1
|
Bracho-Pérez JC, Tacza-Valverde I, Chávez-Rojas D, Aquije C, Haro J, Vásquez-Castro JA. Toxicity of Mucura (Petiveria alliacea) extracts from the peruvian amazon against Daphnia magna for environmental protection and sustainable development. BRAZ J BIOL 2024; 84:e278758. [PMID: 39140498 DOI: 10.1590/1519-6984.278758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Natural products, specifically plant extracts with biological activity and the ability to act as botanical biopesticides are often mistakenly considered nontoxic. Scientific evidence indicates the contrary, and for this reason, the objective of this work was to evaluate the toxicity of extracts obtained from Petiveria alliacea L. (Caryophyllales, Phytolaccaceae) using Daphnia magna Straus (Cladocera, Daphniidae) as a bioindicator to identify the plant extracts and the respective concentrations that present the highest toxicity. Leaves of P. alliacea were collected in the Peruvian amazone. From this material, three types of extract (hexane, ethanolic and aqueous) were prepared, which were used in the bioassays with D. magna to find the least toxic extract. Acute toxicity bioassays with D. magna during 48 h of exposure to hexane, ethanolic, and aqueous extracts yielded median lethal concentration (LC50) values of 26.9, 230.6, and 657.9 mg L-1, respectively. The aqueous extract presented the lowest toxicity, causing minimal D. magna mortality in the range of 6.67 to 13.33% at concentrations of 10 and 100 mg L-1. This result enables the efficient use of this plant species in a sustainable manner with a minimal environmental impact for the future development of natural products for pest control.
Collapse
Affiliation(s)
- J C Bracho-Pérez
- Universidad Nacional Tecnológica de Lima Sur - UNTELS, Escuela Profesional de Ingeniería Ambiental, Lima, Perú
| | - I Tacza-Valverde
- Universidad Nacional Tecnológica de Lima Sur - UNTELS, Escuela Profesional de Ingeniería Ambiental, Lima, Perú
| | - D Chávez-Rojas
- Universidad Nacional Tecnológica de Lima Sur - UNTELS, Escuela Profesional de Ingeniería Ambiental, Lima, Perú
| | - C Aquije
- Universidad Nacional Tecnológica de Lima Sur - UNTELS, Escuela Profesional de Ingeniería Ambiental, Lima, Perú
| | - J Haro
- Universidad Autónoma Metropolitana, Ciudad de México, México
| | - J A Vásquez-Castro
- Universidad Nacional Agraria La Molina - UNALM, Departamento de Entomología, Lima, Perú
| |
Collapse
|
2
|
Langan LM, Paparella M, Burden N, Constantine L, Margiotta-Casaluci L, Miller TH, Moe SJ, Owen SF, Schaffert A, Sikanen T. Big Question to Developing Solutions: A Decade of Progress in the Development of Aquatic New Approach Methodologies from 2012 to 2022. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:559-574. [PMID: 36722131 PMCID: PMC10390655 DOI: 10.1002/etc.5578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In 2012, 20 key questions related to hazard and exposure assessment and environmental and health risks of pharmaceuticals and personal care products in the natural environment were identified. A decade later, this article examines the current level of knowledge around one of the lowest-ranking questions at that time, number 19: "Can nonanimal testing methods be developed that will provide equivalent or better hazard data compared with current in vivo methods?" The inclusion of alternative methods that replace, reduce, or refine animal testing within the regulatory context of risk and hazard assessment of chemicals generally faces many hurdles, although this varies both by organism (human-centric vs. other), sector, and geographical region or country. Focusing on the past 10 years, only works that might reasonably be considered to contribute to advancements in the field of aquatic environmental risk assessment are highlighted. Particular attention is paid to methods of contemporary interest and importance, representing progress in (1) the development of methods which provide equivalent or better data compared with current in vivo methods such as bioaccumulation, (2) weight of evidence, or (3) -omic-based applications. Evolution and convergence of these risk assessment areas offer the basis for fundamental frameshifts in how data are collated and used for the protection of taxa across the breadth of the aquatic environment. Looking to the future, we are at a tipping point, with a need for a global and inclusive approach to establish consensus. Bringing together these methods (both new and old) for regulatory assessment and decision-making will require a concerted effort and orchestration. Environ Toxicol Chem 2024;43:559-574. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA
| | - Martin Paparella
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Natalie Burden
- National Centre for the 3Rs (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | | | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NQ, UK
| | - Thomas H. Miller
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, London, UK
| | - S. Jannicke Moe
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stewart F. Owen
- AstraZeneca, Global Sustainability, Macclesfield, Cheshire SK10 2NA, UK
| | - Alexandra Schaffert
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Tiina Sikanen
- Faculty of Pharmacy and Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
3
|
Kämmer N, Reimann T, Braunbeck T. Neurotoxic pesticides change respiratory parameters in early gill-breathing, but not in skin-breathing life-stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106831. [PMID: 38244448 DOI: 10.1016/j.aquatox.2024.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Neurotoxic compounds can interfere with active gill ventilation in fish, which might lead to premature death in adult fish, but not in skin-breathing embryos of zebrafish, since these exclusively rely on passive diffusion across the skin. Regarding lethality, this respiratory failure syndrome (RFS) has been discussed as one of the main reasons for the higher sensitivity of adult fish in the acute fish toxicity test (AFT), if compared to embryos in the fish embryo toxicity test (FET). To further elucidate the relationship between the onset of gill respiration and death by a neurotoxic mode of action, a comparative study into oxygen consumption (MO2), breathing frequency (fv) and amplitude (fampl) was performed with 4 d old skin-breathing and 12 d old early gill-breathing zebrafish. Neurotoxic model substances with an LC50 FET/AFT ratio of > 10 were used: chlorpyrifos, permethrin, aldicarb, ziram, and fluoxetine. Exposure to hypoxia served as a positive control, whereas aniline was tested as an example of a narcotic substance interfering non-specifically with gill membranes. In 12 d old larvae, all substances caused an increase in MO2, fv and partly fampl, whereas effects were minor in 4 d old embryos. An increase of fv in 4 d old embryos following exposure to chlorpyrifos, aldicarb and hypoxia could not be correlated with an increased MO2 and might be attributed either to (1) to the successfully postponed decrease of arterial partial pressure of oxygen (PO2) through support of skin respiration by increased fv, (2) to an unspecific stimulation of the sphincter muscles at the base of the gill filaments, or (3) to the establishment of oxygen sensing for later stages. In gill-breathing 12 d old zebrafish, a concentration-dependent increase of fv was detected for aniline and chlorpyrifos, whereas for aldicarb, fluoxetine and permethrin, a decline of fv at higher substance concentrations was measured, most likely due to the onset of paralysis and/or fatigue of the gill filament sphincter muscles. Since alterations of fv serve to postpone the decrease in arterial PO2 and MO2 increased with decreasing fv, the respiratory failure syndrome could clearly be demonstrated in 12 d old zebrafish larvae. Passive respiration across the skin in zebrafish embryos could thus be confirmed as a probable reason for the lower sensitivity of early life-stages to neurotoxicants. Integration of respiratory markers into existing testing protocols with non-protected developmental stages such as embryos might help to not underestimate the toxicity of early life-stages of fish.
Collapse
Affiliation(s)
- Nadine Kämmer
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany.
| | - Tanja Reimann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany.
| |
Collapse
|
4
|
Belanger SE, Lillicrap AD, Moe SJ, Wolf R, Connors K, Embry MR. Weight of evidence tools in the prediction of acute fish toxicity. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1220-1234. [PMID: 35049115 DOI: 10.1002/ieam.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Acute fish toxicity (AFT) is a key endpoint in nearly all regulatory implementations of environmental hazard assessments of chemicals globally. Although it is an early tier assay, the AFT assay is complex and uses many juvenile fish each year for the registration and assessment of chemicals. Thus, it is imperative to seek animal alternative approaches to replace or reduce animal use for environmental hazard assessments. A Bayesian Network (BN) model has been developed that brings together a suite of lines of evidence (LoEs) to produce a probabilistic estimate of AFT without the testing of additional juvenile fish. Lines of evidence include chemical descriptors, mode of action (MoA) assignment, knowledge of algal and daphnid acute toxicity, and animal alternative assays such as fish embryo tests and in vitro fish assays (e.g., gill cytotoxicity). The effort also includes retrieval, assessment, and curation of quality acute fish toxicity data because these act as the baseline of comparison with model outputs. An ideal outcome of this effort would be to have global applicability, acceptance and uptake, relevance to predominant fish species used in chemical assessments, be expandable to allow incorporation of future knowledge, and data to be publicly available. The BN model can be conceived as having incorporated principles of tiered assessment and whose outcomes will be directed by the available evidence in combination with prior information. We demonstrate that, as additional evidence is included in the prediction of a given chemical's ecotoxicity profile, both the accuracy and the precision of the predicted AFT can increase. Ultimately an improved environmental hazard assessment will be achieved. Integr Environ Assess Manag 2023;19:1220-1234. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Raoul Wolf
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian Geotechnical Institute (NGI), Oslo, Norway
| | | | - Michelle R Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| |
Collapse
|
5
|
Alves RN, Mariz CF, de Melo Alves MK, da Silva ASX, Zanardi-Lamardo E, Carvalho PSM. Zebrafish as a biological model for assessing water quality along tropical hydrographic river basins in Northeast Brazil. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:908-925. [PMID: 37726560 DOI: 10.1007/s10646-023-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Tropical rivers are the main destinations for tailings from urban, industrial and agricultural activities in the region studied. The present study aimed to investigate if early stages of zebrafish (Danio rerio) development is a viable biological model to assess the toxicity of surface waters of tropical rivers, and whether that toxicity could be correlated to standard water quality indexes. Embryos were exposed to samples from 55 sites from 10 hydrographic basins of rivers in Pernambuco State, northeastern Brazil. Lethality rates, sublethal toxicity based on the general morphology score (GMS) and frequencies of abnormalities were analyzed. Significant mortality was observed in samples of 7 basins. The GMS indicated significant delay in embryo-larval development in 50% of the samples. The highest toxicity was detected in basins within Recife metropolitan area, where 61% of the samples caused sublethal toxicity. Most frequent developmental abnormalities included non-inflation of the swim bladder, delayed hatching and blood stasis. The highest frequencies of blood stasis were detected in samples with highest NH3 concentrations, corroborated by a positive correlation suggesting the existence of a causal relationship. A significant correlation was detected between water quality indexes and GMS with a greater toxic effect being observed in samples collected in areas of greater urban density and greater contamination by domestic sewage. This study demonstrates that the early stages of the zebrafish is a viable ecotoxicological model to assess the toxicity of surface waters and can contribute to a better understanding between the chemical composition and the adverse effects suffered by fish early life stage fish in tropical rivers.
Collapse
Affiliation(s)
- Romulo Nepomuceno Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil
| | - Célio Freire Mariz
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil
| | - Maria Karolaine de Melo Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil
| | | | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Departamento de Oceanografia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, 50740-550, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil.
| |
Collapse
|
6
|
Muthuraman A, Ramesh M, Mustaffa F, Nadeem A, Nishat S, Paramakrishnan N, Lim KG. In Silico and In Vitro Methods in the Characterization of Beta-Carotene as Pharmaceutical Material via Acetylcholine Esterase Inhibitory Actions. Molecules 2023; 28:molecules28114358. [PMID: 37298835 DOI: 10.3390/molecules28114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental in vitro kinetic study. In addition, the role of BC action was tested by the zebrafish embryo toxicity test (ZFET). The results of the docking ability of BC to AChE showed significant ligand binding mode. The kinetic parameter, i.e., the low AICc value shown as the compound was the competitive type of inhibition of AChE. Further, BC also showed mild toxicity at a higher dose (2200 mg/L) in ZFET assessment with changes in biomarkers. The LC50 value of BC is 1811.94 mg/L. Acetylcholine esterase (AChE) plays a pivotal role in the hydrolysis of acetylcholine, which leads to the development of cognitive dysfunction. BC possesses the regulation of acetylcholine esterase (AChE) and acid phosphatase (AP) activity to prevent neurovascular dysfunction. Therefore, the characterization of BC could be used as a pharmaceutical agent for the treatment of cholinergic neurotoxicity-associated neurovascular disorders such as developmental toxicity, vascular dementia, and Alzheimer's disease due to its AChE and AP inhibitory actions.
Collapse
Affiliation(s)
| | - Muthusamy Ramesh
- Department of Pharmaceutical Analysis, Omega College of Pharmacy, Hyderabad 501301, India
| | - Fazlina Mustaffa
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shamama Nishat
- Comprehensive Cancer Center, Wexner Medical Centre, Ohio State University, Columbus, OH 43210, USA
| | - Nallupillai Paramakrishnan
- Department of Pharmacognosy, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
| |
Collapse
|
7
|
Connors KA, Arndt D, Rawlings JM, Brun Hansen AM, Lam MW, Sanderson H, Belanger SE. Environmental hazard of cationic polymers relevant in personal and consumer care products: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:312-325. [PMID: 35649733 DOI: 10.1002/ieam.4642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Historically, polymers have been excluded from registration and evaluation under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program, the European chemical management program. Recently, interest has increased to include polymers. A tiered registration system has been envisioned and would begin with classes of polymers of greater interest based on certain properties. Cationic polymers are one such class. There is a pressing need to understand the quality and limitations of historical cationic polymer studies and to identify key sources of uncertainty in environmental hazard assessments so we can move toward scientifically robust analyses. To that end, we performed a critical review of the existing cationic polymer environmental effects literature to evaluate polymer characterization and test methodologies to understand how these parameters may affect test interpretation. The relationship between physicochemical parameters, acute and chronic toxicity, and relative trophic level sensitivity were explored. To advance our understanding of the environmental hazard and subsequent risk characterization of cationic polymers, there is a clear need for a consistent testing approach as many polymers are characterized as difficult-to-test substances. Experimental parameters such as dissolved organic carbon and solution renewal approaches can alter cationic polymer bioavailability and toxicity. It is recommended that OECD TG 23 "Aqueous-Phase Aquatic Toxicity Testing of Difficult Test Substances" testing considerations be applied when conducting environmental toxicity assays with cationic polymers. Integr Environ Assess Manag 2023;19:312-325. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Devrah Arndt
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | | - Monica W Lam
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | |
Collapse
|
8
|
Juan-García A, Pakkanen H, Juan C, Vehniäinen ER. Alterations in Daphnia magna exposed to enniatin B and beauvericin provide additional value as environmental indicators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114427. [PMID: 36516623 DOI: 10.1016/j.ecoenv.2022.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Mycotoxins beauvericin (BEA) and enniatin B (ENN B) affect negatively several systems and demand more studies as the mechanisms are still unclear. The simultaneous presence of contaminants in the environment manifests consequences of exposure for both animals and flora. Daphnia magna is considered an ideal invertebrate to detect effects of toxic compounds and environmental alterations. In this study, the potential toxicity and the basic mechanism of BEA and ENN B individually and combined were studied in D. magna. Acute and delayed toxicity were evaluated, and transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), reproduction, and oxidative stress (vtg-SOD) were analyzed by qPCR. Though no acute toxicity was found, results revealed a spinning around and circular profile of swimming, a strong decrease of survival after 72 h for BEA and ENN B at 16 µM and 6.25 µM, respectively, while for BEA + ENN B [8 + 1.6] µM after 96 h. The amount of mycotoxin remaining in the media revealed that the higher the concentration assayed the higher the amount remaining in the media. Differential regulation of genes suggests that xenobiotic metabolism is affected denoting different effects on transcription for tested mycotoxins. The results provide new insights into the underlying risk assessment of BEA and ENN B not only through food for consumers but also for the environment.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland.
| | - Hannu Pakkanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland
| |
Collapse
|
9
|
Frese L, Braunbeck T. Adapting classic paradigms to analyze alterations of shoal-wide behavior in early-life stages of zebrafish (Danio rerio) - A case study with fluoxetine. Neurotoxicol Teratol 2023; 95:107136. [PMID: 36423854 DOI: 10.1016/j.ntt.2022.107136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
Given the strong increase in prescription of neuroactive pharmaceuticals, neurotoxicity has received growing concern in science and the public. Regulatory requirements stimulated the development of new methods to evaluate the risk of neurotoxic substances for humans and the environment, and, with respect to potential damage to aquatic ecosystems, a variety of behavior-based assays have been proposed for neurotoxicity testing, most of which, however, are restricted to changes in the behavior of individual fish. Since many fish species form shoals under natural conditions, this may cause important aspects of behavior to be overlooked and there is a need for behavior assays integrating individual behavior with behavior of the entire swarm. In order to combine more environmentally realistic sub-chronic exposure scenarios with undistorted social behavior and animal welfare considerations, two behavioral assays are proposed that might be integrated into early-life stage toxicity studies according to OECD TG 210, which are commonly run for a multitude of regulations: To this end, protocols for a novel tank test and a predator response assay were adapted to also record the behavior of free-swimming zebrafish (Danio rerio) juveniles within shoals. Comparisons of the diving response (novel tank) or the shoal's coherence and position relative to the stimulus (predator) with control groups allow conclusions about the anxiety state of the fish, which might well have an impact on survival chances in the wild. As a model substance, the antidepressant fluoxetine ((RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy)propylamine) produced adverse effects down to concentrations three orders of magnitude below the EC10 from acute fish embryo toxicity tests according to OECD TG 236. With the integration of such behavior tests into OECD TG 210, important population-relevant information on potential neurotoxicity can be collected without increasing the number of experimental animals.
Collapse
Affiliation(s)
- Lukas Frese
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Scott J, Grewe R, Minghetti M. Fish Embryo Acute Toxicity Testing and the RTgill-W1 Cell Line as In Vitro Models for Whole-Effluent Toxicity (WET) Testing: An In Vitro/In Vivo Comparison of Chemicals Relevant for WET Testing. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2721-2731. [PMID: 35942926 DOI: 10.1002/etc.5455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The fathead minnow (Pimephales promelas) fish embryo acute toxicity (FET) test was compared to the fish gill cells (RTgill-W1) in vitro assay and to the fish larvae acute toxicity test to evaluate their sensitivity for whole-effluent toxicity (WET) testing. The toxicity of 12 chemicals relevant for WET testing was compared as proof of principle. The concentrations lethal to 50% of a population (LC50) of embryos were compared to those in fish larvae and to the 50% effect concentration (EC50) in RTgill-W1 cells from previous literature. Along with traditional FET endpoints (coagulation, somite development, tail detachment, and heartbeat), cardiotoxicity was evaluated for WET applicability. Heart rate was measured at LC20 and LC50 values of six subselected chemicals (Cd, Cu, Ni, ammonia, 3,4-dichloraniline, and benzalkonium chloride). In addition, the toxicity of Cd and Ni was evaluated in RTgill-W1 cells exposed in a hypoosmotic medium to evaluate the effect that osmolarity may have on metal toxicity. A significant correlation was found between the FET and larvae LC50 values but not between the RTgill-W1 EC50 and FET LC50 values. Although sensitivity to Ni and Cd was found to increase with hypoosmotic conditions for FET and RTgill-W1 cells, a correlation was only found with removal of Ni from the analysis. Hypoosmotic conditions increased sensitivity with a significant correlation between RTgill-W1 cells and larvae. Cardiotoxicity was shown in three of the five subselected chemicals (Cd, Cu, and 3,4-dichloroaniline). Overall, both in vitro alternative models have shown good predictability of toxicity in fish in vivo for WET chemicals of interest. Environ Toxicol Chem 2022;41:2721-2731. © 2022 SETAC.
Collapse
Affiliation(s)
- Justin Scott
- Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Cove Environmental, Stillwater, Oklahoma, USA
| | - Ryan Grewe
- Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Cove Environmental, Stillwater, Oklahoma, USA
| | - Matteo Minghetti
- Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
11
|
He X, Han M, Zhan W, Liu F, Guo D, Zhang Y, Liang X, Wang Y, Lou B. Mixture effects of imidacloprid and difenconazole on enzymatic activity and gene expression in small yellow croakers (Larimichthys polyactis). CHEMOSPHERE 2022; 306:135551. [PMID: 35787886 DOI: 10.1016/j.chemosphere.2022.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Agrochemicals usually exist as mixtures in aqueous ecosystems and have harmful impacts on the natural environment. Nonetheless, the combined effects and underlying mechanisms of agrochemicals on aqueous organisms remain poorly understood. In the present study, the interactive effects of imidacloprid (IMI) and difenconazole (DIF) on the embryos of small yellow croakers (Larimichthys polyactis) were assessed using various toxicological assays, including acute toxicity, enzymatic activity, and gene expression changes. The results showed that DIF (72-h LC50 value of 0.20 mg L-1) had higher toxicity than IMI (72-h LC50 value of 12.5 mgL-1). Simultaneously, combinations of IMI and DIF exerted synergistic acute effects on the embryos of L. polyactis. In addition, the SOD, CAT, GST, and CarE activities were noticeably altered in most single and mixed exposures, relative to the untreated control. The expression of four genes (cyp19a1b, ngln2, klf2a, and socs3a) related to the immune system, endocrine system, and neurodevelopment was also surprisingly altered when the embryos of L. polyactis were subjected to individual and combined exposures relative to the untreated control. Changes in enzymatic activity and gene expression might provide early warning indices for the identification of agrochemical co-exposure. The results of this study provide valuable insights into the comprehensive toxicity of agrochemical mixtures to L. polyactis. Further studies on the long-term effects of agrochemical mixtures on marine fish should be conducted to formulate definitive conclusions concerning hazards.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dandan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
12
|
Shavalieva G, Papadokonstantakis S, Peters G. Prior Knowledge for Predictive Modeling: The Case of Acute Aquatic Toxicity. J Chem Inf Model 2022; 62:4018-4031. [PMID: 35998659 PMCID: PMC9472271 DOI: 10.1021/acs.jcim.1c01079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Early assessment of the potential impact of chemicals on health and the environment requires toxicological properties of the molecules. Predictive modeling is often used to estimate the property values in silico from pre-existing experimental data, which is often scarce and uncertain. One of the ways to advance the predictive modeling procedure might be the use of knowledge existing in the field. Scientific publications contain a vast amount of knowledge. However, the amount of manual work required to process the enormous volumes of information gathered in scientific articles might hinder its utilization. This work explores the opportunity of semiautomated knowledge extraction from scientific papers and investigates a few potential ways of its use for predictive modeling. The knowledge extraction and predictive modeling are applied to the field of acute aquatic toxicity. Acute aquatic toxicity is an important parameter of the safety assessment of chemicals. The extensive amount of diverse information existing in the field makes acute aquatic toxicity an attractive area for investigation of knowledge use for predictive modeling. The work demonstrates that the knowledge collection and classification procedure could be useful in hybrid modeling studies concerning the model and predictor selection, addressing data gaps, and evaluation of models' performance.
Collapse
Affiliation(s)
- Gulnara Shavalieva
- Department
of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Stavros Papadokonstantakis
- Department
of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Gregory Peters
- Department
of Technology Management and Economics, Chalmers University of Technology, SE-411 33 Gothenburg, Sweden
| |
Collapse
|
13
|
Zhou Z, Bai Y, Su T, Zhang D, Wang Z, Begnaud F, Gimeno S, You J. Investigations On the Fish Acute Toxicity of Fragrance Ingredients Involving Chinese Fish Species and Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2305-2317. [PMID: 35735071 DOI: 10.1002/etc.5415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
While zebrafish (Danio rerio) have been accepted worldwide for evaluating chemical hazards to aquatic vertebrates, and in some countries it is mandated to generate fish toxicity data using native species, such as Chinese rare minnow (Gobiocypris rarus) in China. This represents an additional regulatory constraint that may cause redundant tests, additional animal uses, and higher costs. Previous studies showed that juvenile G. rarus was more sensitive than zebrafish juveniles and embryos to metals. To better understand the sensitivity of G. rarus to organic chemicals, we selected 29 fragrance ingredients belonging to various chemical classes and with differing physicochemical properties, for which good quality zebrafish acute toxicity data were available and tested them with juvenile G. rarus and embryo D. rerio using the Organisation of Economic Co-operation and Development test guidelines. Chemical toxicity distribution (CTD) and chemical ratio distribution (CRD) models were established to systematically compare the sensitivity between juveniles of G. rarus and D. rerio, as well as between D. rerio embryos and juveniles. The results of the CTD models showed that for tested chemicals, the sensitivity of juvenile G. rarus was similar to that of D. rerio juveniles and embryos. The CRD comparisons revealed that juvenile G. rarus was slightly less sensitive by a factor of ~2 than juvenile D. rerio to ingredients belonging to Verhaar class 3 and Ecological Structure Activity Relationship ester class, while comparable to other chemicals. These comparative experiments demonstrated that fish toxicity data with G. rarus can be submitted for use in chemical registrations outside China, which would avoid repeating animal tests using D. rerio. Meanwhile, the similar sensitivity of zebrafish juveniles and embryos to fragrance ingredients confirmed the suitability of replacing juveniles by zebrafish embryos. Environ Toxicol Chem 2022;41:2305-2317. © 2022 SETAC.
Collapse
Affiliation(s)
- Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Yunfei Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Tenghui Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Dainan Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Frédéric Begnaud
- Firmenich, Corporate R&D Division, Innovation in Analytical Chemistry, Satigny, Switzerland
| | - Sylvia Gimeno
- Firmenich Belgium SA, Legal and Compliance, Global Registration Services, Louvain-La-Neuve, Belgium
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Ferraz CA, Pastorinho MR, Palmeira-de-Oliveira A, Sousa ACA. Ecotoxicity of plant extracts and essential oils: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118319. [PMID: 34656680 DOI: 10.1016/j.envpol.2021.118319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Plant-based products such as essential oils and other extracts have been used for centuries due to their beneficial properties. Currently, their use is widely disseminated through a variety of industries and new applications are continuously emerging. For these reasons, they are produced industrially in large quantities and consequently they have the potential to reach the environment. However, the potential effects that these products have on the ecosystems' health are mostly unknown. In recent years, the scientific community started to focus on the possible toxic effects of essential oils and plant extracts towards non-target organisms. As a result, an increasing body of knowledge has emerged. This review describes the current state of the art on the toxic effects that essential oils and plant extracts have towards organisms from different trophic levels, including producers, primary consumers, and secondary consumers. The majority of the studies (76.5%) focuses on the aquatic environment, particularly in aquatic invertebrates (45.1%) with only 23.5% of the studies focusing on the potential toxicity of plant-derived products on terrestrial ecosystems. While some essential oils and extracts have been described to have no toxic effects to the selected organisms or the toxic effects were only observable at high concentrations, others were reported to be toxic at concentrations below the limit set by international regulations, some of them at very low concentrations. In fact, L(E)C50 values as low as 0.0336 mg.L-1, 0.0005 mg.L-1 and 0.0053 mg.L-1 were described for microalgae, crustaceans and fish, respectively. Generally, essential oils exhibit higher toxicity than extracts. However, when the extracts are obtained from plants that are known to produce toxic metabolites, the extracts can be more toxic than essential oils. Overall, and despite being generally considered "eco-friendly" products and safer than they synthetic counterparts, some essential oils and plant extracts are toxic towards non-target organisms. Given the increasing interest from industry on these plant-based products further research using international standardized protocols is mandatory.
Collapse
Affiliation(s)
- Celso Afonso Ferraz
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506, Covilhã, Portugal
| | - M Ramiro Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, Covilhã, 6200-284, Portugal
| | - Ana C A Sousa
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; Department of Biology, School of Sciences and Technology, University of Évora, 7002-554, Évora, Portugal.
| |
Collapse
|
15
|
Alves RN, Mariz CF, de Melo Alves MK, Cavalcanti MGN, de Melo TJB, de Arruda-Santos RH, Zanardi-Lamardo E, Carvalho PSM. Contamination and Toxicity of Surface Waters Along Rural and Urban Regions of the Capibaribe River in Tropical Northeastern Brazil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3063-3077. [PMID: 34324728 DOI: 10.1002/etc.5180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The Capibaribe River provides water to a population of 1.7 million people in the Brazilian northeast, while receiving agricultural runoff and industrial and domestic effluents along its 280 km. The present study evaluated the ecotoxicity of surface waters along ten sites in rural and urban areas using zebrafish (Danio rerio) early-life stages and related it to water quality indices and chemical abiotic variables. Lethality rates, delays in embryo-larval development quantified by the general morphology score (GMS), and frequencies of developmental abnormalities were analyzed. A correlation was detected between zebrafish GMS and water quality index (WQI), sensitivity to domestic sewage contamination, and trophic state index, focused on eutrophication. These indices agreed in identifying a spatial pattern of smaller impact in terms of ecotoxicity, domestic sewage contamination, and eutrophication risk at three sites in rural areas (mean GMS 16.9), an intermediate impact at four sites with urban and agricultural influence (mean GMS 16.4), and greatest impacts at three more urbanized sites (mean GMS 14.9). Most frequent developmental abnormalities included noninflation of the swim bladder, delayed hatching, nonprotrusion of the mouth, blood stasis, and nondevelopment of pectoral fins. Toxic NH3 concentrations varied spatially, with higher concentrations in urban sites; and blood stasis correlated positively with NH3 , suggesting a causal relationship. Polycyclic aromatic hydrocarbons were detected in both rural and urbanized sites, contributing to detected toxicity. The present study demonstrates the potential of zebrafish early-life stages as an ecotoxicological model that may contribute to a better understanding of surface water quality and ecotoxicity in tropical river systems. Environ Toxicol Chem 2021;40:3063-3077. © 2021 SETAC.
Collapse
Affiliation(s)
- Romulo Nepomuceno Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| | - Célio Freire Mariz
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Roxanny Helen de Arruda-Santos
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Centro de Tecnologia e Geociências, Federal University of Pernambuco, Recife, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Centro de Tecnologia e Geociências, Federal University of Pernambuco, Recife, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
16
|
Belanger SE, Beasley A, Brill JL, Krailler J, Connors KA, Carr GJ, Embry M, Barron MG, Otter R, Kienzler A. Comparisons of PNEC derivation logic flows under example regulatory schemes and implications for ecoTTC. Regul Toxicol Pharmacol 2021; 123:104933. [PMID: 33891999 PMCID: PMC10461128 DOI: 10.1016/j.yrtph.2021.104933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Derivation of Predicted No Effect Concentrations (PNECs) for aquatic systems is the primary deterministic form of hazard extrapolation used in environmental risk assessment. Depending on the data availability, different regulatory jurisdictions apply application factors (AFs) to the most sensitive measured endpoint to derive the PNEC for a chemical. To assess differences in estimated PNEC values, two PNEC determination methodologies were applied to a curated public database using the EnviroTox Platform (www.EnviroToxdatabase.org). PNECs were derived for 3647 compounds using derivation procedures based on example US EPA and a modified European Union chemical registration procedure to allow for comparisons. Ranked probability distributions of PNEC values were developed and 5th percentile values were calculated for the entire dataset and scenarios where full acute or full chronic data sets were available. The lowest PNEC values indicated categorization based on chemical attributes and modes of action would lead to improved extrapolations. Full acute or chronic datasets gave measurably higher 5th percentile PNEC values. Algae were under-represented in available ecotoxicity data but drove PNECs disproportionately. Including algal inhibition studies will be important in understanding chemical hazards. The PNEC derivation logic flows are embedded in the EnviroTox Platform providing transparent and consistent PNEC derivations and PNEC distribution calculations.
Collapse
Affiliation(s)
- S E Belanger
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - A Beasley
- The Dow Chemical Company, Midland, MI, USA.
| | - J L Brill
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - J Krailler
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - K A Connors
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - G J Carr
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | - M Embry
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | - M G Barron
- U.S. EPA, Office of Research & Development, Gulf Breeze, FL, USA.
| | - R Otter
- The Data Science Institute, Middle Tennessee State University, Murfreesboro, TN, USA.
| | - A Kienzler
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
17
|
Pease CJ, Trenfield MA, Mooney TJ, van Dam RA, Walker S, Tanneberger C, Harford AJ. Development of a Sublethal Chronic Toxicity Test for the Northern Trout Gudgeon, Mogurnda mogurnda, and Application to Uranium, Magnesium, and Manganese. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1596-1605. [PMID: 33523544 DOI: 10.1002/etc.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/13/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Many international guidance documents for deriving water quality guideline values recommend the use of chronic toxicity data. For the tropical fish northern trout gudgeon, Mogurnda mogurnda, 96-h acute and 28-d chronic toxicity tests have been developed, but both tests have drawbacks. The 96-h toxicity test is acute and has a lethal endpoint; hence it is not a preferred method for guideline value derivation. The 28-d method has a sublethal (growth) endpoint, but is highly resource intensive and is high risk in terms of not meeting quality control criteria. The present study aimed to determine the feasibility of a 7-d larval growth toxicity test as an alternative to the 96-h survival and 28-d growth tests. Once the method was successfully developed, derived toxicity estimates for uranium, magnesium, and manganese were compared with those for other endpoints and tests lengths within the literature. As a final validation of the 7-d method, the sensitivity of the 7-d growth endpoint was compared with those of 14-, 21-, and 28-d exposures. Fish growth rate, based on length, over 7 d was significantly more sensitive compared with existing acute toxicity endpoints for magnesium and manganese, and was similarly sensitive to existing chronic toxicity endpoints for uranium. For uranium, the sensitivity of the growth endpoint over the 4 exposure periods was similar, suggesting that 7 d as an exposure duration is sufficient to provide an indication of longer term chronic growth effects. The sensitivity of the 7-d method, across the 3 metals tested, highlights the benefit of utilizing the highly reliable short-term 7-d chronic toxicity test method in future toxicity testing using M. mogurnda. Environ Toxicol Chem 2021;40:1596-1605. © 2021 Commonwealth of Australia. Environmental Toxicology and Chemistry © 2021 SETAC.
Collapse
Affiliation(s)
- Ceiwen J Pease
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Melanie A Trenfield
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Thomas J Mooney
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | | | - Samantha Walker
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Claudia Tanneberger
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Andrew J Harford
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| |
Collapse
|
18
|
Evaluation of the potential environmental risk from the destination of medicines: an epidemiological and toxicological study. ACTA ACUST UNITED AC 2021; 29:61-71. [PMID: 33469801 DOI: 10.1007/s40199-020-00383-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high consumption of medicines by the population and their storage at home might cause an increase in the number of pharmaceutical substances that may be inappropriately discarded in the sanitary sewage, reaching an environmental aquatic. Thus, the effects of these emerging contaminants need more studies. OBJECTIVES To identify the profile of most medicines that are discarded by users of community pharmacy and evaluate the toxicity of the most disposed drugs. METHODS This was a translational study. A descriptive observational study was carried out for convenience of community pharmacy users using a standardized questionnaire. Subsequently, the lethal concentration 50 (LC50) for medicine that is most frequently discarded was determined. After LC50, the embryos (n = 144) were exposed to sublethal concentrations for most discarded drug at 24, 48, and 72 h. Mortality, heartbeat, and embryo deformities were used as parameters of toxicity. RESULTS Most respondents (96%) had a "home pharmacy." The primary forms of disposal were in the common household waste, kitchen sink, and/or bathroom. The medicines that were most incorrectly discarded by the interviewees were nimesulide (17.1%), dipyrone (10.7%), and paracetamol (5.2%). LC50 of nimesulide was calculated (0.92 μgmL-1). The toxicological test revealed that embryos exposed to nimesulide showed several abnormalities, such as defects in the spinal cord, tail, yolk sac, as well as pericardial edema. Furthermore, the heartbeat decreased by 30% at a concentration of 0.4 μgmL-1 as compared with control group. The yolk sac and pericardial areas increased to >100% in all treatment groups when compared with the control group. CONCLUSION Respondents disposed medicines in an inappropriate manner primarily in household waste and in the toilet. Nimesulide was the most discarded drug according to study population. Moreover, teratogenic effects such as spinal cord defects, decreasing heartbeats, and increasing pericardial and yolk sac area in embryos were observed after exposure to nimesulide. These results show that nimesulide may promote risk to aquatic organisms and to human health if it is discarded in an unsafe manner.
Collapse
|
19
|
Lungu-Mitea S, Vogs C, Carlsson G, Montag M, Frieberg K, Oskarsson A, Lundqvist J. Modeling Bioavailable Concentrations in Zebrafish Cell Lines and Embryos Increases the Correlation of Toxicity Potencies across Test Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:447-457. [PMID: 33320646 PMCID: PMC7872314 DOI: 10.1021/acs.est.0c04872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
Linking cellular toxicity to low-tier animal toxicity and beyond is crucial within the adverse outcome pathway concept and the 3R framework. This study aimed to determine and compare the bioavailable effect concentrations in zebrafish cell lines and embryos. Acute, short-term toxicity (48 h) of eight veterinary pharmaceuticals was measured in two zebrafish cell lines (hepatocytes, fibroblasts) and zebrafish embryos. Seven endpoints of cytotoxicity were recorded. The fish embryo acute toxicity test was modified by adding sublethal endpoints. Chemical distribution modeling (mass balance) was applied to compute the bioavailable compound concentrations in cells (Cfree) and embryos (Cint;aq) based on nominal effect concentrations (Cnom). Effect concentration ratios were calculated (cell effects/embryo effects). A low correlation was observed between cytotoxicity and embryo toxicity when nominal concentrations were used. Modeled bioavailable effect concentrations strongly increased correlations and placed regression lines close to the line of unity and axis origin. Cytotoxicity endpoints showed differences in sensitivity and predictability. The hepatocyte cell line depicted closer proximity to the embryo data. Conclusively, the high positive correlation between the cell- and embryo-based test systems emphasizes the appropriate modulation of toxicity when linked to bioavailable concentrations. Furthermore, it highlights the potential of fish cell lines to be utilized in integrated testing strategies.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Carolina Vogs
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Gunnar Carlsson
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Maximiliane Montag
- Institute
for Environmental Research, RWTH Aachen, Worringerweg 1, D-52074 Aachen, Germany
| | - Kim Frieberg
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Agneta Oskarsson
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
20
|
Li X, Mao L, Zhang Y, Wang X, Wang Y, Wu X. Joint toxic impacts of cadmium and three pesticides on embryonic development of rare minnow (Gobiocypris rarus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36596-36604. [PMID: 32564324 DOI: 10.1007/s11356-020-09769-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/16/2020] [Indexed: 05/24/2023]
Abstract
Although rare minnow (Gobiocypris rarus) has been employed in many toxicological investigations, most of them have only assessed the impacts of single chemical. In our current work, we investigated the single and joint toxic impacts of heavy metal cadmium (Cd) and three pesticides (thiamethoxam, bifenthrin, and tebuconazole) on G. rarus embryos. Results from the 96-h semi-static toxicity assay exhibited that bifenthrin possessed the highest intrinsic toxic effect on rare minnows with an LC50 value of 1.86 mg L-1, followed by tebuconazole with LC50 values of 4.07 mg L-1. Contrarily, thiamethoxam elicited the least toxic effect with an LC50 value of 351.9 mg L-1. Seven chemical mixtures (four binary mixtures of Cd-bifenthrin, thiamethoxam-bifenthrin, thiamethoxam-tebuconazole, and bifenthrin-tebuconazole, two ternary mixtures of Cd-thiamethoxam-tebuconazole and thiamethoxam-bifenthrin-tebuconazole, and one quaternary mixture of Cd-thiamethoxam-bifenthrin-tebuconazole) displayed synergistic impacts with equivalent concentration and equitoxic ratio on G. rarus. Our results offered valuable insights into ecological risk assessment of these chemical combinations to aquatic vertebrates. The simultaneous existence of a few chemicals in the aquatic ecosystem might result in elevated toxicity, leading to severe harm to the non-target organisms compared with single compound. The observed synergistic interactions underlined the necessity to revise water quality standards, in which the detrimental joint effects of these chemicals are likely to be underestimated.
Collapse
Affiliation(s)
- Xinfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
21
|
Burden N, Benstead R, Benyon K, Clook M, Green C, Handley J, Harper N, Maynard SK, Mead C, Pearson A, Ryder K, Sheahan D, van Egmond R, Wheeler JR, Hutchinson TH. Key Opportunities to Replace, Reduce, and Refine Regulatory Fish Acute Toxicity Tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2076-2089. [PMID: 32681761 PMCID: PMC7754335 DOI: 10.1002/etc.4824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Fish acute toxicity tests are conducted as part of regulatory hazard identification and risk-assessment packages for industrial chemicals and plant protection products. The aim of these tests is to determine the concentration which would be lethal to 50% of the animals treated. These tests are therefore associated with suffering in the test animals, and Organisation for Economic Co-operation and Development test guideline 203 (fish, acute toxicity) studies are the most widely conducted regulatory vertebrate ecotoxicology tests for prospective chemical safety assessment. There is great scope to apply the 3Rs principles-the reduction, refinement, and replacement of animals-in this area of testing. An expert ecotoxicology working group, led by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research, including members from government, academia, and industry, reviewed global fish acute test data requirements for the major chemical sectors. The present study highlights ongoing initiatives and provides an overview of the key challenges and opportunities associated with replacing, reducing, and/or refining fish acute toxicity studies-without compromising environmental protection. Environ Toxicol Chem 2020;39:2076-2089. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kate Benyon
- Syngenta, Product Safety, BracknellBerkshireUnited Kingdom
| | - Mark Clook
- Chemicals Regulation Division, Health and Safety ExecutiveYorkUnited Kingdom
| | - Christopher Green
- Department for Environment, Food and Rural AffairsLondonUnited Kingdom
| | | | - Neil Harper
- Chemicals Regulation Division, Health and Safety Executive, BootleMerseysideUnited Kingdom
| | | | | | | | | | - Dave Sheahan
- Cefas Fisheries Laboratory, LowestoftSuffolkUnited Kingdom
| | - Roger van Egmond
- Unilever, Safety & Environmental Assurance Centre, SharnbrookBedfordUnited Kingdom
| | | | | |
Collapse
|
22
|
Lillicrap A, Moe SJ, Wolf R, Connors KA, Rawlings JM, Landis WG, Madsen A, Belanger SE. Evaluation of a Bayesian Network for Strengthening the Weight of Evidence to Predict Acute Fish Toxicity from Fish Embryo Toxicity Data. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:452-460. [PMID: 32125082 DOI: 10.1002/ieam.4258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The use of fish embryo toxicity (FET) data for hazard assessments of chemicals, in place of acute fish toxicity (AFT) data, has long been the goal for many environmental scientists. The FET test was first proposed as a replacement to the standardized AFT test nearly 15 y ago, but as of now, it has still not been accepted as a standalone replacement by regulatory authorities such as the European Chemicals Agency (ECHA). However, the ECHA has indicated that FET data can be used in a weight of evidence (WoE) approach, if enough information is available to support the conclusions related to the hazard assessment. To determine how such a WoE approach could be applied in practice has been challenging. To provide a conclusive WoE for FET data, we have developed a Bayesian network (BN) to incorporate multiple lines of evidence to predict AFT. There are 4 different lines of evidence in this BN model: 1) physicochemical properties, 2) AFT data from chemicals in a similar class or category, 3) ecotoxicity data from other trophic levels of organisms (e.g., daphnids and algae), and 4) measured FET data. The BN model was constructed from data obtained from a curated database and conditional probabilities assigned for the outcomes of each line of evidence. To evaluate the model, 20 data-rich chemicals, containing a minimum of 3 AFT and FET test data points, were selected to ensure a suitable comparison could be performed. The results of the AFT predictions indicated that the BN model could accurately predict the toxicity interval for 80% of the chemicals evaluated. For the remaining chemicals (20%), either daphnids or algae were the most sensitive test species, and for those chemicals, the daphnid or algal hazard data would have driven the environmental classification. Integr Environ Assess Manag 2020;16:452-460. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Raoul Wolf
- Norwegian Institute for Water Research (NIVA), Oslo
| | | | | | - Wayne G Landis
- Western Washington University, Bellingham, Washington, USA
| | - Anders Madsen
- Department of Computer Science, Aalborg University, Aalborg, Denmark
- HUGIN EXPERT A/S, Aalborg, Denmark
| | | |
Collapse
|
23
|
Teixidó E, Leuthold D, de Crozé N, Léonard M, Scholz S. Comparative Assessment of the Sensitivity of Fish Early-Life Stage, Daphnia, and Algae Tests to the Chronic Ecotoxicity of Xenobiotics: Perspectives for Alternatives to Animal Testing. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:30-41. [PMID: 31598995 DOI: 10.1002/etc.4607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
No-observed-effect concentrations (NOECs) are used in environmental hazard classification and labeling of chemicals and their environmental risk assessment. They are typically obtained using standard tests such as the fish early-life stage (FELS) toxicity test, the chronic Daphnia reproduction test, and the algae growth inhibition test. Given the demand to replace and reduce animal tests, we explored the impact of the FELS toxicity test on the determination of effect concentrations by comparing the FELS toxicity test and the Daphnia and algae acute or chronic toxicity tests. Lowest-observed-effect concentrations (LOECs) were used instead of NOECs for better comparison with median lethal or effect concentration data. A database of FELS toxicity data for 223 compounds was established. Corresponding Daphnia and algae toxicity tests were identified using established databases (US Environmental Protection Agency ECOTOX, Organisation for Economic Co-operation and Development QSAR Toolbox, eChemPortal, EnviroTox, and OpenFoodTox). Approximately 9.5% of the investigated compounds showed a 10-fold higher sensitivity with the FELS toxicity test in comparison with the lowest effect concentrations obtained with any of the other tests. Some of these compounds have been known or considered as endocrine disrupting, or are other non-narcotic chemicals, indicating that the higher sensitivity in the FELS toxicity test is related to a specific mechanism of action. Targeting these mechanisms by alternative test systems or endpoints, using fish embryos for instance, may allow reduction or replacement of the FELS toxicity test or may allow us to prioritize compounds for conduction of the FELS toxicity test. Environ Toxicol Chem 2019;39:30-41. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Elisabet Teixidó
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Noémie de Crozé
- Environmental Research & Sustainable Development Department, L'Oréal Research & Innovation, Aulnay sous Bois, France
| | - Marc Léonard
- Environmental Research & Sustainable Development Department, L'Oréal Research & Innovation, Aulnay sous Bois, France
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
24
|
Connors KA, Beasley A, Barron MG, Belanger SE, Bonnell M, Brill JL, de Zwart D, Kienzler A, Krailler J, Otter R, Phillips JL, Embry MR. Creation of a Curated Aquatic Toxicology Database: EnviroTox. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1062-1073. [PMID: 30714190 PMCID: PMC6850623 DOI: 10.1002/etc.4382] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/20/2023]
Abstract
Flexible, rapid, and predictive approaches that do not require the use of large numbers of vertebrate test animals are needed because the chemical universe remains largely untested for potential hazards. Development of robust new approach methodologies and nontesting approaches requires the use of existing information via curated, integrated data sets. The ecological threshold of toxicological concern (ecoTTC) represents one such new approach methodology that can predict a conservative de minimis toxicity value for chemicals with little or no information available. For the creation of an ecoTTC tool, a large, diverse environmental data set was developed from multiple sources, with harmonization, characterization, and information quality assessment steps to ensure that the information could be effectively organized and mined. The resulting EnviroTox database contains 91 217 aquatic toxicity records representing 1563 species and 4016 unique Chemical Abstracts Service numbers and is a robust, curated database containing high-quality aquatic toxicity studies that are traceable to the original information source. Chemical-specific information is also linked to each record and includes physico-chemical information, chemical descriptors, and mode of action classifications. Toxicity data are associated with the physico-chemical data, mode of action classifications, and curated taxonomic information for the organisms tested. The EnviroTox platform also includes 3 analysis tools: a predicted-no-effect concentration calculator, an ecoTTC distribution tool, and a chemical toxicity distribution tool. Although the EnviroTox database and tools were originally developed to support ecoTTC analysis and development, they have broader applicability to the field of ecological risk assessment. Environ Toxicol Chem 2019;9999:1-12. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Mark Bonnell
- Environment and Climate Change CanadaGatineauOntarioCanada
| | | | | | | | | | - Ryan Otter
- Middle Tennessee State UniversityMurfreesboroTennesseeUSA
| | | | | |
Collapse
|