10.1021/acs.est.2c02938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Organic micropollutants (OMPs) represent an anthropogenic stressor on stream ecosystems. In this work, we combined passive sampling with suspect and nontarget screening enabled by liquid chromatography-high-resolution mass spectrometry to characterize complex mixtures of OMPs in streams draining mixed-use watersheds. Suspect screening identified 122 unique OMPs for target quantification in polar organic chemical integrative samplers (POCIS) and grab samples collected from 20 stream sites in upstate New York over two sampling seasons. Hierarchical clustering established the co-occurrence profiles of OMPs in connection with watershed attributes indicative of anthropogenic influences. Nontarget screening leveraging the time-integrative nature of POCIS and the cross-site variability in watershed attributes prioritized and confirmed 11 additional compounds that were ubiquitously present in monitored streams. Field sampling rates for 37 OMPs that simultaneously occurred in POCIS and grab samples spanned the range of 0.02 to 0.22 L/d with a median value of 0.07 L/d. Comparative analyses of the daily average loads, cumulative exposure-activity ratios, and multi-substance potentially affected fractions supported the feasibility of complementing grab sampling with POCIS for OMP load estimation and screening-level risk assessments. Overall, this work demonstrated a multi-watershed sampling and screening approach that can be adapted to assess OMP contamination in streams across landscapes.
Collapse
Affiliation(s)
- Shiru Wang
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| | - Ruta Basijokaite
- Department
of Earth and Environmental Sciences, Syracuse
University, 204 Heroy Geology Laboratory, Syracuse, New York 13244, United States
| | - Bethany L. Murphy
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| | - Christa A. Kelleher
- Department
of Earth and Environmental Sciences, Syracuse
University, 204 Heroy Geology Laboratory, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| |
Collapse
|
8
|
Khulu S, Ncube S, Nuapia Y, Madikizela LM, Mavhunga E, Chimuka L. Development and application of a membrane assisted solvent extraction-molecularly imprinted polymer based passive sampler for monitoring of selected pharmaceuticals in surface water. WATER RESEARCH 2022; 225:119145. [PMID: 36179429 DOI: 10.1016/j.watres.2022.119145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In this work, we demonstrate the development, evaluation and pre-liminary application of a novel passive sampler for monitoring of selected pharmaceuticals in environmental waters. The samplers were calibrated in laboratory-based experiments to obtain sampling rates (Rs) for carbamazepine, methocarbamol, etilefrine, venlafaxine and nevirapine. Passive sampling was based on the diffusion of the target pharmaceuticals from surface water through a membrane bag which housed an ionic liquid as a green receiving solvent and a molecularly imprinted polymer. Effects of biofouling, deployment time and solvent type for the receiver phase were optimized for selective uptake of analytes in surface water. Notably, there was a decrease in the uptake of selected pharmaceuticals and consequently a decrease in their sampling rates in the presence of biofouling. The optimum matrix-matched sampling rates ranged from 0.0007 - 0.0018 L d-1 whilst the method detection and quantification limits ranged from 2.45 - 3.26 ng L-1 and 8.06 - 10.81 ng L-1, respectively. The optimized passive sampler was deployed in a dam situated in the heart of a typical highly populated township in the Gauteng Province of South Africa. Only etilefrine and methocarbamol were detected and quantified at maximum time weighted average concentrations of 12.88 and 72.29 ng L-1, respectively.
Collapse
Affiliation(s)
- Sinegugu Khulu
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa; School of Education, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa, 0204, South Africa
| | - Yannick Nuapia
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa; Pharmacy Department, School of Health Sciences, University of Limpopo, Turfloop Campus, Polokwane, 0727, South Africa
| | - Lawrence Mzukisi Madikizela
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Elizabeth Mavhunga
- School of Education, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa.
| |
Collapse
|
9
|
Godlewska K, Stepnowski P, Paszkiewicz M. Carbon nanotubes, activated carbon and Oasis HLB as sorbents of passive samplers for extraction of selected micropollutants — Comparison of sampling rates and extraction efficiency. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Kim M, Hong S, Cha J, Kim Y, Lee CE, An Y, Shin KH. Multimedia distributions and the fate of microcystins from freshwater discharge in the Geum River Estuary, South Korea: Applicability of POCIS for monitoring of microalgal biotoxins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118222. [PMID: 34571464 DOI: 10.1016/j.envpol.2021.118222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Here, we investigated the characteristics of the environmental multimedia distribution of microcystins (MCs) introduced from freshwater discharge through the estuary dam of the Geum River. In addition, the applicability of a passive sampling device (polar organic chemical integrative sampler, POCIS) for monitoring MCs was evaluated. Surface water, suspended solids (SS), sediments, and oysters were collected from the inner and outer estuary dam. Seven MC variants were analyzed using HPLC-MS/MS. POCIS was deployed at three sites over one week, and MCs were monitored for four weeks from August to September 2019. Before POCIS was deployed in the field, compounds-specific sampling rates of MCs were determined as functions of water temperature (10, 20, and 30 °C), flow rate (0, 0.38, and 0.76 m s-1), and salinity (0, 15, and 30 psu) in the laboratory. The sampling rates of MCs in POCIS increased significantly with increasing water temperature and flow rate, whereas salinity did not significantly affect the sampling rates between freshwater and saltwater. The MCs in the Geum River Estuary mainly existed as particulate forms (mean: 78%), with relatively low proportions of dissolved forms (mean: 22%), indicating that MCs were mainly contained in cyanobacterial cells. There was no significant correlation among the concentrations of MCs in water, SS, sediments, and oysters. Time-weighted average concentrations of MCs from POCIS were not significantly correlated with the concentrations of MCs in water and oysters. The metabolites of MCs, including MC-LR-GSH, MC-LR-Cys, MC-RR-GSH, and MC-RR-Cys, were detected in oysters (no metabolites were detected in POCIS). Overall, POCIS can be useful for monitoring dissolved MCs in the aquatic ecosystem, particularly in calculating time-weighted average concentrations, but it seems to have limitations in evaluating the contamination status of total MCs, mainly in particulate form.
Collapse
Affiliation(s)
- Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang-Eon Lee
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoonyoung An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
11
|
Tardy V, Bonnineau C, Bouchez A, Miège C, Masson M, Jeannin P, Pesce S. A pilot experiment to assess the efficiency of pharmaceutical plant wastewater treatment and the decreasing effluent toxicity to periphytic biofilms. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125121. [PMID: 33858096 DOI: 10.1016/j.jhazmat.2021.125121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical industry effluents are complex and highly variable in time. Assessing the efficiency of a pharmaceutical industry wastewater treatment plant (WWTP) and the resulting decrease in effluent toxicity and ecological risk is thus not straightforward. We set up an original in situ pilot directly connected to a pharmaceutical WWTP to monitor the chronic toxicity of successive effluents using natural periphytic biofilms. Their structural and functional responses to effluent exposure were assessed by combining (i) a molecular approach to characterize the bacterial and diatom diversity and (ii) functional measurements of photosynthetic and enzyme activities. Effluent contamination by pharmaceuticals strongly decreased after the quaternary treatment (activated carbon). Most of the structural biological characteristics improved with cumulative WWTP treatment (bacterial diversity, microbial genetic structure, and biological diatom index), showing community recovery along the treatment process. However, functional parameters did not show clear links with treatment steps, suggesting that microbial activities were not solely driven by pharmaceuticals produced during the experimental period. Operationally, this type of pilot system offers a useful tool for biomonitoring approaches and offers new approaches for industrial managers to assess the ecological risk of production effluents in receiving water.
Collapse
Affiliation(s)
| | | | - Agnès Bouchez
- INRAE, USMB, UMR CARRTEL, 74200 Thonon-les-Bains, France
| | | | | | - Pierric Jeannin
- SANOFI, Central Laboratory of Environment & Safety, route d'Avignon, 30390 Aramon, France
| | | |
Collapse
|
12
|
Hahn RZ, Augusto do Nascimento C, Linden R. Evaluation of Illicit Drug Consumption by Wastewater Analysis Using Polar Organic Chemical Integrative Sampler as a Monitoring Tool. Front Chem 2021; 9:596875. [PMID: 33859973 PMCID: PMC8042236 DOI: 10.3389/fchem.2021.596875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Illicit drug abuse is a worldwide social and health problem, and monitoring illicit drug use is of paramount importance in the context of public policies. It is already known that relevant epidemiologic information can be obtained from the analysis of urban residual waters. This approach, named wastewater-based epidemiology (WBE), is based on the measurement of specific markers, resulting from human biotransformation of the target drugs, as indicators of the consumption of the compounds by the population served by the wastewater treatment installation under investigation. Drug consumption estimation based on WBE requires sewage sampling strategies that express the concentrations along the whole time period of time. To this end, the most common approach is the use of automatic composite samplers. However, this active sampling procedure is costly, especially for long-term studies and in limited-resources settings. An alternative, cost-effective, sampling strategy is the use of passive samplers, like the polar organic chemical integrative sampler (POCIS). POCIS sampling has already been applied to the estimation of exposure to pharmaceuticals, pesticides, and some drugs of abuse, and some studies evaluated the comparative performances of POCIS and automatic composite samplers. In this context, this manuscript aims to review the most important biomarkers of drugs of abuse consumption in wastewater, the fundamentals of POCIS sampling in WBE, the previous application of POCIS for WBE of drugs of abuse, and to discuss the advantages and disadvantages of POCIS sampling, in comparison with other strategies used in WBE. POCIS sampling is an effective strategy to obtain a representative overview of biomarker concentrations in sewage over time, with a small number of analyzed samples, increased detection limits, with lower costs than active sampling. Just a few studies applied POCIS sampling for WBE of drugs of abuse, but the available data support the use of POCIS as a valuable tool for the long-term monitoring of the consumption of certain drugs within a defined population, particularly in limited-resources settings.
Collapse
Affiliation(s)
- Roberta Zilles Hahn
- Laboratory of Analytical Toxicology, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Rafael Linden
- Laboratory of Analytical Toxicology, Universidade Feevale, Novo Hamburgo, Brazil.,National Institute of Forensic Science and Technology (INCT Forense), Porto Alegre, Brazil
| |
Collapse
|
13
|
Godlewska K, Jakubus A, Stepnowski P, Paszkiewicz M. Impact of environmental factors on the sampling rate of β-blockers and sulfonamides from water by a carbon nanotube-passive sampler. J Environ Sci (China) 2021; 101:413-427. [PMID: 33334535 DOI: 10.1016/j.jes.2020.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Passive techniques are a constantly evolving approach to the long-term monitoring of micropollutants, including pharmaceuticals, in the aquatic environment. This paper presents, for the first time, the calibration results of a new CNTs-PSDs (carbon nanotubes used as a sorbent in passive sampling devices) with an examination of the effect of donor phase salinity, water pH and the concentration of dissolved humic acids (DHAs), using both ultrapure and environmental waters. Sampling rates (Rs) were determined for the developed kinetic samplers. It has been observed that the impact of the examined environmental factors on the Rs values strictly depends on the type of the analytes. In the case of β-blockers, the only environmental parameter affecting their uptake rate was the salinity of water. A certain relationship was noted, namely the higher the salt concentration in water, the lower the Rs values of β-blockers. In the case of sulfonamides, water salinity, water pH 7-9 and DHAs concentration decreased the uptake rate of these compounds by CNTs-PSDs. The determined Rs values differed in particular when the values obtained from the experiments carried out using ultrapure water and environmental waters were compared. The general conclusion is that the calibration of novel CNTs-PSDs should be carried out under physicochemical conditions of the aquatic phase that are similar to the environmental matrix.
Collapse
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Aleksandra Jakubus
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland
| |
Collapse
|
14
|
Vrana B, Urík J, Fedorova G, Švecová H, Grabicová K, Golovko O, Randák T, Grabic R. In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116121. [PMID: 33272798 DOI: 10.1016/j.envpol.2020.116121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d-1, with the overall median value of 0.10 L d-1. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.
Collapse
Affiliation(s)
- Branislav Vrana
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Jakub Urík
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
15
|
Sampling Rate of Polar Organic Chemical Integrative Sampler (POCIS): Influence Factors and Calibration Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As a passive sampling device, the polar organic chemical integrative sampler (POCIS) has the characteristics of simple operation, safety, and reliability for assessing the occurrence and risk of persistent and emerging trace organic pollutants. The POCIS, allowing for the determination of time-weighted average (TWA) concentration of polar organic chemicals, exhibits good application prospects in aquatic environments. Before deploying the device in water, the sampling rate (Rs), which is a key parameter for characterizing pollutant enrichment, should be determined and calibrated accurately. However, the Rs values strongly depend on experimental hydrodynamic conditions. This paper provides an overview of the current situation of the POCIS for environmental monitoring of organic pollutants in an aquatic system. The principle and theory of the POCIS are outlined. In particular, the effect factors such as the ambient conditions, pollutant properties, and device features on the Rs are analyzed in detail from aspects of impact dependence and mechanisms. The calibration methods of the Rs under laboratory and in situ conditions are summarized. This review offers supplementary information on comprehensive understanding of mechanism and application of the POCIS. Nevertheless, the Rs were impacted by a combined effect of solute–sorbent–membrane–solution, and the influence extent of each variable was still unclear. On this basis, the ongoing challenges are proposed for the future application of the POCIS in the actual environment, for instance, the need for this device to be improved in terms of quantitative methods for more accurate measurement of the Rs.
Collapse
|
16
|
Taylor RB, Toteu Djomte V, Bobbitt JM, Hering AS, Chen S, Chambliss CK. Effects of Environmentally Relevant Concentration Exposure Profiles on Polar Organic Chemical Integrative Sampler (POCIS) Sampling Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8848-8856. [PMID: 32598138 DOI: 10.1021/acs.est.0c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polar organic chemical integrative sampler (POCIS) is a passive sampling device that offers many advantages over traditional discrete sampling methods, but quantitative time-weighted average (TWA) concentrations rely heavily on the robustness of sampling rates. The effects of changing chemical concentration exposures on POCIS sampling rates and its ability to operate in an integrative regime were investigated for 12 pesticides across a range of environmentally relevant concentrations. In five independent 21-day experiments, POCIS devices were exposed to these compounds at constant concentrations ranging from 3 to 60 μg/L and multiple pulsed concentrations with maximum peaks ranging from 5 to 150 μg/L (TWA concentrations = 3 to 92 μg/L). For the 21-day exposures to constant and pulsed concentrations, there were no significant differences in the POCIS sampling rates between corresponding TWA concentrations. Similarly, there was no significant effect on POCIS ability to operate in an integrative regime. However, loss of linearity was visible for some replicates when exposed to higher pulsed concentrations over an extended period. Modeling and Freundlich isotherms did not predict sorbent saturation, but the extraction and reconstitution protocol likely contributed to atrazine dissolution and subsequent underestimation of sorbed chemical mass when HLB adsorption exceeded 400 μg.
Collapse
Affiliation(s)
- Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Valerie Toteu Djomte
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Jonathan M Bobbitt
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Amanda S Hering
- Department of Statistical Science, Baylor University, Waco, Texas 76798, United States
| | - Sunmao Chen
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27409, United States
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
17
|
Noro K, Endo S, Shikano Y, Banno A, Yabuki Y. Development and Calibration of the Polar Organic Chemical Integrative Sampler (POCIS) for Neonicotinoid Pesticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1325-1333. [PMID: 32348590 DOI: 10.1002/etc.4729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid pesticides are highly hydrophilic systemic insecticides that have been extensively used worldwide. To evaluate their environmental risks, the concentrations of these pesticides in the aquatic environment must be monitored. Although the polar organic chemical integrative sampler (POCIS) has proved to be a suitable passive sampler for many highly hydrophilic compounds, Oasis HLB (Waters) POCIS has shown limitations for the monitoring of neonicotinoid pesticides, such as short linear uptake ranges. In the present study we optimized POCIS for neonicotinoid pesticides by selecting suitable adsorbents and filters. The ENVI-Carb (Supelco) nonporous carbon-based adsorbent demonstrated a good balance between strong sorption and high recovery. Static renewal experiments showed that the our POCIS device using ENVI-Carb with a polyethersulfone membrane filter had a 3 d (dinotefuran) to 28 d (clothianidin, imidacloprid, acetamiprid, and thiacloprid) linear range, which is longer than that of HLB POCIS (≤1 [dinotefuran] to 14 d). The POCIS using ENVI-Carb with a polytetrafluoroethylene membrane had higher sampling rates (0.270 L/d [clothianidin] to 0.686 [imidacloprid] L/d) than those of the HLB POCIS for short-term deployment. The time-weighted average concentrations in actual river water measured by the new POCIS were in good agreement with those obtained by repeated grab sampling, within 30%. Moreover, POCIS detected 2 neonicotinoid pesticides that were not detected by grab sampling. Thus, the proposed POCIS is a promising tool for the monitoring of neonicotinoid pesticides. Environ Toxicol Chem 2020;39:1325-1333. © 2020 SETAC.
Collapse
Affiliation(s)
- Kazushi Noro
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka, Japan
| | - Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Osaka City University, Osaka, Japan
| | | | - Arisa Banno
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka, Japan
| | - Yoshinori Yabuki
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka, Japan
| |
Collapse
|
18
|
Booij K, Chen S, Trask JR. POCIS Calibration for Organic Compound Sampling in Small Headwater Streams. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1334-1342. [PMID: 32408378 DOI: 10.1002/etc.4731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Field-based atrazine sampling rates (Rs ) obtained by the polar organic chemical integrative sampler (POCIS) method were measured in 9 headwater streams over 3 yr covering 5 to 6 exposure periods of 2 to 3 wk/site/yr. Rates were best in line with the model Rs = 148 mL/d, with a standard deviation of 0.17 log units (factor 1.5). The POCIS canisters reduced mass transfer coefficients of the water boundary layer by a factor of 2 as measured by alabaster dissolution rates. A mechanistic model that accounts for flow and temperature effects yielded a fair estimate of the effective exchange surface area (12.5 ± 0.8 cm2 ). This model could only be tested for higher flow velocities because of uncertainties associated with the measurement of flow velocities <1 cm/s. Pictures of sorbent distributions in POCIS devices showed that the effective exchange surface area varied with time during the exposures. Error analysis indicated that sorbent distributions and chemical analysis were minor error sources. Our main conclusion is that an atrazine sampling rate of 148 mL/d yielded consistent results for all 3 yr across 9 headwater streams. Environ Toxicol Chem 2020;39:1334-1342. © 2020 SETAC.
Collapse
Affiliation(s)
- Kees Booij
- Passive Sampling of Organic Compounds (PaSOC), Kimswerd, The Netherlands
| | - Sunmao Chen
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | | |
Collapse
|
19
|
Challis JK, Almirall XO, Helm PA, Wong CS. Performance of the organic-diffusive gradients in thin-films passive sampler for measurement of target and suspect wastewater contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114092. [PMID: 32059137 DOI: 10.1016/j.envpol.2020.114092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Although passive sampling is widely accepted as an excellent tool for environmental monitoring, their integration with suspect or non-targeted screening by high-resolution mass spectrometry has been limited. This study describes the application of the organic-diffusive gradients in thin-films (o-DGT) passive sampler as a tool for accurate measurement of both targeted and suspect polar organic contaminants (primarily pharmaceuticals) in wastewater. First, performance of o-DGT was assessed alongside the polar organic chemical integrative sampler (POCIS) and active sampling at two wastewater treatment facilities using targeted analyses. Overall, water concentrations measured by o-DGT, POCIS, and 24-hr integrative active samples were in good agreement with each other. There were exceptions, including a systematic difference between o-DGT and POCIS at certain sites that we propose was a result of site-specific conditions and a difference in sampling rates between the two techniques. The second component of this work involved suspect screening of the o-DGT extracts using high-resolution, high mass accuracy quadrupole time-of-flight mass spectrometry (QTOF). Lamotrigine, venlafaxine, and des-methylvenlafaxine were three suspect compounds identified and selected as proof-of-concept case studies to determine the feasibility and accuracy of o-DGT for estimating water concentrations based upon predicted sampling rates using a previously validated o-DGT diffusion model. Semi-quantification of the suspect compounds was conducting using an average surrogate response factor based on the suite of compounds measured by the targeted analyses. This, combined with the modelled sampling rates provided time-weighted average wastewater concentrations of the identified suspects within a factor of 2 of the true value, confirmed by isotope dilution with mass labelled internal surrogates. To the knowledge of the authors, this work is the first to demonstrate the utility of the o-DGT passive sampler as a potential environmental screening tool that can be integrated into the rapidly advancing field of non-targeted high resolution mass spectrometry.
Collapse
Affiliation(s)
- Jonathan K Challis
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada.
| | - Xavier Ortiz Almirall
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, M9P 3V6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Paul A Helm
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, M9P 3V6 Canada
| | - Charles S Wong
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada; Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment, The University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada; School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
20
|
Guibal R, Lissalde S, Guibaud G. Experimental Estimation of 44 Pharmaceutical Polar Organic Chemical Integrative Sampler Sampling Rates in an Artificial River under Various Flow Conditions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1186-1195. [PMID: 32222997 DOI: 10.1002/etc.4717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 03/19/2020] [Indexed: 05/27/2023]
Abstract
The present study pertains to a polar organic chemical integrative sampler (POCIS) laboratory calibration to estimate the sampling rates for 44 pharmaceuticals featuring a wide range of polarity (-0.6 < octanol/water partition coefficient [log KOW ] < 5.4). The calibration was performed at 16.0 ± 1.5 °C for 4 water flow velocities (0, 2-3, 6-7, and 20 cm/s) in both a tank (for calibration at 0 cm/s) and a laboratory-scale artificial river filled with 200 and 500 L of tap water spiked with 0.3 µg/L of each compound, respectively. Twelve new sampling rates and 26 sampling rates already available in the literature were determined, whereas the sampling rates for 6 pharmaceuticals could not be determined due to nonlinearity or poor accumulation in POCIS. An increase in the sampling rate value with flow velocity was observed, which is consistent with a decrease in the effective thickness of the water boundary layer at the POCIS membrane surface. Environ Toxicol Chem 2020;39:1186-1195. © 2020 SETAC.
Collapse
Affiliation(s)
- R Guibal
- Laboratoire Peirene EA7500, University of Limoges, Unité de Recherche Associée Institut National de Recherche en Sciences et Technologies, Ecole Nationale Supérieure d'Ingénieurs de Limoges-Ecole Nationale Supérieure de Céramique Industrielle, Limoges, France
| | - S Lissalde
- Laboratoire Peirene EA7500, University of Limoges, Unité de Recherche Associée Institut National de Recherche en Sciences et Technologies, Limoges, France
| | - G Guibaud
- Laboratoire Peirene EA7500, University of Limoges, Unité de Recherche Associée Institut National de Recherche en Sciences et Technologies, Limoges, France
| |
Collapse
|
21
|
Berho C, Robert S, Coureau C, Coisy E, Berrehouc A, Amalric L, Bruchet A. Estimating 42 pesticide sampling rates by POCIS and POCIS-MIP samplers for groundwater monitoring: a pilot-scale calibration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18565-18576. [PMID: 32198689 DOI: 10.1007/s11356-020-08385-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Pesticides occur in groundwater as a result of agricultural activity. Their monitoring under the Water Framework Directive is based on only a few spot-sampling measurements per year despite their temporal variability. Passive sampling, which was successfully tested in surface water to provide a more representative assessment of contamination, could be applied to groundwater for a better definition of its contamination. However, few reliable calibration data under low water flow are available. The objective of our study thus consisted in determining sampling rates by two types of passive samplers, a POCIS (polar organic chemical integrative sampler) for polar pesticides, and a POCIS-MIP sampler based on a receiving phase of molecular imprinted polymers, specific for AMPA and glyphosate under low flow conditions as exist in groundwater. To our knowledge, this is the first time that sampling rates (sampling rate represents the volume of water from which the analyte is quantitatively extracted by the sampler per unit time) are estimated for groundwater applications. Our calibrations took place in an experimental pilot filled with groundwater and with low water flow (a few metres per day). Pesticide uptake in POCIS showed good linearity, with up to 28 days before reaching equilibrium. Two types of accumulation in POCIS were noted (a linear pattern up to 28 days, and after a time lag of 7 to 14 days). Sampling rates for 38 compounds were calculated and compared with those available in the literature or obtained previously under laboratory conditions. The values obtained were lower by a factor 1 to 14 than those estimated under stirring conditions in the literature, whereas water flow velocity (m s-1) differed by a factor of 2000 to 10,000.
Collapse
Affiliation(s)
- Catherine Berho
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France.
| | - Samuel Robert
- SUEZ, CIRSEE, 38 rue du président Wilson, 78230, le Pecq, France
| | - Charlotte Coureau
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Emeline Coisy
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Anne Berrehouc
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Laurence Amalric
- Water, Environment Process Development and Analysis Division, Bureau de Recherches Géologiques et Minières (BRGM), 3 Avenue Claude Guillemin, 45060, Orléans cedex 2, France
| | - Auguste Bruchet
- SUEZ, CIRSEE, 38 rue du président Wilson, 78230, le Pecq, France
| |
Collapse
|
22
|
Gallé T, Bayerle M, Pittois D, Huck V. Allocating biocide sources and flow paths to surface waters using passive samplers and flood wave chemographs. WATER RESEARCH 2020; 173:115533. [PMID: 32032885 DOI: 10.1016/j.watres.2020.115533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/11/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Biocide emissions have been shown to pose a comparable risk to aquatic life as pesticides in urbanized catchments. Sources of biocides have been reported to be steady flows from wastewater treatment plants as well as direct building wash off during rain events. A simple methodology to separate wastewater from surface runoff contribution during flood waves had been missing until now. This study introduces an elegant passive sampler method used to derive source allocation during flood waves based on the recalcitrant wastewater tracer carbamazepine. Field calibration of sampling rates during low- and high-flow with continuous autosampler monitoring indicated that uptake rates of polar compounds in caged POCIS are very close in both hydrological situations, allowing for a direct comparison. The passive sampler regressions showed that on a regional level carbendazim originated essentially from wastewater flows, while surface runoff contributed 31% and 74% respectively to terbutryn and diuron mass flows during flood-waves. A local autosampler campaign on a 38 km2 catchment using the same wastewater marker approach found increasing surface runoff allocations with event flow in the order terbutryn < carbendazim < diuron in accordance with results from a nearby combined sewer overflow. Both source allocation methods can be used to establish pertinent regional and local biocide mitigation plans. The passive sampler approach is by far the more cost efficient method.
Collapse
Affiliation(s)
- T Gallé
- Luxembourg Institute of Science and Technology, ERIN Dept, Luxembourg.
| | - M Bayerle
- Luxembourg Institute of Science and Technology, ERIN Dept, Luxembourg
| | - D Pittois
- Luxembourg Institute of Science and Technology, ERIN Dept, Luxembourg
| | - V Huck
- Luxembourg Institute of Science and Technology, ERIN Dept, Luxembourg
| |
Collapse
|
23
|
Djomte VT, Chen S, Chambliss CK. Effects of suspended sediment on POCIS sampling rates. CHEMOSPHERE 2020; 241:124972. [PMID: 31610458 DOI: 10.1016/j.chemosphere.2019.124972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Effects of chemical uptake onto polar organic chemical integrative samplers (POCIS) exposed to total suspended solid (TSS) sediment concentrations of 0 and 3600 ppm were investigated for 12 pesticides at constant concentration, temperature, and flow velocity. The effects of sediment exposure on POCIS uptake were negligible for compounds with polyethersulfone-water partition coefficients greater than three (i.e., log KPESW > 3). However, significant effects were observed for 3 of 12 compounds tested, and the maximum effect was an approximate 4-fold increase in sampling rate for the sediment experiment relative to the control. Effects of sediment on the pesticide distribution between polyethersulfone (PES) membranes and Oasis HLB sorbent were also investigated. The fraction of pesticide accumulated on PES membranes was relatively low for most compounds and ranged from 0 to 33%. In contrast, four compounds with higher affinity for PES accumulated preferentially on the membranes (fraction ranging from 64 to 96%), suggesting that a sampling rate derived from the additive contribution of membrane extraction and the more typical extraction of analytes from HLB sorbent would improve the sensitivity of sampling rate estimations for these compounds. However, for these same compounds, the combined sampling rate, Rs (HLB + PES), was considerably more susceptible to a sediment effect than the traditional sampling rate determination, relying solely on extraction from HLB sorbent.
Collapse
Affiliation(s)
| | - Sunmao Chen
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - C Kevin Chambliss
- Baylor University, Department of Chemistry & Biochemistry, Waco, TX, USA.
| |
Collapse
|
24
|
Hageman KJ, Aebig CHF, Luong KH, Kaserzon SL, Wong CS, Reeks T, Greenwood M, Macaulay S, Matthaei CD. Current-use pesticides in New Zealand streams: Comparing results from grab samples and three types of passive samplers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112973. [PMID: 31401523 DOI: 10.1016/j.envpol.2019.112973] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
New Zealand uses more than a ton of pesticides each year; many of these are mobile, relatively persistent, and can make their way into waterways. While considerable effort goes into monitoring nutrients in agricultural streams and programs exist to monitor pesticides in groundwater, very little is known about pesticide detection frequencies, concentrations, or their potential impacts in New Zealand streams. We used the 'Polar Organic Chemical Integrative Sampler' (POCIS) approach and grab water sampling to survey pesticide concentrations in 36 agricultural streams in Waikato, Canterbury, Otago and Southland during a period of stable stream flows in Austral summer 2017/18. We employed a new approach for calculating site-specific POCIS sampling rates. We also tested two novel passive samplers designed to reduce the effects of hydrodynamic conditions on sampling rates: the 'Organic-Diffusive Gradients in Thin Films' (o-DGT) aquatic passive sampler and microporous polyethylene tubes (MPTs) filled with Strata-X sorbent. Multiple pesticides were found at most sites; two or more were detected at 78% of sites, three or more at 69% of sites, and four or more at 39% of sites. Chlorpyrifos concentrations were the highest, with a maximum concentration of 180 ng/L. Concentrations of the other pesticides were generally below 20 ng/L. Mean concentrations of individual pesticides were not correlated with in-stream nutrient concentrations. The majority of pesticides were detected most frequently in POCIS, presumably due to its higher sampling rate and the relatively low concentrations of these pesticides. In contrast, chlorpyrifos was most frequently detected in grab samples. Chlorpyrifos concentrations at two sites were above the 21-day chronic 'No Observable Effect Concentration' (NOEC) values for fish and another two sites had concentrations greater than 50% of the NOEC. Otherwise, concentrations were well-below NOEC values, but close to the New Zealand Environmental Exposure Limits in several cases.
Collapse
Affiliation(s)
- Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, USA.
| | | | | | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | | | - Tim Reeks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Michelle Greenwood
- National Institute of Water and Atmospheric Research, Christchurch, New Zealand
| | - Samuel Macaulay
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
25
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|