1
|
Ly TK, De Oliveira J, Chadili E, Le Menach K, Budzinski H, James A, Hinfray N, Beaudouin R. Imazalil and prochloraz toxicokinetics in fish probed by a physiologically based kinetic (PBK) model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52758-52773. [PMID: 39158658 DOI: 10.1007/s11356-024-34642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Azole fungicides are highly suspected endocrine disruptors (EDs) and are frequently detected in surface water. Among them, there are prochloraz (PCZ), a commonly used molecule for ED studies, and imazalil (IMZ), a highly suspected ED. Little is known about their toxicokinetic (TK) behavior in fish. Hence, research suggested that an improved risk assessment could be achieved by gaining insight into their TK behavior. The aim of this study is to understand and model the TK of both substances in different fish species, irrespective of the scheme of exposure. TK data from the literature were retrieved including different modes of exposure (per os and waterborne). In addition, two experiments on zebrafish exposed to either IMZ or PCZ were performed to address the lack of in vivo TK data. A physiologically based kinetic (PBK) model applied to IMZ and PCZ was developed, capable of modeling different exposure scenarios. The parameters of the PBK model were simultaneously calibrated on datasets reporting internal concentration in several organs in three fish species (original and literature datasets) by Bayesian methods (Monte Carlo Markov Chain). Model predictions were then compared to other experimental data (i.e., excluded from the calibration step) to assess the predictive performance of the model. The results strongly suggest that PCZ and IMZ are actively transported across the gills, resulting in a small fraction being effectively absorbed by the fish. The model's results also confirm that both molecules are extensively metabolized by the liver into mainly glucuronate conjugates. Overall, the model performances were satisfying, predicting internal concentrations in several key organs. On average, 90% of experimental data were predicted within a two-fold range. The PBK model allows the understanding of IMZ and PCZ kinetics profiles by accurately predicting internal concentrations in three different fish species regardless of the exposure scenario. This enables a proper understanding of the mechanism of action of EDs at the molecular initiating event (MIE) by predicting bioaccumulation in target organs, thus linking this MIE to a possible adverse outcome.
Collapse
Affiliation(s)
- Tu-Ky Ly
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil-en-Halatte, France
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte, France
- UMR-I 02 Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), INERIS-URCA-ULHN, Verneuil-en-Halatte, France
| | - Julie De Oliveira
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte, France
- Ecomundo, Issy-les-Moulineaux, France
| | - Edith Chadili
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte, France
| | | | | | - Alice James
- Toxicology and Ecotoxicology of Chemical Substances Expertise Unit, INERIS, Verneuil-en-Halatte, France
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil-en-Halatte, France.
- UMR-I 02 Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), INERIS-URCA-ULHN, Verneuil-en-Halatte, France.
| |
Collapse
|
2
|
Miller DH, LaLone CA, Villeneuve DL, Ankley GT. Projection of Interspecific Competition (PIC) Matrices: A Conceptual Framework for Inclusion in Population Risk Assessments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1406-1422. [PMID: 38651999 PMCID: PMC11296611 DOI: 10.1002/etc.5867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 04/25/2024]
Abstract
Accounting for intraspecific and interspecific competition when assessing the effects of chemical and nonchemical stressors is an important uncertainty in ecological risk assessments. We developed novel projection of interspecific competition (PIC) matrices that allow for analysis of population dynamics of two or more species exposed to a given stressor(s) that compete for shared resources within a landscape. We demonstrate the application of PIC matrices to investigate the population dynamics of two hypothetical fish species that compete with one another and have differences in net reproductive rate and intrinsic rate of population increase. Population status predictions were made under scenarios that included exposure to a chemical stressor that reduced fecundity for one or both species. The results of our simulations demonstrated that measures obtained from the life table and Leslie matrix of an organism, including net reproductive rate and intrinsic rate of increase, can result in erroneous conclusions of population status and viability in the absence of a consideration of resource limitation and interspecific competition. This modeling approach can be used in conjunction with field monitoring efforts and/or laboratory testing to link effects due to stressors to possible outcomes within an ecosystem. In addition, PIC matrices could be combined with adverse outcome pathways to allow for ecosystem projection based on taxonomic conservation of molecular targets of chemicals to predict the likelihood of relative cross-species susceptibility. Overall, the present study shows how PIC matrices can integrate effects across the life cycles of multiple species, provide a linkage between endpoints observed in individual and population-level responses, and project outcomes at the community level for multiple generations for multiple species that compete for limited resources. Environ Toxicol Chem 2024;43:1406-1422. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- David H. Miller
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| | - Carlie A. LaLone
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| | - Gerald T. Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| |
Collapse
|
3
|
Brooks BW, van den Berg S, Dreier DA, LaLone CA, Owen SF, Raimondo S, Zhang X. Towards Precision Ecotoxicology: Leveraging Evolutionary Conservation of Pharmaceutical and Personal Care Product Targets to Understand Adverse Outcomes Across Species and Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:526-536. [PMID: 37787405 PMCID: PMC11017229 DOI: 10.1002/etc.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Translation of environmental science to the practice aims to protect biodiversity and ecosystem services, and our future ability to do so relies on the development of a precision ecotoxicology approach wherein we leverage the genetics and informatics of species to better understand and manage the risks of global pollution. A little over a decade ago, a workshop focusing on the risks of pharmaceuticals and personal care products (PPCPs) in the environment identified a priority research question, "What can be learned about the evolutionary conservation of PPCP targets across species and life stages in the context of potential adverse outcomes and effects?" We review the activities in this area over the past decade, consider prospects of more recent developments, and identify future research needs to develop next-generation approaches for PPCPs and other global chemicals and waste challenges. Environ Toxicol Chem 2024;43:526-536. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | - David A Dreier
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Carlie A LaLone
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota
| | - Stewart F Owen
- Global Sustainability, Astra Zeneca, Macclesfield, Cheshire, UK
| | - Sandy Raimondo
- Gulf Ecosystem Measurement and Modeling Division, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Xiaowei Zhang
- School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Mitchell CA, Burden N, Bonnell M, Hecker M, Hutchinson TH, Jagla M, LaLone CA, Lagadic L, Lynn SG, Shore B, Song Y, Vliet SM, Wheeler JR, Embry MR. New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:757-777. [PMID: 36789969 PMCID: PMC10258674 DOI: 10.1002/etc.5584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 06/14/2023]
Abstract
Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Natalie Burden
- National Centre for the 3Rs (NC3Rs), London, United Kingdom
| | - Mark Bonnell
- Environment and Climate Change Canada, Ottawa, Canada
| | - Markus Hecker
- Toxicology Centre and School of the Environment & Sustainability, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Carlie A. LaLone
- Office of Research and Development, Great Lakes Toxicology & Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Laurent Lagadic
- Research and Development, Crop Science, Environmental Safety, Bayer, Monheim am Rhein, Germany
| | - Scott G. Lynn
- Office of Pesticide Programs, US Environmental Protection Agency, Washington, DC
| | - Bryon Shore
- Environment and Climate Change Canada, Ottawa, Canada
| | - You Song
- Norwegian Institute for Water Research, Oslo, Norway
| | - Sara M. Vliet
- Office of Research and Development, Scientific Computing and Data Curation Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Michelle R. Embry
- The Health and Environmental Sciences Institute, Washington, DC, USA
| |
Collapse
|
5
|
Villeneuve DL, Blackwell BR, Blanksma CA, Cavallin JE, Cheng WY, Conolly RB, Conrow K, Feifarek DJ, Heinis LJ, Jensen KM, Kahl MD, Milsk RY, Poole ST, Randolph EC, Saari TW, Watanabe KH, Ankley GT. Case Study in 21st-Century Ecotoxicology: Using In Vitro Aromatase Inhibition Data to Predict Reproductive Outcomes in Fish In Vivo. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:100-116. [PMID: 36282016 PMCID: PMC10782516 DOI: 10.1002/etc.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17β-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Brett R. Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | - Jenna E. Cavallin
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Wan-Yun Cheng
- US Environmental Protection Agency, Integrated Systems Toxicology Division, Research Triangle Park, NC, USA
| | - Rory B. Conolly
- US Environmental Protection Agency, Integrated Systems Toxicology Division, Research Triangle Park, NC, USA
| | - Kendra Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306-4908
| | - David J. Feifarek
- Student Services Contractor, US EPA Mid-Continent Ecology Division, Duluth, MN, USA
| | - Larry J. Heinis
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kathleen M. Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Michael D. Kahl
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Rebecca Y. Milsk
- ORISE Participant, US EPA Mid-Continent Ecology Division, Duluth, MN, USA
| | - Shane T. Poole
- Student Services Contractor, US EPA Mid-Continent Ecology Division, Duluth, MN, USA
| | - Eric C. Randolph
- ORISE Participant, US EPA Mid-Continent Ecology Division, Duluth, MN, USA
| | - Travis W. Saari
- Student Services Contractor, US EPA Mid-Continent Ecology Division, Duluth, MN, USA
| | - Karen H. Watanabe
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306-4908
| | - Gerald T. Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| |
Collapse
|
6
|
Exposure to the pesticides linuron, dimethomorph and imazalil alters steroid hormone profiles and gene expression in developing rat ovaries. Toxicol Lett 2022; 373:114-122. [PMID: 36410587 DOI: 10.1016/j.toxlet.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Inhibition of androgen signaling during critical stages of ovary development can disrupt folliculogenesis with potential consequences for reproductive function later in life. Many environmental chemicals can inhibit the androgen signaling pathway, which raises the question if developmental exposure to anti-androgenic chemicals can negatively impact female fertility. Here, we report on altered reproductive hormone profiles in prepubertal female rats following developmental exposure to three pesticides with anti-androgenic potential: linuron (25 and 50 mg/kg bw/d), dimethomorph (60 and 180 mg/kg bw/d) and imazalil (8 and 24 mg/kg bw/d). Dams were orally exposed from gestational day 7 (dimethomorph and imazalil) or 13 (linuron) until birth, then until end of dosing at early postnatal life. Linuron and dimethomorph induced dose-related reductions to plasma corticosterone levels, whereas imazalil mainly suppressed gonadotropin levels. In the ovaries, expression levels of target genes were affected by linuron and dimethomorph, suggesting impaired follicle growth. Based on our results, we propose that anti-androgenic chemicals can negatively impact female reproductive development. This highlights a need to integrate data from all levels of the hypothalamic-pituitary-gonadal axis, as well as the hypothalamic-pituitary-adrenal axis, when investigating the potential impact of endocrine disruptors on female reproductive development and function.
Collapse
|
7
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
8
|
Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Toxicol In Vitro 2022; 84:105451. [PMID: 35921976 DOI: 10.1016/j.tiv.2022.105451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
In response to the need to minimize the use of experimental animals, new approach methodologies (NAMs) using advanced technology have emerged in the 21st century. ToxCast/Tox21 aims to evaluate the adverse effects of chemicals quickly and efficiently using a high-throughput screening and to transform the paradigm of toxicity assessment into mechanism-based toxicity prediction. The ToxCast/Tox21 database, which contains extensive data from over 1400 assays with numerous biological targets and activity data for over 9000 chemicals, can be used for various purposes in the field of chemical prioritization and toxicity prediction. In this study, an overview of the database was explored to aid mechanism-based chemical prioritization and toxicity prediction. Implications for the utilization of the ToxCast/Tox21 database in chemical prioritization and toxicity prediction were derived. The research trends in ToxCast/Tox21 assay data were reviewed in the context of toxicity mechanism identification, chemical priority, environmental monitoring, assay development, and toxicity prediction. Finally, the potential applications and limitations of using ToxCast/Tox21 assay data in chemical risk assessment were discussed. The analysis of the toxicity mechanism-based assays of ToxCast/Tox21 will help in chemical prioritization and regulatory applications without the use of laboratory animals.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
9
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Jin Y, Qi G, Feng M, Yu D. The path via pathway-based approaches towards safety assessment: A concise review. Toxicol Appl Pharmacol 2022; 452:116195. [PMID: 35977605 DOI: 10.1016/j.taap.2022.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
For decades, chemical safety assessment has been proposed to shift from animal testing to in vitro testing systems in response to the call for the 3R. In Europe, the answer was to combine various information sources in integrated testing strategies (ITS); In the US, it was in 2007 when the landmark report by the National Research Council put forward a vision of in vitro toxicity testing paradigm. Since then, efforts to develop pathway-based assessment framework have been on the track. In 2010, systems biology brought out a conceptual framework called adverse outcome pathway (AOP), which took one step further from toxicity pathway to regulatory toxicology. Computational modeling, high-throughput screening, high-content omics have all been approached to facilitate this progress. This paper briefly reviewed the achievement of pathway-based chemical assessment since 2007, discussed potential pitfalls and challenges that mechanism-driven chemical assessment may undergo, and presented future perspectives of safety assessment that is to be based on computational system biology.
Collapse
Affiliation(s)
- Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Meiyao Feng
- Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China..
| |
Collapse
|
11
|
Marie B, Gallet A. Fish metabolome from sub-urban lakes of the Paris area (France) and potential influence of noxious metabolites produced by cyanobacteria. CHEMOSPHERE 2022; 296:134035. [PMID: 35183584 DOI: 10.1016/j.chemosphere.2022.134035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The recent democratization of high-throughput molecular phenotyping allows the rapid expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, transcriptomics, proteomics, and/or metabolomics). Indeed, these emerging omics tools, processed for ecologically relevant species, may present innovative perspectives for environmental assessments, that could provide early warning of eco(toxico)logical impairments. In a previous pilot study (Sotton et al., Chemosphere 2019), we explore by 1H NMR the bio-indicative potential of metabolomics analyses on the liver of 2 sentinel fish species (Perca fluviatilis and Lepomis gibbosus) collected in 8 water bodies of the peri-urban Paris' area (France). In the present study, we further investigate on the same samples the high potential of high-throughput UHPLC-HRMS/MS analyses. We show that the LC-MS metabolome investigation allows a clear separation of individuals according to the species, but also according to their respective sampling lakes. Interestingly, similar variations of Perca and Lepomis metabolomes occur locally indicating that site-specific environmental constraints drive the metabolome variations which seem to be influenced by the production of noxious molecules by cyanobacterial blooms in certain lakes. Thus, the development of such reliable environmental metabolomics approaches appears to constitute an innovative bio-indicative tool for the assessment of ecological stress, such as toxigenic cyanobacterial blooms, and aim at being further follow up.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon - CP 39, 75231, Paris Cedex 05, France.
| | - Alison Gallet
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon - CP 39, 75231, Paris Cedex 05, France
| |
Collapse
|