1
|
Spadetto L, García-Fernández AJ, Zamora-López A, Zamora-Marín JM, León-Ortega M, Tórtola-García M, Tecles-Vicente F, Fenoll-Serrano J, Cava-Artero J, Calvo JF, Gómez-Ramírez P. Comparing anticoagulant rodenticide exposure in barn owl (Tyto alba) and common kestrel (Falco tinnunculus): A biomonitoring study in an agricultural region of southeastern Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124944. [PMID: 39265762 DOI: 10.1016/j.envpol.2024.124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are commonly used for rodent control, affecting various non-target wildlife species. Here, blood samples from common kestrels (Falco tinnunculus, n = 70 chicks) and barn owls (Tyto alba, n = 54 chicks and 12 adults) from Southeastern Spain were analysed using HPLC-TQ. SGAR prevalence was 68.6% in kestrel chicks, 50% in barn owl chicks and 100% in adult barn owls, with multiple SGARs in both species. Prothrombin time analysis in barn owls revealed a positive correlation with blood ΣSGARs, suggesting a potential adverse effect on coagulation. Analysis of variables potentially influencing SGAR prevalence indicated that, for kestrels, it was only related to the extent of artificial surface, showing no differences across study sites. In owlets, the highest prevalence occurred in the most urbanized study site, with human population density being a key factor. This study highlights species-specific differences in SGAR exposure, likely influenced by ecological traits. Barn owls probably encounter contaminated prey near anthropized areas, with widespread SGAR use and higher presence of target rodents. Conversely, kestrels, hunting a variety of prey often near human settlements, face consistently elevated exposure from multiple sources. Understanding these variations is crucial for effective conservation and minimizing SGAR impact on non-target wildlife.
Collapse
Affiliation(s)
- Livia Spadetto
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Antonio Juan García-Fernández
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | | | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll-Serrano
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - Juana Cava-Artero
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
2
|
Buckley JY, Murray MH, de la Sancha NU, Fidino M, Byers KA, Fyffe R, Magle S. Widespread exposure to anticoagulant rodenticides among common urban mesopredators in Chicago. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175883. [PMID: 39222805 DOI: 10.1016/j.scitotenv.2024.175883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Anticoagulant rodenticides (ARs) are currently the most common method to control rats in cities, but these compounds also cause morbidity and mortality in non-target wildlife. Little attention has been focused on AR exposure among mesopredators despite their ecological role as scavengers and prey for larger carnivores, thus serving as an important bridge in the biomagnification of rodenticides in food webs. In this study, we sampled liver tissue from raccoons (Procyon lotor; n = 37), skunks (Mephitis mephitis; n = 15), and Virginia opossums (Didelphis virginiana; n = 45) euthanized by pest professionals and brown rats (Rattus norvegicus; n = 101) trapped in alleys in Chicago, USA to evaluate how often these species are exposed to ARs. We tested whether mesopredators had a higher prevalence of ARs and to more AR compounds compared to rats and calculated biomagnification factors (mean concentration in mesopredators/rats) as indicators of biomagnification. Of 93 sampled mesopredators, 100 % were exposed to at least one AR compound, mainly brodifacoum (≥80 %), and 79 % were exposed to multiple AR compounds. We also documented teal stomach contents consistent with the consumption of rat bait and altricial young tested positive to the same AR as their mother, suggesting mammary transfer. Of the 101 rats, 74 % tested positive to at least one AR compound and 32 % were exposed to multiple AR compounds. All mesopredator species had biomagnification factors exceeding 1.00 for brodifacoum (6.57-29.07) and bromadiolone (1.08-4.31). Our results suggest widespread exposure to ARs among urban mesopredators and biomagnification of ARs in mesopredators compared to rats. Policies that limit AR availability to non-target species, such as restricting the sale and use of ARs to licensed professionals in indoor settings, education on alternatives, and more emphasis on waste management may reduce health risks for urban wildlife and people in cities around the world.
Collapse
Affiliation(s)
- Jacqueline Y Buckley
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| | - Maureen H Murray
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA.
| | - Noé U de la Sancha
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, USA; Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL, USA
| | - Mason Fidino
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| | - Kaylee A Byers
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Pacific Institute on Pathogens, Pandemics, and Society, Simon Fraser University, Burnaby, British Columbia, Canada; Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | | | - Seth Magle
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| |
Collapse
|
3
|
Vicedo T, Navas I, María-Mojica P, García-Fernández AJ. Widespread use of anticoagulant rodenticides in agricultural and urban environments. A menace to the viability of the endangered Bonelli's eagle (Aquila fasciata) populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124530. [PMID: 39004203 DOI: 10.1016/j.envpol.2024.124530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Anticoagulant rodenticides (ARs) are one of the most toxic groups of compounds currently used worldwide for rodent pest control. Toxic baits are often, directly or indirectly, ingested by non-target animals, resulting in secondary poisoning and frequently affecting apex predators. Their presence in many species of raptors is quite common, particularly scavenger species, with some of these acting as sentinels for the presence of these substances in the environment. However, there is less data on the presence of ARs in Bonelli's eagle, one of the most endangered eagle species in Spain and which is experiencing a negative population trend in Europe. This medium-sized eagle feeds predominantly on live species, and rarely consumes carrion. In this study, 17 carcasses of Bonelli's eagles from the Eastern Spain were necropsied. Both first and second generation ARs in their livers were analyzed by HPLC-MS-TOF revealing that all the eagles studied had been exposed to at least 5 ARs, out of a total of 10 ARs analyzed, with 7 being the highest number of ARs detected in a sample. Second generation ARs were the most prevalent, particularly bromadiolone and brodifacoum, with the highest concentrations in 94% of the cases. More than a third of the eagles presented a liver concentration of greater than 200 ng/g ARs, suggesting AR poisoning. The elevated presence of these compounds in Bonelli's eagles could be a new cause of mortality for this species or could explain other causes of death, such as the increased mortality in power lines, and should be taken into account for their conservation. At the same time, the presence of these compounds in the environment also represents a risk to public health, as the most frequent species in the diet of Bonelli's eagle (rabbits and partridges) are also hunted and consumed by hunters and their families.
Collapse
Affiliation(s)
- T Vicedo
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Biodiversity Research Institute (CSIC -University of Oviedo - Principality of Asturias), Spanish National Research Council, Mieres Campus, Research Building, 33600, Mieres, Asturias, Spain
| | - I Navas
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Toxicology and Risk Assessment Research Group, IMIB-Pascual Parrilla, University of Murcia, 30120 El Palmar, Spain.
| | - P María-Mojica
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Wildlife Rehabilitation Centre "Santa Faz", VAERSA-Wildlife Service, Generalitat Valenciana, 03559 Santa Faz, Alicante, Spain
| | - A J García-Fernández
- Service of Toxicology and Forensic Veterinary Medicine, Department of Health Sciences, Faculty of Veterinary Medicine, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain; Toxicology and Risk Assessment Research Group, IMIB-Pascual Parrilla, University of Murcia, 30120 El Palmar, Spain
| |
Collapse
|
4
|
Scammell K, Cooke R, Yokochi K, Carter N, Nguyen H, White JG. The missing toxic link: Exposure of non-target native marsupials to second-generation anticoagulant rodenticides (SGARs) suggest a potential route of transfer into apex predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173191. [PMID: 38740216 DOI: 10.1016/j.scitotenv.2024.173191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Anticoagulant rodenticides (ARs) are used globally to control rodent pests. Second-generation anticoagulant rodenticides (SGARs) persist in the liver and pose a significant risk of bioaccumulation and secondary poisoning in predators, including species that do not generally consume rodents. As such, there is a clear need to understand the consumption of ARs, particularly SGARs, by non-target consumers to determine the movement of these anticoagulants through ecosystems. We collected and analysed the livers from deceased common brushtail possums (Trichosurus vulpecula) and common ringtail possums (Pseudocheirus peregrinus), native Australian marsupials that constitute the main diet of the powerful owl (Ninox strenua), an Australian apex predator significantly exposed to SGAR poisoning. ARs were detected in 91 % of brushtail possums and 40 % of ringtail possums. Most of the detections were attributed to SGARs, while first-generation anticoagulant rodenticides (FGARs) were rarely detected. SGAR concentrations were likely lethal or toxic in 42 % of brushtail possums and 4 % of ringtail possums with no effect of age, sex, or weight detected in either species. There was also no effect of the landscape type possums were from, suggesting SGAR exposure is ubiquitous across landscapes. The rate of exposure detected in these possums provides insight into the pathway through which ARs are transferred to one of their key predators, the powerful owl. With SGARs entering food-webs through non-target species, the potential for bioaccumulation and broader secondary poisoning of predators is significantly greater and highlights an urgent need for routine rodenticide testing in non-target consumers that present as ill or found deceased. To limit their impact on ecosystem stability the use of SGARs should be significantly regulated by governing agencies.
Collapse
Affiliation(s)
- Kieran Scammell
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Raylene Cooke
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Kaori Yokochi
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
5
|
Ozaki S, Movalli P, Cincinelli A, Alygizakis N, Badry A, Carter H, Chaplow JS, Claßen D, Dekker RWRJ, Dodd B, Duke G, Koschorreck J, Pereira MG, Potter E, Sleep D, Slobodnik J, Thomaidis NS, Treu G, Walker L. Significant Turning Point: Common Buzzard ( Buteo buteo) Exposure to Second-Generation Anticoagulant Rodenticides in the United Kingdom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6093-6104. [PMID: 38545700 PMCID: PMC11008253 DOI: 10.1021/acs.est.3c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are widely used to control rodent populations, resulting in the serious secondary exposure of predators to these contaminants. In the United Kingdom (UK), professional use and purchase of SGARs were revised in the 2010s. Certain highly toxic SGARs have been authorized since then to be used outdoors around buildings as resistance-breaking chemicals under risk mitigation procedures. However, it is still uncertain whether and how these regulatory changes have influenced the secondary exposure of birds of prey to SGARs. Based on biomonitoring of the UK Common Buzzard (Buteo buteo) collected from 2001 to 2019, we assessed the temporal trend of exposure to SGARs and statistically determined potential turning points. The magnitude of difenacoum decreased over time with a seasonal fluctuation, while the magnitude and prevalence of more toxic brodifacoum, authorized to be used outdoors around buildings after the regulatory changes, increased. The summer of 2016 was statistically identified as a turning point for exposure to brodifacoum and summed SGARs that increased after this point. This time point coincided with the aforementioned regulatory changes. Our findings suggest a possible shift in SGAR use to brodifacoum from difenacoum over the decades, which may pose higher risks of impacts on wildlife.
Collapse
Affiliation(s)
- Shinji Ozaki
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Paola Movalli
- Naturalis
Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Alessandra Cincinelli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Nikiforos Alygizakis
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Alexander Badry
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Heather Carter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Jacqueline S. Chaplow
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Daniela Claßen
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | | | - Beverley Dodd
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Guy Duke
- UK
Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom
| | - Jan Koschorreck
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - M. Glória Pereira
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Elaine Potter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Darren Sleep
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | | | - Nikolaos S. Thomaidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Gabriele Treu
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Lee Walker
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| |
Collapse
|
6
|
Spadetto L, Gómez-Ramírez P, Zamora-Marín JM, León-Ortega M, Díaz-García S, Tecles F, Fenoll J, Cava J, Calvo JF, García-Fernández AJ. Active monitoring of long-eared owl (Asio otus) nestlings reveals widespread exposure to anticoagulant rodenticides across different agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170492. [PMID: 38307270 DOI: 10.1016/j.scitotenv.2024.170492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The widespread use of anticoagulant rodenticides (ARs) poses a worldwide threat to farmland wildlife. These compounds accumulate in tissues of both target and non-target species, potentially endangering both direct consumers and their predators. However, investigations on ARs in blood of free-ranging predatory birds are rare. Here, the long-eared owl (Asio otus) has been used as a model predator to assess AR exposure in different agricultural landscapes from a Mediterranean semiarid region. A total of 69 owlets from 38 nests were blood-sampled over 2021 and 2022, aiming to detect AR residues and explore factors that determine their exposure, such as land uses. In addition, prothrombin time (PT) test was conducted to assess potential effects of AR contamination. Overall, nearly all the samples (98.6 %) tested positive for at least one compound and multiple ARs were found in most of the individuals (82.6 %). Among the ARs detected, flocoumafen was the most common compound (88.4 % of the samples). AR total concentration (ΣARs) in blood ranged from 0.06 to 34.18 ng mL-1, detecting the highest levels in the most intensively cultivated area. The analysis of owl pellets from 19 breeding territories showed relevant among-site differences in the contribution of rodents and birds into the diet of long-eared owls, supporting its high dietary plasticity and indicating AR presence at multiple trophic levels. Moreover, a positive and significant correlation was found between ΣARs and PT (Rho = 0.547, p < 0.001), which demonstrates the direct effect of ARs on free-living nestlings. Our results provide a preliminary overview of AR exposure in a little-studied owl species inhabiting agricultural and rural landscapes. Despite the low detected levels, these findings indicate widespread exposure -often to multiple compounds- from early life stages, which raises concern and draws attention to an ongoing and unresolved contamination issue.
Collapse
Affiliation(s)
- Livia Spadetto
- Toxicology Research Group, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Pilar Gómez-Ramírez
- Toxicology Research Group, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain.
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150 Murcia, Spain
| | - Juana Cava
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150 Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
7
|
Cooke R, Whiteley P, Death C, Weston MA, Carter N, Scammell K, Yokochi K, Nguyen H, White JG. Silent killers? The widespread exposure of predatory nocturnal birds to anticoagulant rodenticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166293. [PMID: 37586529 DOI: 10.1016/j.scitotenv.2023.166293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Anticoagulant rodenticides (ARs) influence predator populations and threaten the stability of ecosystems. Understanding the prevalence and impact of rodenticides in predators is crucial to inform conservation planning and policy. We collected dead birds of four nocturnal predatory species across differing landscapes: forests, agricultural, urban. Liver samples were analysed for eight ARs: three First Generation ARs (FGARs) and five SGARs (Second Generation ARs). We investigated interspecific differences in liver concentrations and whether landscape composition influenced this. FGARs were rarely detected, except pindone at low concentrations in powerful owls Ninox strenua. SGARs, however, were detected in every species and 92 % of birds analysed. Concentrations of SGARs were at levels where potential toxicological or lethal impacts would have occurred in 33 % of powerful owls, 68 % of tawny frogmouths Podargus strigoides, 42 % of southern boobooks N. bookbook and 80 % of barn owls Tyto javanica. When multiple SGARs were detected, the likelihood of potentially lethal concentrations of rodenticides increased. There was no association between landscape composition and SGAR exposure, or the presence of multiple SGARs, suggesting rodenticide poisoning is ubiquitous across all landscapes sampled. This widespread human-driven contamination in wildlife is a major threat to wildlife health. Given the high prevalence and concentrations of SGARs in these birds across all landscape types, we support the formal consideration of SGARs as a threatening process. Furthermore, given species that do not primarily eat rodents (tawny frogmouths, powerful owls) have comparable liver rodenticide concentrations to rodent predators (southern boobook, eastern barn owl), it appears there is broader contamination of the food-web than anticipated. We provide evidence that SGARs have the potential to pose a threat to the survival of avian predator populations. Given the functional importance of predators in ecosystems, combined with the animal welfare impacts of these chemicals, we propose governments should regulate the use of SGARs.
Collapse
Affiliation(s)
- Raylene Cooke
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Pam Whiteley
- Wildlife Health Victoria: Surveillance, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Clare Death
- Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, Vic., Australia
| | - Michael A Weston
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kieran Scammell
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kaori Yokochi
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
8
|
Murray M, Cox EC. Bromethalin Exposure and Possible Toxicosis in a Bald Eagle (Haliaeetus leucocephalus). J Wildl Dis 2023; 59:815-817. [PMID: 37578742 DOI: 10.7589/jwd-d-23-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/09/2023] [Indexed: 08/15/2023]
Abstract
A free-living Bald Eagle (Haliaeetus leucocephalus) displayed acute onset neurologic signs. Postmortem analysis of adipose tissue identified desmethylbromethalin, the active metabolite of bromethalin. Antemortem signs, detection of desmethylbromethalin, and results of other diagnostics support the possibility of secondary bromethalin toxicosis. Investigation of bromethalin's potential risk to wildlife is critically needed.
Collapse
Affiliation(s)
- Maureen Murray
- Tufts Wildlife Clinic, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts 01536, USA
| | - Elena C Cox
- Tufts Wildlife Clinic, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts 01536, USA
| |
Collapse
|
9
|
Murray M, Cox EC. Active metabolite of the neurotoxic rodenticide bromethalin along with anticoagulant rodenticides detected in birds of prey in the northeastern United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122076. [PMID: 37336352 DOI: 10.1016/j.envpol.2023.122076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Little is known about the ecologic fate of the neurotoxic rodenticide bromethalin, which is currently registered for use in the United States, Canada, and other countries including Australia. There is minimal research on bromethalin's potential to cause secondary toxicosis in nontarget wildlife. The aim of this study was to evaluate adipose tissue in four species of birds of prey presented to a wildlife clinic in Massachusetts, USA, for desmethylbromethalin (DMB), the active metabolite of bromethalin. Birds were also screened for anticoagulant rodenticides (ARs) in liver tissue to present a more complete picture of rodenticide exposures in this geographic area and to evaluate the impact of current mitigation measures in place during the time of sampling, 2021-2022. A total of 44 hawks and owls were included; DMB was found in 29.5% of birds and ARs were present in 95.5%. All birds with DMB detections also had residues of ARs. Among birds positive for ARs, 81% had two or more compounds. To the authors' knowledge the data presented here represent the first published monitoring study to document bromethalin/DMB bioaccumulation in obligate carnivores. As DMB is a more potent neurotoxicant than its parent compound, these results are cause for concern and an indication that further monitoring and study of the potential risk of bromethalin to wildlife species is needed. These findings have global implications as increasing concern regarding exposure to and toxicosis from ARs in nontarget wildlife worldwide leads to a search for alternatives and effective mitigation approaches.
Collapse
Affiliation(s)
- Maureen Murray
- Tufts Wildlife Clinic, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA.
| | - Elena C Cox
- Tufts Wildlife Clinic, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA.
| |
Collapse
|
10
|
Leclerc LA, Vergneau-Grosset C, Fitzgerald G, Brandão J, Gara-Boivin C. Determination of Coagulation Parameters by Whole Blood Dynamic Viscoelastic Coagulometry in Strigiformes. J Avian Med Surg 2023; 37:99-107. [PMID: 37733449 DOI: 10.1647/22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
No reference values are available in Strigiformes to evaluate blood coagulation using dynamic viscoelastic coagulometry (DVC) with the Sonoclot (Sienco, Boulder, CO, USA) analyzer. The objectives of this study were 1) to assess the feasibility of DVC in Strigiformes, 2) to calculate the index of individuality of each coagulation parameter, and 3) to assess interspecies variability and establish reference intervals, if relevant, based on the index of individuality. Fresh whole blood samples were obtained from healthy Strigiformes, including 13 barred owls (Strix varia), 10 great horned owls (Bubo virginianus), 6 snowy owls (Bubo scandiacus), and 7 eastern screech owls (Megascops asio), and analyzed with DVC with glass bead (gb) and kaolin clay (k) coagulation activators. Activated clotting time (ACT), clot rate (CR), and platelet function were determined immediately after collection using fresh native whole blood. Intraindividual variability was assessed with a second fresh native whole blood sample from 5 barred owls. Interindividual variability was assessed using a Kruskall-Wallis test. For the parameters gbACT (n = 35), gbCR (n = 34), and kACT (n = 27), no significant differences were detected between species (all P ≥ 0.05). Based on low index of individuality, global Strigiformes reference intervals were determined for gbACT (32.3-852.5 seconds; n = 35), gbCR (0-20.1 units/min; n = 29), and kACT (0-1570.3 seconds; n = 27). In conclusion, DVC can be used in Strigiformes and the gb coagulation activator would be more appropriate when basal individual values are not available in a tested individual.
Collapse
Affiliation(s)
- Lydie-Amy Leclerc
- Centre Hospitalier Universitaire Vétérinaire affiliated with the Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada, J2S 2M2
| | - Claire Vergneau-Grosset
- Département de Sciences Cliniques, Université de Montréal, Saint-Hyacinthe, QC, Canada, J2S 2M2,
| | - Guy Fitzgerald
- Centre Hospitalier Universitaire Vétérinaire affiliated with the Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada, J2S 2M2
| | - João Brandão
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Carolyn Gara-Boivin
- Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC, Canada, J2S 2M2
| |
Collapse
|
11
|
Herring G, Eagles-Smith CA, Buck JA. Anticoagulant rodenticides are associated with increased stress and reduced body condition of avian scavengers in the Pacific Northwest. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121899. [PMID: 37244534 DOI: 10.1016/j.envpol.2023.121899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Anticoagulant rodenticides (AR) have been used globally to manage commensal rodents for decades. However their application has also resulted in primary, secondary, and tertiary poisoning in wildlife. Widespread exposure to ARs (primarily second generation ARs; SGARs) in raptors and avian scavengers has triggered considerable conservation concern over their potential effects on populations. To identify risk to extant raptor and avian scavenger populations in Oregon and potential future risk to the California condor (Gymnogyps californianus) flock recently established in northern California, we assessed AR exposure and physiological responses in two avian scavenger species (common ravens [Corvus corax] and turkey vultures [Cathartes aura]) throughout Oregon between 2013 and 2019. AR exposure was widespread with 51% (35/68) of common ravens and 86% (63/73) of turkey vultures containing AR residues. The more acutely toxic SGAR brodifacoum was present in 83% and 90% of AR exposed common ravens and turkey vultures. The odds of AR exposure in common ravens were 4.7-fold higher along the coastal region compared to interior Oregon. For common ravens and turkey vultures that were exposed to ARs, respectively, 54% and 56% had concentrations that exceeded the 5% probability of toxicosis (>20 ng/g ww; Thomas et al., 2011), and 20% and 5% exceeded the 20% probability of toxicosis (>80 ng/g ww; Thomas et al., 2011). Common ravens exhibited a physiological response to AR exposure with fecal corticosterone metabolites increasing with sum ARs (ΣAR) concentrations. Both female common raven and turkey vultures' body condition was negatively correlated with increasing ΣAR concentrations. Our results suggest avian scavengers in Oregon are experiencing extensive AR exposure and the newly established population of California condors in northern California will likely experience similar AR exposure if they feed in southern Oregon. Understanding the sources of ARs across the landscape is an important first step in reducing or eliminating AR exposure in avian scavengers.
Collapse
Affiliation(s)
- Garth Herring
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA.
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Jeremy A Buck
- U.S. Fish and Wildlife Service, Oregon Fish and Wildlife Office, Portland, OR, 97266, USA
| |
Collapse
|
12
|
Rached A, Mahjoub T, Fafournoux A, Barbier B, Fourel I, Caruel H, Lefebvre S, Lattard V. Interest of the faecal and plasma matrix for monitoring the exposure of wildlife or domestic animals to anticoagulant rodenticides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104033. [PMID: 36481560 DOI: 10.1016/j.etap.2022.104033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Anticoagulant rodenticides (ARs), particularly second-generation compounds (SGAR), are known to be a potential threat to unintended species due to their tissue persistence. The liver is the storage tissue of ARs and is a matrix of choice in diagnosing exposure and intoxication of non-target fauna. However, it is only available on dead animals. Blood and faeces can be used on living animals. These two biological matrices were compared in terms of their relevance to exposure to ARs. In addressing this question, we compared the faecal, plasma and liver concentrations of bromadiolone, one of the SGAR frequently implicated in wildlife exposure. We studied this comparison at the individual level and at the population level, considering three influencing factors: dose, sex and time. Our findings demonstrate that faecal analyses are more valuable than plasma analyses for monitoring AR exposure of domestic and wild animals, even if faecal concentrations cannot be correlated with liver concentrations.
Collapse
Affiliation(s)
- Antoine Rached
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France; Liphatech, Bonnel, 47480 Pont du Casse, France
| | - Tarek Mahjoub
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France; Biochemistry, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - Ambre Fafournoux
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France
| | - Brigitte Barbier
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France
| | - Isabelle Fourel
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France
| | | | - Sébastien Lefebvre
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, F-69280 Marcy l'Etoile, France.
| |
Collapse
|
13
|
Oliva-Vidal P, Martínez JM, Sánchez-Barbudo IS, Camarero PR, Colomer MÀ, Margalida A, Mateo R. Second-generation anticoagulant rodenticides in the blood of obligate and facultative European avian scavengers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120385. [PMID: 36257565 DOI: 10.1016/j.envpol.2022.120385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The widespread use of second-generation anticoagulant rodenticides (SGARs) and their high persistence in animal tissues has led to these compounds becoming ubiquitous in rodent-predator-scavenger food webs. Exposure to SGARs has usually been investigated in wildlife species found dead, and despite growing evidence of the potential risk of secondary poisoning of predators and scavengers, the current worldwide exposure of free-living scavenging birds to SGARs remains scarcely investigated. We present the first active monitoring of blood SGAR concentrations and prevalence in the four European obligate (i.e., vultures) and facultative (red and black kites) avian scavengers in NE Spain. We analysed 261 free-living birds and detected SGARs in 39.1% (n = 102) of individuals. Both SGAR prevalence and concentrations (ΣSGARs) were related to the age and foraging behaviour of the species studied. Black kites showed the highest prevalence (100%), followed by red kites (66.7%), Egyptian (64.2%), bearded (20.9%), griffon (16.9%) and cinereous (6.3%) vultures. Overall, both the prevalence and average ΣSGARs were higher in non-nestlings than nestlings, and in species such as kites and Egyptian vultures foraging in anthropic landscapes (e.g., landfill sites and livestock farms) and exploiting small/medium-sized carrions. Brodifacoum was most prevalent (28.8%), followed by difenacoum (16.1%), flocoumafen (12.3%) and bromadiolone (7.3%). In SGAR-positive birds, the ΣSGAR (mean ± SE) was 7.52 ± 0.95 ng mL-1; the highest level detected being 53.50 ng mL-1. The most abundant diastereomer forms were trans-bromadiolone and flocoumafen, and cis-brodifacoum and difenacoum, showing that lower impact formulations could reduce secondary exposures of non-target species. Our findings suggest that SGARs can bioaccumulate in scavenging birds, showing the potential risk to avian scavenging guilds in Europe and elsewhere. We highlight the need for further studies on the potential adverse effects associated with concentrations of SGARSs in the blood to better interpret active monitoring studies of free-living birds.
Collapse
Affiliation(s)
- Pilar Oliva-Vidal
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Department of Animal Science, Faculty of Life Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - José María Martínez
- Gobierno de Aragón, Subdirección General de Desarrollo Rural y Sostenibilidad, Departamento Medio Ambiente, C/ General Lasheras 8, E-22003 Huesca, Spain
| | - Inés S Sánchez-Barbudo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Pablo R Camarero
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Mª Àngels Colomer
- Department of Mathematics, Faculty of Life Sciences and Engineering, University of Lleida, Avda. Alcalde Rovira Roure, 191, 25198, Spain
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| |
Collapse
|
14
|
Herring G, Eagles-Smith CA, Wolstenholme R, Welch A, West C, Rattner BA. Collateral damage: Anticoagulant rodenticides pose threats to California condors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119925. [PMID: 35988680 DOI: 10.1016/j.envpol.2022.119925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Anticoagulant rodenticides (ARs) are widespread environmental contaminants that pose risks to scavenging birds because they routinely occur within their prey and can cause secondary poisoning. However, little is known about AR exposure in one of the rarest avian scavengers in the world, the California condor (Gymnogyps californianus). We assessed AR exposure in California condors and surrogate turkey vultures (Cathartes aura) to gauge potential hazard to a proposed future condor flock by determining how application rate and environmental factors influence exposure. Additionally, we examined whether ARs might be correlated with prolonged blood clotting time and potential mortality in condors. Only second-generation ARs (SGARs) were detected, and exposure was detected in all condor flocks. Liver AR residues were detected in 42% of the condors (27 of 65) and 93% of the turkey vultures (66 of 71). Although concentrations were generally low (<10 ng/g ww), 48% of the California condors and 64% of the turkey vultures exposed to ARs exceeded the 5% probability of exhibiting signs of toxicosis (>20 ng/g ww), and 10% and 13% exceeded the 20% probability of exhibiting signs toxicosis (>80 ng/g ww). There was evidence of prolonged blood clotting time in 16% of the free-flying condors. For condors, there was a relationship between the interaction of AR exposure index (legal use across regions where condors existed) and precipitation, and the probability of detecting ARs in liver. Exposure to ARs may complicate recovery efforts of condor populations within their current range and in the soon to be established northern California experimental population. Continued monitoring of AR exposure using plasma blood clotting assays and residue analysis would allow for an improved understanding of their hazard to condors, particularly if paired with recent movement data that could elucidate exposure sources on the landscape occupied by this endangered species.
Collapse
Affiliation(s)
- Garth Herring
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA.
| | - Rachel Wolstenholme
- Pinnacles National Park, Paicines, CA, 95043, USA; Current: National Park Service, Interior Regions 8, 9, 10, & 12, San Francisco, CA, 94104, USA
| | - Alacia Welch
- Pinnacles National Park, Paicines, CA, 95043, USA
| | - Chris West
- Yurok Tribe Wildlife Department, Klamath, CA, 95548, USA
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, Beltsville, MD, 20705, USA
| |
Collapse
|
15
|
Hopf-Dennis C, Kaye S, Hollingshead N, Brooks M, Bunting E, Abou-Madi N. Prevalence of anticoagulant rodenticide exposure in red-tailed hawks (Buteo jamaicensis) and utility of clotting time assays to detect coagulopathy. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:919-932. [PMID: 35622198 DOI: 10.1007/s10646-022-02558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Anticoagulant rodenticides (ARs) continue to be used across the United States as a method for controlling pest rodent species. As a consequence, wild birds of prey are exposed to these toxicants by eating poisoned prey items. ARs prevent the hepatic recycling of vitamin K and thereby impede the post-translational processing of coagulation factors II, VII, IX, and X that are required for procoagulant complex assembly. Through this mechanism of action, ARs cause hemorrhage and death in their target species. Various studies have documented the persistence of these contaminants in birds of prey but few have attempted to use affordable and accessible diagnostic tests to diagnose coagulopathy in free-ranging birds of prey. In our study free-ranging red-tailed hawks were found to be exposed to difethialone and brodifacoum. Eleven of sixteen (68%) livers tested for AR exposure had detectable residues. Difethialone was found in 1/16 (6%), and brodifacoum was detected in 10/16 (62%) liver samples that were tested for rodenticide residues. Difethialone was found at a concentration of 0.18 ug/g wet weight and brodifacoum concentrations ranged from 0.003-0.234 ug/g wet weight. Two out of 34 (6%) RTHA assessed for blood rodenticide had brodifacoum in serum with measured concentrations of 0.003 and 0.006 ug/g. The range of clotting times in the prothrombin time (PT) and Russell's viper venom time assays for control RTHA were 16.7 to 39.7 s and 11.5 to 91.8 s, respectively. One study bird was diagnosed with clinical AR intoxication with a brodifacoum levels in blood of 0.006 and 0.234 ug/g wet weight in blood and liver respectively, a packed cell volume (PCV) of 19%, and PT and RVVT times of >180 s. No correlation was found between PT and RVVT in the control or free-range RTHA, and there was no relationship found between the presence of liver anticoagulant residues and clotting times in the PT and RVVT.
Collapse
Affiliation(s)
- Cynthia Hopf-Dennis
- Janet L. Swanson Wildlife Hospital and the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Sarrah Kaye
- Staten Island Zoo, 614 Broadway, Staten Island, NY, 10310, USA
| | - Nicholas Hollingshead
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Marjory Brooks
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Elizabeth Bunting
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Noha Abou-Madi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Elliott JE, Silverthorn V, Hindmarch S, Lee S, Bowes V, Redford T, Maisonneuve F. Anticoagulant Rodenticide Contamination of Terrestrial Birds of Prey from Western Canada: Patterns and Trends, 1988-2018. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1903-1917. [PMID: 35678209 PMCID: PMC9540899 DOI: 10.1002/etc.5361] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
As the dominant means for control of pest rodent populations globally, anticoagulant rodenticides (ARs), particularly the second-generation compounds (SGARs), have widely contaminated nontarget organisms. We present data on hepatic residues of ARs in 741 raptorial birds found dead or brought into rehabilitation centers in British Columbia, Canada, over a 30-year period from 1988 to 2018. Exposure varied by species, by proximity to residential areas, and over time, with at least one SGAR residue detected in 74% of individuals and multiple residues in 50% of individuals. By comparison, we detected first-generation compounds in <5% of the raptors. Highest rates of exposure were in barred owls (Strix varia), 96%, and great horned owls (Bubo virginianus), 81%, species with diverse diets, including rats (Rattus norvegicus and Rattus rattus), and inhabiting suburban and intensive agricultural habitats. Barn owls (Tyto alba), mainly a vole (Microtus) eater, had a lower incidence of exposure of 65%. Putatively, bird-eating raptors also had a relatively high incidence of exposure, with 75% of Cooper's hawks (Accipiter cooperii) and 60% of sharp-shinned hawks (Accipiter striatus) exposed. Concentrations of SGARs varied greatly, for example, in barred owls, the geometric mean ∑SGAR = 0.13, ranging from <0.005 to 1.81 μg/g wet weight (n = 208). Barred owls had significantly higher ∑SGAR concentrations than all other species, driven by significantly higher bromadiolone concentrations, which was predicted by the proportion of residential land within their home ranges. Preliminary indications that risk mitigation measures implemented in 2013 are having an influence on exposure include a decrease in mean concentrations of brodifacoum and difethialone in barred and great horned owls and an increase in bromodialone around that inflection point. Environ Toxicol Chem 2022;41:1903-1917. © 2022 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- John E. Elliott
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Veronica Silverthorn
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sofi Hindmarch
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sandi Lee
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Victoria Bowes
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - Tony Redford
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - France Maisonneuve
- Science & Technology BranchEnvironment and Climate Change CanadaOttawaOntarioCanada
| |
Collapse
|
17
|
Moriceau MA, Lefebvre S, Fourel I, Benoit E, Buronfosse-Roque F, Orabi P, Rattner BA, Lattard V. Exposure of predatory and scavenging birds to anticoagulant rodenticides in France: Exploration of data from French surveillance programs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151291. [PMID: 34748846 DOI: 10.1016/j.scitotenv.2021.151291] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Wild raptors are widely used to assess exposure to different environmental contaminants, including anticoagulant rodenticides (ARs). ARs are used on a global scale for rodent control, and act by disruption of the vitamin K cycle that results in haemorrhage usually accompanied by death within days. Some ARs are highly persistent and bioaccumulative, which can cause significant exposure of non-target species. We characterized AR exposure in a heterogeneous sample of dead raptors collected over 12 years (2008-2019) in south-eastern France. Residue analysis of 156 liver samples through LC-MS/MS revealed that 50% (78/156) were positive for ARs, with 13.5% (21/156) having summed second-generation AR (SGAR) concentrations >100 ng/g ww. While SGARs were commonly detected (97.4% of positive samples), first-generation ARs were rarely found (7.7% of positive samples). ARs were more frequently detected and at greater concentration in predators (prevalence: 82.5%) than in scavengers (38.8%). Exposure to multiple ARs was common (64.1% of positive samples). While chlorophacinone exposure decreased over time, an increasing exposure trend was observed for the SGAR brodifacoum, suggesting that public policies may not be efficient at mitigating risk of exposure for non-target species. Haemorrhage was observed in 88 birds, but AR toxicosis was suspected in only 2 of these individuals, and no difference in frequency of haemorrhage was apparent in birds displaying summed SGAR levels above or below 100 ng/g ww. As for other contaminants, 17.2% of liver samples (11/64) exhibited Pb levels compatible with sub-clinical poisoning (>6 μg/g dw), with 6.3% (4/64) above the threshold for severe/lethal poisoning (>30 μg/g dw). Nine individuals with Pb levels >6 μg/g dw also had AR residues, demonstrating exposure to multiple contaminants. Broad toxicological screening for other contaminants was positive for 18 of 126 individuals, with carbofuran and mevinphos exposure being the suspected cause of death of 17 birds. Our findings demonstrate lower but still substantial AR exposure of scavenging birds compared to predatory birds, and also illustrate the complexity of diagnosing AR toxicosis through forensic investigations.
Collapse
Affiliation(s)
- Meg-Anne Moriceau
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France; CNITV, VetAgro Sup, 1 avenue Bourgelat, 69 280 Marcy-l'Étoile, France
| | - Sébastien Lefebvre
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France
| | - Isabelle Fourel
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France
| | - Etienne Benoit
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France
| | | | - Pascal Orabi
- French Bird Protection League (LPO France), France
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, Beltsville, MD 20705, USA
| | - Virginie Lattard
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France.
| |
Collapse
|
18
|
Valverde I, Espín S, Gómez-Ramírez P, Sánchez-Virosta P, García-Fernández AJ, Berny P. Developing a European network of analytical laboratories and government institutions to prevent poisoning of raptors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:113. [PMID: 35050409 PMCID: PMC8776673 DOI: 10.1007/s10661-021-09719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 05/04/2023]
Abstract
Many cases of wildlife poisoning in Europe have been reported causing population declines, especially in raptors. Toxicovigilance and risk assessment studies are essential to reinforce the knowledge of the number of illegal poisoning cases and the substances involved in these crimes. Many researchers and projects in different institutions have suggested the creation of a network to improve communication and share information between European countries. This article presents the results of the Short-Term Scientific Mission titled "Developing a Network of Analytical Labs and Government Institutions" supported by the COST Action European Raptor Biomonitoring Facility (CA16224), which aims to initiate a network of veterinary forensic toxicology laboratories, in order to improve communication among laboratories to prevent wildlife poisoning, especially in raptors. For this purpose, a questionnaire was designed and sent by email to 119 laboratories in Europe. It contained 39 questions on different topics (e.g. laboratory activities, analytical information). A total of 29 responses were received. Most participant laboratories work on veterinary forensic toxicology research and external cases at the same time, which provides a robust overview of the actual situation in the field. Analytical techniques and data collection methods should be harmonised, and communication between laboratories is encouraged to create a more effective network. The present study established contact between laboratories as an initial step to create a European network and compiled basic data to identify strengths and weaknesses that will help harmonise methodologies across Europe and increase pan-European capacities.
Collapse
Affiliation(s)
- Irene Valverde
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain.
| | - Silvia Espín
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain.
| | - Pilar Gómez-Ramírez
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Pablo Sánchez-Virosta
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio J García-Fernández
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Philippe Berny
- College of Veterinary Medicine-Toxicology, Marcy L'Etoile, 1 av Bourgelat, 69280, Lyon, France
| |
Collapse
|
19
|
Esther A, Schenke D, Heim W. Noninvasively Collected Fecal Samples as Indicators of Multiple Pesticide Exposure in Wild Birds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:201-207. [PMID: 34818436 DOI: 10.1002/etc.5260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 05/15/2023]
Abstract
Pesticide use poses a potential hazard to wild birds that use agricultural farmland as their foraging habitat. Whereas most current pesticide studies have found residues in liver samples and single active substances, noninvasive sampling methods and data on a wide variety of agrochemicals are needed to determine pesticide exposure of living wild birds for postregistration monitoring. We collected feces during autumn migration of Eurasian skylarks (Alauda arvensis), a species that commonly forages in winter cereal crops. Birds were kept in paper bags until we measured their body condition, individually marked and released them. We analyzed the feces dropped in paper bags for the presence of 80 pesticides including rodenticides and degradation products. Nine active substances from fungicides and herbicides commonly used in grain and maize fields were detected individually, or in combination, in 25% of the samples. We found no significant differences in body condition between exposed and unexposed birds, but Eurasian skylarks without pesticide residues had a better body condtion score on average than birds with pesticide residues. Pesticide determination in noninvasively collected fecal samples allows a refined risk analysis, which takes pesticides used in the habitats of birds into account. It allows the search for the sources of pesticide contamination, but also enables research into potential deleterious effects on the fitness of farmland birds. Environ Toxicol Chem 2022;41:201-207. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexandra Esther
- Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Münster, Germany
| | - Detlef Schenke
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Berlin, Germany
| | - Wieland Heim
- Institute of Landscape Ecology, University of Münster, Münster, Germany
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Pay JM, Katzner TE, Hawkins CE, Barmuta LA, Brown WE, Wiersma JM, Koch AJ, Mooney NJ, Cameron EZ. Endangered Australian top predator is frequently exposed to anticoagulant rodenticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147673. [PMID: 34022576 DOI: 10.1016/j.scitotenv.2021.147673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Anticoagulant rodenticides (ARs) used to control mammalian pest populations cause secondary exposure of predatory species throughout much of the world. It is important to understand the drivers of non-target AR exposure patterns as context for assessing long-term effects and developing effective mitigation for these toxicants. In Australia, however, little is known about exposure and effects of ARs on predators. We detected AR residues in 74% of 50 opportunistically collected carcasses of the Tasmanian wedge-tailed eagle (Aquila audax fleayi), an endangered apex predator. In 22% of birds tested, or 31% of those exposed, liver concentrations of second generation ARs (SGARs) were >0.1 mg/kg ww. Eagles were exposed to flocoumafen, a toxicant only available from agricultural suppliers, at an exceptionally high rate (40% of birds tested). Liver SGAR concentrations were positively associated with the proportion of agricultural habitat and human population density in the area around where each eagle died. The high exposure rate in a species not known to regularly prey upon synanthropic rodents supports the hypothesis that apex predators are vulnerable to SGARs. Our results indicate that AR exposure constitutes a previously unrecognized threat to Tasmanian wedge-tailed eagles and highlight the importance of efforts to address non-target AR exposure in Australia.
Collapse
Affiliation(s)
- James M Pay
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Todd E Katzner
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - Clare E Hawkins
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Leon A Barmuta
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - William E Brown
- Department of Primary Industries, Parks, Water and Environment, Hobart, TAS, Australia
| | - Jason M Wiersma
- Forest Practices Authority, 30 Patrick St, Hobart, TAS, Australia
| | - Amelia J Koch
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; Forest Practices Authority, 30 Patrick St, Hobart, TAS, Australia
| | - Nick J Mooney
- Birdlife Australia Raptor Group, Birldlife Australia, Carlton, VIC, Australia
| | - Elissa Z Cameron
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; School of Biological Sciences, University of Canterbury, CHC, New Zealand
| |
Collapse
|
21
|
Niedringhaus KD, Nemeth NM, Gibbs S, Zimmerman J, Shender L, Slankard K, Fenton H, Charlie B, Dalton MF, Elsmo EJ, Poppenga R, Millsap B, Ruder MG. Anticoagulant rodenticide exposure and toxicosis in bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) in the United States. PLoS One 2021; 16:e0246134. [PMID: 33826627 PMCID: PMC8026043 DOI: 10.1371/journal.pone.0246134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Raptors, including eagles, are geographically widespread and sit atop the food chain, thereby serving an important role in maintaining ecosystem balance. After facing population declines associated with exposure to organochlorine insecticides such as dichlorodiphenyltrichloroethane (DDT), bald eagles (Haliaeetus leucocephalus) have recovered from the brink of extinction. However, both bald and golden eagles (Aquila chrysaetos) are exposed to a variety of other toxic compounds in the environment that could have population impacts. Few studies have focused on anticoagulant rodenticide (AR) exposure in eagles. Therefore, the purpose of this study was to determine the types of ARs that eagles are exposed to in the USA and better define the extent of toxicosis (i.e., fatal illness due to compound exposure). Diagnostic case records from bald and golden eagles submitted to the Southeastern Cooperative Wildlife Disease Study (University of Georgia) 2014 through 2018 were reviewed. Overall, 303 eagles were examined, and the livers from 116 bald eagles and 17 golden eagles were tested for ARs. The percentage of AR exposure (i.e., detectable levels but not associated with mortality) in eagles was high; ARs were detected in 109 (82%) eagles, including 96 (83%) bald eagles and 13 (77%) golden eagles. Anticoagulant rodenticide toxicosis was determined to be the cause of mortality in 12 (4%) of the 303 eagles examined, including 11 bald eagles and 1 golden eagle. Six different AR compounds were detected in these eagles, with brodifacoum and bromadiolone most frequently detected (81% and 25% of eagles tested, respectively). These results suggest that some ARs, most notably brodifacoum, are widespread in the environment and are commonly consumed by eagles. This highlights the need for research to understand the pathways of AR exposure in eagles, which may help inform policy and regulatory actions to mitigate AR exposure risk.
Collapse
Affiliation(s)
- Kevin D. Niedringhaus
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Samantha Gibbs
- United States Fish and Wildlife Service, National Wildlife Refuge System, Chiefland, FL, United States of America
| | - Jared Zimmerman
- Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States of America
| | - Lisa Shender
- Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States of America
| | - Kate Slankard
- Kentucky Department of Fish and Wildlife Resources, Frankfort, KY, United States of America
| | - Heather Fenton
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Bahnson Charlie
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Martha Frances Dalton
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Elizabeth J. Elsmo
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Robert Poppenga
- California Animal Health and Food Safety Laboratories, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Brian Millsap
- United States Fish and Wildlife Service, Division of Migratory Bird Management, Albuquerque, New MX, United States of America
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rattner BA, Harvey JJ. Challenges in the interpretation of anticoagulant rodenticide residues and toxicity in predatory and scavenging birds. PEST MANAGEMENT SCIENCE 2021; 77:604-610. [PMID: 33052019 DOI: 10.1002/ps.6137] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Anticoagulant rodenticides (ARs) are part of the near billion-dollar rodenticide industry. Numerous studies have documented the presence of ARs in nontarget wildlife, with evidence of repeated exposure to second-generation ARs. While birds are generally less sensitive to ARs than target rodent species, in some locations predatory and scavenging birds are exposed by consumption of such poisoned prey and, depending on dose and frequency of exposure, exhibit effects of intoxication that can result in death. Evidence of hemorrhage in conjunction with summed hepatic AR residues >0.1-0.2 mg kg-1 liver wet weight are often used as criteria to diagnose ARs as the likely cause of death. In this review focusing on birds of prey and scavengers, we discuss AR potency, coagulopathy, toxicokinetics and long-lasting effects of residues, and the role of nutrition and vitamin K status on toxicity, and identify some research needs. A more complete understanding of the factors affecting AR toxicity in nontarget wildlife could enable regulators and natural resource managers to better predict and even mitigate risk. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, MD, USA
| | - Joel J Harvey
- Columbia Environmental Research Center, US Geological Survey, Columbia, MO, USA
| |
Collapse
|