1
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|
2
|
Sun R, Babalol S, Ni R, Dolatabad AA, Cao J, Xiao F. Efficient and fast remediation of soil contaminated by per- and polyfluoroalkyl substances (PFAS) by high-frequency heating. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132660. [PMID: 37898088 DOI: 10.1016/j.jhazmat.2023.132660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
This study presents a novel thermal technology (high-frequency heating, HFH) for the decontamination of soil containing per- and polyfluoroalkyl substances (PFAS) and aqueous film-forming foams (AFFFs). Ultra-fast degradation of short-chain PFAS, long-chain homologs, precursors, legacy PFAS, emerging PFAS was achieved in a matter of minutes. The concentrations of PFAS and the soil type had a negligible impact on degradation efficiency, possibly due to the ultra-fast degradation rate overwhelming potential differences. Under the current HFH experiment setup, we achieved near-complete degradation (e.g., >99.9%) after 1 min for perfluoroalkyl carboxylic acids and perfluoroalkyl ether carboxylic acids and 2 min for perfluoroalkanesulfonic acids. Polyfluoroalkyl precursors in AFFFs were found to degrade completely within 1 min of HFH; no residual cationic, zwitterionic, anionic, or non-ionic intermediate products were detected following the treatment. The gaseous byproducts were considered. Most of gaseous organofluorine products of PFAS at low-and-moderate temperatures disappeared when temperatures reached 890 °C, which is in the temperature zone of HFH. For the first time, we demonstrated minimal loss of PFAS in water during the boiling process, indicating a low risk of PFAS entering the atmosphere with the water vapor. The findings highlight HFH its potential as a promising remediation tool for PFAS-contaminated soils.
Collapse
Affiliation(s)
- Runze Sun
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Samuel Babalol
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Ruichong Ni
- Department of Petroleum Engineering, University of North Dakota, 243 Centennial Drive Stop 8155, Grand Forks, ND 58202, USA
| | - Alireza Arhami Dolatabad
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Jiefei Cao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Feng Xiao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Giari L, Guerranti C, Perra G, Cincinelli A, Gavioli A, Lanzoni M, Castaldelli G. PFAS levels in fish species in the Po River (Italy): New generation PFAS, fish ecological traits and parasitism in the foreground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162828. [PMID: 36924966 DOI: 10.1016/j.scitotenv.2023.162828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are resistant to breakdown and are now considered ubiquitous and concerning contaminants. Although scientific and legislative interest in these compounds has greatly increased in recent decades, our knowledge about their environmental fate and their effects on organisms is still incomplete, especially those of the new generation PFAS. In this study, we analysed the level of PFAS contamination in the fish fauna of the Po River, the most important waterway in Italy, to evaluate the influence of different factors (such as fish ecological traits and parasitism) on the accumulation of 17 PFAS. After solvent extraction and purification, hepatic or intestinal tissues from forty specimens of bleak, channel catfish, and barbel were analysed by liquid chromatography coupled with mass spectrometry (LOQ = 2.5 ng/g w.w.). The prevalent PFAS were perfluorooctane sulfonate (PFOS), present in all samples at the highest concentration (reaching a maximum of 126.4 ng/g and 114.4 ng/g in bleak and channel catfish, respectively), and long-chain perfluoroalkyl carboxylic acids (PFDA and PFUnDA). Perfluorooctanoic acid and new generation PFAS (Gen X and C6O4) were not detected. Comparison of the hepatic contamination between the benthic channel catfish and the pelagic bleak showed similar concentrations of PFOS (p > 0.05) but significantly higher concentrations of other individual PFAS and of the sum of all measured PFAS (p < 0.05) in bleak. No correlation was found between the hepatic level of PFAS and fish size in channel catfish. For the first time, PFAS partitioning in a parasite-fish system was studied: intestinal acanthocephalans accumulated PFOS at lower levels than the intestinal tissue of their host (barbel), in contrast to what has been reported for other pollutants (e.g., metals). The infection state did not significantly alter the level of PFAS accumulation in fish, and acanthocephalans do not appear to be a good bioindicator of PFAS pollution.
Collapse
Affiliation(s)
- L Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - C Guerranti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - G Perra
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy.
| | - A Cincinelli
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - A Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - M Lanzoni
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - G Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
4
|
Khan B, Burgess RM, Cantwell MG. Occurrence and Bioaccumulation Patterns of Per- and Polyfluoroalkyl Substances (PFAS) in the Marine Environment. ACS ES&T WATER 2023; 3:1243-1259. [PMID: 37261084 PMCID: PMC10228145 DOI: 10.1021/acsestwater.2c00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic compounds used in commercial applications, household products, and industrial processes. The concern around the environmental persistence, bioaccumulation and toxicity of this vast contaminant class continues to rise. We conducted a review of the scientific literature to compare patterns of PFAS bioaccumulation in marine organisms and identify compounds of potential concern. PFAS occurrence data in seawater, sediments, and several marine taxa was analyzed from studies published between the years 2000 and 2020. Taxonomic and tissue-specific differences indicated elevated levels in protein-rich tissues and in air-breathing organisms compared to those that respire in water. Long-chain perfluoroalkyl carboxylic acids, particularly perfluoroundecanoic acid, were detected at high concentrations across several taxa and across temporal studies indicating their persistence and bioaccumulative potential. Perfluorooctanesulfonic acid was elevated in various tissue types across taxa. Precursors and replacement PFAS were detected in several marine organisms. Identification of these trends across habitats and taxa can be applied towards biomonitoring efforts, determination of high-risk taxa, and criteria development. This review also highlights challenges related to PFAS biomonitoring including (i) effects of environmental and biological variables, (ii) evaluation of protein binding sites and affinities, and (iii) biotransformation of precursors.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Mark G. Cantwell
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
5
|
Sun J, Cheng Y, Song Z, Ma S, Xing L, Wang K, Huang C, Li D, Chu J, Liu Y. Large-scale assessment of exposure to legacy and emerging per- and polyfluoroalkyl substances in China's shorebirds. ENVIRONMENTAL RESEARCH 2023; 229:115946. [PMID: 37080273 DOI: 10.1016/j.envres.2023.115946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Emerging per- and polyfluoroalkyl substances (PFAS) have become more widely applied, whereas legacy PFAS such as PFOS continue to distribute ubiquitously in the environment. Large-scale assessment of wildlife exposure to both emerging and legacy PFAS plays a key role in effective biomonitoring to better discriminate regional contamination patterns and provide early warnings. Using eggs of two closely-related shorebird species collected across China during the breeding season in 2021, we constructed contrasting PFAS levels and profiles in coastal versus inland populations. The highest ∑PFAS concentrations were found in two Kentish plover (Charadrius alexandrinus) populations from the Bohai Sea, a semi-enclosed shallow bay located in northeast China. These two populations showed exceptionally high PFOA concentrations (mean: 94 and 121 ng/g wet weight; West and North Bohai Sea, respectively) dominating the overall PFAS profile (66% for both). This pattern is characteristic, compared to that of other seabird eggs worldwide. By comparison, PFAS profile in the white-faced plover (Charadrius dealbatus) population at the South China Sea coast was dominated by PFOS (46%), which showed similar levels to those at the North Bohai Sea coast (mean: 29 and 20 ng/g, respectively). PFAS concentrations of Kentish plovers from the remote Qinghai Lake were lower compared to the three coastal populations, and were dominated by PFNA (mean: 2.6 ng/g, 29%) and PFOS (mean: 2.5 ng/g, 27%). None of the eggs analyzed in the present study exceeded estimated toxicity reference values for PFOS or PFOA. Additionally, the emerging 6:2 Cl-PFESA was detected in eggs from all regions, while its concentrations were highest in the Bohai Sea populations, and short-chain PFBS was only detected in the North Bohai Sea population. Our results indicate intensive local emissions of PFOA and emerging PFAS at the Bohai Sea region, and warrant further investigation and monitoring.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Yachang Cheng
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zitan Song
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shisheng Ma
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Lingling Xing
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Kai Wang
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Chenjing Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Donglai Li
- Provincial Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Sciences, Liaoning University, Shenyang, Liaoning, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Sun J, Xing L, Chu J. Global ocean contamination of per- and polyfluoroalkyl substances: A review of seabird exposure. CHEMOSPHERE 2023; 330:138721. [PMID: 37080473 DOI: 10.1016/j.chemosphere.2023.138721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been extensively produced and used as surfactants and repellents for decades. To date, the global contamination pattern of PFAS in marine biota has seldomly been reviewed. Seabirds are ideal biomonitoring tools to study environmental contaminants and their effects. Here, we compiled and synthesized reported PFAS concentrations in various seabird species to reflect spatiotemporal patterns and exposure risks of major PFAS on a global ocean scale. Perfluorooctane sulfonic acid (PFOS) was the most studied PFAS in seabirds, which showed the highest level in eggs of common guillemots (U. aalge) from the Baltic Sea, followed by great cormorants (P. carbo) from the North Sea and double-crested cormorants (P.auritus) from the San Francisco Bay, whereas the lowest were those reported for Antarctic seabirds. The temporal pattern showed an overall higher level of PFOS in the late 1990s and early 2000s, consistent with the phase-out of perfluorooctane sulfonyl fluoride-based products. Maximum liver PFOS concentrations in several species such as cormorants and fulmars from Europe and North America exceeded the estimated toxicity reference values. Systematic evaluations using representative species and long time-series are necessary to understand contamination patterns in seabirds in South America, Africa, and Asia where information is lacking. In addition, limited research has been conducted on the identification and toxic effects of novel substitutes such as fluorotelomers and ether PFAS (F-53B, Gen-X etc.) in seabirds. Further research, including multi-omics analysis, is needed to comprehensively characterize the exposure and toxicological profiles of PFAS in seabirds and other wildlife.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| | - Lingling Xing
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| |
Collapse
|
7
|
Szabo D, Moodie D, Green MP, Mulder RA, Clarke BO. Field-Based Distribution and Bioaccumulation Factors for Cyclic and Aliphatic Per- and Polyfluoroalkyl Substances (PFASs) in an Urban Sedentary Waterbird Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8231-8244. [PMID: 35678721 DOI: 10.1021/acs.est.2c01965] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The field-based distribution and bioaccumulation factor (BAF) for per- and polyfluoroalkyl substances (PFASs) were determined in residential Black Swans (Cygnus atratus) from an urban lake (Melbourne, Australia). The concentrations of 46 aliphatic and cyclic PFASs were determined by HPLC-MS/MS in serum and excrement from swans, and water, sediment, aquatic macrophytes, soil, and grass samples in and around the lake. Elevated concentrations of ∑46PFASs were detected in serum (120 ng mL-1) and excrement (110 ng g-1 dw) were strongly related indicating a potential noninvasive sampling methodology. Environmental concentrations of PFASs were consistent with a highly impacted ecosystem and notably high concentrations of perfluoro-4-ethylcyclohexanesulfonate (PFECHS, 67584-42-3; C8HF15SO3) were detected in water (27 ng L-1) and swan serum (16 ng mL-1). In the absence of credible putative alternative sources of PFECHS input to the lake, we propose that the use of high-performance motorsport vehicles is a likely source of contamination to this ecosystem. The BAF of perfluorocarboxylic acids increased with each additional CF2 moiety from PFOA (15.7 L kg-1 ww) to PFDoDA (3615 L kg-1 ww). The BAF of PFECHS was estimated as 593 L kg-1 ww, which is lower compared with that of PFOS (1097 L kg-1 ww).
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia 3010
| | - Damien Moodie
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia 3010
- School of Science, RMIT University, Victoria, Australia 3001
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria, Australia 3010
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria, Australia 3010
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia 3010
| |
Collapse
|
8
|
Jouanneau W, Léandri-Breton DJ, Corbeau A, Herzke D, Moe B, Nikiforov VA, Gabrielsen GW, Chastel O. A Bad Start in Life? Maternal Transfer of Legacy and Emerging Poly- and Perfluoroalkyl Substances to Eggs in an Arctic Seabird. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6091-6102. [PMID: 34874166 DOI: 10.1021/acs.est.1c03773] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In birds, maternal transfer is a major exposure route for several contaminants, including poly- and perfluoroalkyl substances (PFAS). Little is known, however, about the extent of the transfer of the different PFAS compounds to the eggs, especially for alternative fluorinated compounds. In the present study, we measured legacy and emerging PFAS, including Gen-X, ADONA, and F-53B, in the plasma of prelaying black-legged kittiwake females breeding in Svalbard and the yolk of their eggs. We aimed to (1) describe the contaminant levels and patterns in both females and eggs, and (2) investigate the maternal transfer, that is, biological variables and the relationship between the females and their eggs for each compound. Contamination of both females and eggs were dominated by linPFOS then PFUnA or PFTriA. We notably found 7:3 fluorotelomer carboxylic acid─a precursor of long-chain carboxylates─in 84% of the egg yolks, and provide the first documented finding of ADONA in wildlife. Emerging compounds were all below the detection limit in female plasma. There was a linear association between females and eggs for most of the PFAS. Analyses of maternal transfer ratios in females and eggs suggest that the transfer is increasing with PFAS carbon chain length, therefore the longest chain perfluoroalkyl carboxylic acids (PFCAs) were preferentially transferred to the eggs. The mean ∑PFAS in the second-laid eggs was 73% of that in the first-laid eggs. Additional effort on assessing the outcome of maternal transfers on avian development physiology is essential, especially for PFCAs and emerging fluorinated compounds which are under-represented in experimental studies.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Don-Jean Léandri-Breton
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Alexandre Corbeau
- ECOBIO (Ecosystèmes, biodiversité, évolution), UMR 6553 CNRS - Université de Rennes, 35000 Rennes, France
| | - Dorte Herzke
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- NINA - Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | - Vladimir A Nikiforov
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
9
|
Wilkinson BP, Robuck AR, Lohmann R, Pickard HM, Jodice PGR. Urban proximity while breeding is not a predictor of perfluoroalkyl substance contamination in the eggs of brown pelicans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150110. [PMID: 34525704 PMCID: PMC8595685 DOI: 10.1016/j.scitotenv.2021.150110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Identifying sources of exposure to chemical stressors is difficult when both target organisms and stressors are highly mobile. While previous studies have demonstrated that populations of some organisms proximal to urban centers may display increased burdens of human-created chemicals compared to more distal populations, this relationship may not be universal when applied to organisms and stressors capable of transboundary movements. We examined eggs of brown pelicans (Pelecanus occidentalis), a nearshore seabird with daily movements ranging from local to 50 km and annual migrations ranging from year-round residency to 1500 km. Thirty-six eggs from three breeding colonies located at increasing distances to a major urban center (Charleston, South Carolina, USA) were analyzed for concentrations of per- and polyfluoroalkyl substances (PFAS). Areas of high use for each colony during the breeding season were also assessed via the tracking of adult pelicans from each colony using GPS-PTT satellite transmitters and overlapped with measures of relative urbanization via land cover data. We report potentially significant ∑PFAS concentrations in the eggs of pelicans (175.4 ± 120.1 ng/g w wt. SD), driven largely by linear perfluorooctane sulfonate (n-PFOS) (48-546 ng/g w wt.). Residues of the precursor compound perfluorooctane sulfonamide (FOSA) were also present in pelican eggs, suggesting continued exposure of local wildlife beyond implemented phaseouts of some PFAS. For most analytes, egg concentrations did not exhibit a significant spatial structure despite some differentiation in high-use areas unlike similar data for another regional apex predator, the bottlenose dolphin (Tursiops truncatus). We suggest that the partially migratory nature of brown pelicans during the non-breeding season, combined with daily ranges that may extend to 50 km from local point sources, may have homogenized exposure across individuals. Charleston likely remains a major source for PFAS in the overall region, however, given the high concentrations observed as well as known releases of PFAS in the nearshore environment.
Collapse
Affiliation(s)
- Bradley P Wilkinson
- Department of Forestry and Environmental Conservation, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, SC 29634, USA.
| | - Anna R Robuck
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrick G R Jodice
- U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Morganti M, Polesello S, Pascariello S, Ferrario C, Rubolini D, Valsecchi S, Parolini M. Exposure assessment of PFAS-contaminated sites using avian eggs as a biomonitoring tool: A frame of reference and a case study in the Po River valley (Northern Italy). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:733-745. [PMID: 33764673 DOI: 10.1002/ieam.4417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
For many years, eggs of diverse bird species have been used as monitoring tools in studies investigating perfluoroalkyl substances (PFAS) contamination, especially in marine and remote areas. Avian eggs are a suitable monitoring matrix because they are relatively easy to collect and their yolks store diverse maternally transferred PFAS. Moreover, the concentrations of PFAS detected in the eggs are a good proxy for maternal exposure and allow the assessment of the potential risk for birds. These features support the use of avian eggs as a key monitoring tool in exposure assessment of PFAS-contaminated sites. We first review the recent application of avian eggs in PFAS monitoring in environmental risk assessment schemes, highlighting strengths and limitations and suggesting which criteria should be considered when selecting a proper study species and structuring the sampling and analytical protocol. Eventually, we report findings from a field study realized in 2020 near a perfluoropolymer factory site in the upper Po plain (Northern Italy), revealing an unprecedented contamination level of PFOA and C6O4 in three species of wild passerines. In future, long-term monitoring of PFAS contamination using avian eggs should be maintained, to provide crucial information on the temporal trend of fluorochemical production and waste disposal, while facilitating early identification of emerging PFAS as well as the quantification of their biomagnification across the trophic web. Integr Environ Assess Manag 2021;17:733-745. © 2021 SETAC.
Collapse
Affiliation(s)
- Michelangelo Morganti
- Water Research Institute-National Research Council of Italy, IRSA-CNR, Brugherio, MB, Italy
| | - Stefano Polesello
- Water Research Institute-National Research Council of Italy, IRSA-CNR, Brugherio, MB, Italy
| | - Simona Pascariello
- Water Research Institute-National Research Council of Italy, IRSA-CNR, Brugherio, MB, Italy
| | - Claudia Ferrario
- Water Research Institute-National Research Council of Italy, IRSA-CNR, Brugherio, MB, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Sara Valsecchi
- Water Research Institute-National Research Council of Italy, IRSA-CNR, Brugherio, MB, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|