1
|
McDonough K, Hall MJ, Wilcox A, Menzies J, Brill J, Morris B, Connors K. Application of standardized methods to evaluate the environmental safety of polyvinyl alcohol disposed of down the drain. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1693-1705. [PMID: 38597774 DOI: 10.1002/ieam.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The purpose of this research was to use polyvinyl alcohol (PVOH) 18-88 as a case study to evaluate the environmental fate, ecotoxicity, and overall safety profile of water-soluble, nonmodified PVOH polymers used in detergent films. An OECD 303A Wastewater Treatment Plant Simulation Study was conducted with dissolved organic carbon as the analytical endpoint to evaluate the removal of PVOH 18-88 during wastewater treatment. During the plateau phase, high levels of removal due to biodegradation were observed (average 97.4 ± 7.1, range: 88%-116%). The OECD 303A study quantitatively verified that surface water is the dominant receiving compartment for PVOH 18-88 post wastewater treatment. Acute algae, invertebrate, and fish embryo (fish embryo acute toxicity test [FET]) ecotoxicity studies quanitified the 50% lethal/effect concentration (L/EC50) for PVOH 18-88. Due to the potential for the chorion to impact PVOH 18-88 bioavailability, both chorionated and dechorionated FET tests were conducted. L/EC50 > 1000 mg/L for FET (chorionated and dechorionated), invertebrate, and algae were observed. The Sustainable Futures (US) and REACH (EU) frameworks were used to evaluate environmental risk. For the US assessment, the Exposure and Fate Assessment Screening Tool was used to predict the single day lowest flow over a 10-year period (1Q10) surface water concentration and the seven consecutive days of lowest flow over a 10-year period (7Q10) surface water concentration and compared with acute and chronic concentrations of concern. For the EU assessment, the European Union System for the Evaluation of Substances was used to predict local and regional exposure concentrations and compared to the predicted no effect concentration. For both regulatory assessments, the exposure concentrations were >2 orders of magnitude below the effect concentrations. Integr Environ Assess Manag 2024;20:1693-1705. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Maura J Hall
- The Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Ashley Wilcox
- The Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Jennifer Menzies
- The Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Jessica Brill
- The Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Brian Morris
- The Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Kristin Connors
- The Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| |
Collapse
|
2
|
Rodrigues de Souza I, de Oliveira JBV, Sivek TW, de Albuquerque Vita N, Canavez ADPM, Schuck DC, Cestari MM, Lorencini M, Leme DM. Prediction of acute fish toxicity (AFT) and fish embryo toxicity (FET) tests by cytotoxicity assays using liver and embryo zebrafish cell lines (ZFL and ZEM2S). CHEMOSPHERE 2024; 346:140592. [PMID: 37918535 DOI: 10.1016/j.chemosphere.2023.140592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Fish cell-based assays represent potential alternative methods to vertebrates' use in ecotoxicology. In this study, we evaluated the cytotoxicity of thirteen chemicals, chosen from OECD guidelines 236 and 249, in two zebrafish cell lines (ZEM2S and ZFL). We aimed to investigate whether the IC50 values obtained by viability assays (alamar blue, MTT, CFDA-AM, and neutral red) can predict the LC50 values of Acute Fish Toxicity (AFT) test and Fish Embryo Toxicity (FET) test. There was no significant difference between the values obtained by the different viability assays. ZFL strongly correlated with AFT and FET tests (R2AFT = 0.73-0.90; R2FET48h = 0.79-0.90; R2FET96h = 0.76-0.87), while ZEM2S correlated better with the FET test (48h) (R2 = 0.70-0.86) and weakly with AFT and FET tests (96h) (R2AFT = 0.68-0.74 and R2FET96h = 0.62-0.64). The predicted LC50 values allowed the correct categorization of the chemicals in 76.9% (AFT test) - 90.9% (FET test) using ZFL and in 30.7% (AFT test) - 63.6% (FET test) using ZEM2S considering the US EPA criterion for classifying acute aquatic toxicity. ZFL is a promising cell line to be used in alternative methods to adult fish and fish embryos in ecotoxicity assessments, and the method performed in 96-well plates is advantageous in promoting high-throughput cytotoxicity assessment.
Collapse
Affiliation(s)
- Irisdoris Rodrigues de Souza
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Tainá Wilke Sivek
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | | | | | - Marta Margarete Cestari
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Márcio Lorencini
- Grupo Boticário, Safety of Product Department, São José dos Pinhais, Paraná, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Hansen AMB, Brill JL, Connors KA, Belanger SE, Baun A, Sanderson H. Understanding ecotoxicological drivers and responses of freshwater green algae, Raphidocelis subcapitata, to cationic polyquaternium polymers. ENVIRONMENTAL RESEARCH 2023; 231:116282. [PMID: 37257746 DOI: 10.1016/j.envres.2023.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Cationic polymer (CP) ecotoxicity is important to understand and investigate as they are widely used in industrial and consumer applications and have shown toxic effects in some aquatic organisms. CPs are identified as "polymers of concern" and are to be prioritized in upcoming regulatory reviews, (e.g., REACH). Algae have generally been found to be the most sensitive trophic level to CP. This study aimed at elucidating the magnitude of cationic polyquaternium toxicity towards algae and to understand key toxicological drivers. A suite of polyquaterniums with varying charge density (charged nitrogen moieties) and molecular weight were selected. Highly charged polyquaternium-6 and -16 were toxic towards the freshwater green microalgae Raphidocelis subcapitata with ErC50-values ranging between 0.12 and 0.41 mg/L. Lower charge density polyquaternium-10 materials had much lower toxicity with ErC50 > 200 mg/L, suggesting that charge density is an important driver of algal toxicity. These levels of toxicity were in line with historic CP data in literature. Algal agglomeration was observed in all tests but was not linked with impacts on algal growth rate. However, agglomeration can pose challenges in the technical conduct of tests and can impair interpretation of results. The toxicity mitigation potential of humic acid was also explored. The addition of 2-20 mg/L humic acid completely mitigated PQ6 and PQ16 toxicity at concentrations higher than clean water ErC50-values. CP toxicity mitigation has also been observed in fish and invertebrate tests, suggesting that CP mitigation should be accounted for in all trophic levels within an environmental safety framework.
Collapse
Affiliation(s)
| | - Jessica L Brill
- Environmental Stewardship and Sustainability, The Procter & Gamble Company, Mason, OH, USA
| | - Kristin A Connors
- Environmental Stewardship and Sustainability, The Procter & Gamble Company, Mason, OH, USA.
| | - Scott E Belanger
- Environmental Stewardship and Sustainability, The Procter & Gamble Company, Mason, OH, USA
| | - Anders Baun
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hans Sanderson
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
4
|
Wang D, Zheng Y, Deng Q, Liu X. Water-Soluble Synthetic Polymers: Their Environmental Emission Relevant Usage, Transport and Transformation, Persistence, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6387-6402. [PMID: 37052478 DOI: 10.1021/acs.est.2c09178] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Water-soluble synthetic polymers (WSPs) are distinct from insoluble plastic particles, which are both critical components of synthetic polymers. In the history of human-made macromolecules, WSPs have consistently portrayed a crucial role and served as the ingredients of a variety of products (e.g., flocculants, thickeners, solubilizers, surfactants, etc.) commonly used in human society. However, the environmental exposures and risks of WSPs with different functions remain poorly understood. This paper provides a critical review of the usage, environmental fate, environmental persistence, and biological consequences of multiple types of WSPs in commercial and industrial production. Investigations have identified a wide market of applications and potential environmental threats of various types of WSPs, but we still lack the suitable assessment tools. The effects of physicochemical properties and environmental factors on the environmental distribution as well as the transport and transformation of WSPs are further summarized. Evidence regarding the degradation of WSPs, including mechanical, thermal, hydrolytic, photoinduced, and biological degradation is summarized, and their environmental persistence is discussed. The toxicity data show that some WSPs can cause adverse effects on aquatic species and microbial communities through intrinsic toxicity and physical hazards. This review may serve as a guide for environmental risk assessment to help develop a sustainable path for WSP management.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P. R. China
| |
Collapse
|
5
|
Connors KA, Arndt D, Rawlings JM, Brun Hansen AM, Lam MW, Sanderson H, Belanger SE. Environmental hazard of cationic polymers relevant in personal and consumer care products: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:312-325. [PMID: 35649733 DOI: 10.1002/ieam.4642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Historically, polymers have been excluded from registration and evaluation under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program, the European chemical management program. Recently, interest has increased to include polymers. A tiered registration system has been envisioned and would begin with classes of polymers of greater interest based on certain properties. Cationic polymers are one such class. There is a pressing need to understand the quality and limitations of historical cationic polymer studies and to identify key sources of uncertainty in environmental hazard assessments so we can move toward scientifically robust analyses. To that end, we performed a critical review of the existing cationic polymer environmental effects literature to evaluate polymer characterization and test methodologies to understand how these parameters may affect test interpretation. The relationship between physicochemical parameters, acute and chronic toxicity, and relative trophic level sensitivity were explored. To advance our understanding of the environmental hazard and subsequent risk characterization of cationic polymers, there is a clear need for a consistent testing approach as many polymers are characterized as difficult-to-test substances. Experimental parameters such as dissolved organic carbon and solution renewal approaches can alter cationic polymer bioavailability and toxicity. It is recommended that OECD TG 23 "Aqueous-Phase Aquatic Toxicity Testing of Difficult Test Substances" testing considerations be applied when conducting environmental toxicity assays with cationic polymers. Integr Environ Assess Manag 2023;19:312-325. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Devrah Arndt
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | | - Monica W Lam
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | |
Collapse
|
6
|
Groh KJ, Arp HPH, MacLeod M, Wang Z. Assessing and managing environmental hazards of polymers: historical development, science advances and policy options. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:10-25. [PMID: 36511246 DOI: 10.1039/d2em00386d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymers are the main constituents of many materials and products in our modern world. However, their environmental safety is not assessed with the same level of detail as done for non-polymeric chemical substances. Moreover, the fundamentals of contemporary regulatory approaches for polymers were developed in the early 1990s, with little change occurring since then. Currently, the European Commission is working on a proposal to initiate registration of polymers under the European Union's (EU) chemicals legislation REACH. This provides a unique opportunity for regulation to catch up on recent scientific advances. To inform this process, we here critically appraise the suggested regulatory approaches to the environmental assessment and management of polymers against the latest scientific findings regarding their environmental fate, exposure, and effects, and identify the remaining critical knowledge gaps. While we use the EU draft proposal as an example, our findings are broadly applicable to other polymer legislations worldwide, due to the similarity of polymer assessment criteria being used. We emphasize four major aspects that require more attention in the regulation of polymers: (i) increased transparency about chemical identities, physical characteristics and grouping approaches for in-use polymers; (ii) improved understanding of the environmental fate of polymers and materials composed of polymers across size and density categories and exposure profiles; (iii) comprehensive assessment of the environmental hazards of polymers, considering the effects of degradation and weathering and taking into account the actual uptake, long-term toxicity, and geophysical impacts; and (iv) consideration of the production volume and use/release patterns in determining regulatory data and testing requirements. Transitioning toward a toxic-free and sustainable circular economy will likely require additional policy instruments that will reduce the overall complexity and diversity of in-use polymers and polymeric materials.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | - Hans Peter H Arp
- Department of Environmental Engineering, Norwegian Geotechnical Institute, NO-0806 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Matthew MacLeod
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland.
| |
Collapse
|