1
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220456. [PMID: 39463249 PMCID: PMC11513645 DOI: 10.1098/rstb.2022.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 03/18/2024] [Indexed: 10/29/2024] Open
Abstract
Exposure to early life adversity is linked to detrimental fitness outcomes across taxa. Owing to the challenges of collecting longitudinal data, direct evidence for long-term fitness effects of early life adversity from long-lived species remains relatively scarce. Here, we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of 10 forms of early life adversity for 6599 macaques. Individuals that experienced more early life adversity died earlier than those that experienced less adversity. Mortality risk was highest during early life, defined as birth to 4 years old, but heightened mortality risk was also present in macaques that survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands and dispersal patterns. Our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York10003, USA
| | - Ella Andonov
- High School of American Studies at Lehman College, Bronx, New York10468, USA
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
| | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
| | - Ahaylee Rahman
- Brooklyn Technical High School, Brooklyn, New York11217, USA
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, TorontoM5G 1M1, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University, Tempe85281, USA
| | - Lauren J.N. Brent
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, ExeterEX4 4QJ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York10003, USA
| |
Collapse
|
2
|
Brown ER, Gettler LT, Rosenbaum S. Effects of social environments on male primate HPG and HPA axis developmental programming. Dev Psychobiol 2024; 66:e22491. [PMID: 38698633 DOI: 10.1002/dev.22491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.
Collapse
Affiliation(s)
- Ella R Brown
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Petrullo L, Delaney D, Boutin S, Lane JE, McAdam AG, Dantzer B. A future food boom rescues the negative effects of early-life adversity on adult lifespan in a small mammal. Proc Biol Sci 2024; 291:20232681. [PMID: 38654643 PMCID: PMC11040256 DOI: 10.1098/rspb.2023.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance. We identified six adversities that reduced juvenile survival in the first year of life, though only one-birth date-had continued independent effects on adult lifespan. We then built a weighted early-life adversity (wELA) index integrating the sum of adversities and their effect sizes. Greater weighted early-life adversity predicted shorter adult lifespans in males and females, but a naturally occurring food boom in the second year of life ameliorated this effect. Experimental food supplementation did not replicate this pattern, despite increasing lifespan, indicating that the buffering effect of a future food boom may hinge on more than an increase in available calories. Our results suggest a non-deterministic role of early-life conditions for later-life phenotype, highlighting the importance of evaluating the consequences of early-life adversity in the context of an animal's entire life course.
Collapse
Affiliation(s)
- Lauren Petrullo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 857192, AZ, USA
| | - David Delaney
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 803023, CO, USA
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, 500114, IA, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R35, Alberta, Canada
| | - Jeffrey E. Lane
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5A26, Saskatchewan, Canada
| | - Andrew G. McAdam
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, 500114, IA, USA
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, 481097, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 481097, MI, USA
| |
Collapse
|
4
|
Rosenbaum S, Malani A, Lea AJ, Tung J, Alberts SC, Archie EA. Testing frameworks for early life effects: the developmental constraints and adaptive response hypotheses do not explain key fertility outcomes in wild female baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590627. [PMID: 38712305 PMCID: PMC11071398 DOI: 10.1101/2024.04.23.590627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In evolutionary ecology, two classes of explanations are frequently invoked to explain "early life effects" on adult outcomes. Developmental constraints (DC) explanations contend that costs of early adversity arise from limitations adversity places on optimal development. Adaptive response (AR) hypotheses propose that later life outcomes will be worse when early and adult environments are poorly "matched." Here, we use recently proposed mathematical definitions for these hypotheses and a quadratic-regression based approach to test the long-term consequences of variation in developmental environments on fertility in wild baboons. We evaluate whether low rainfall and/or dominance rank during development predict three female fertility measures in adulthood, and whether any observed relationships are consistent with DC and/or AR. Neither rainfall during development nor the difference between rainfall in development and adulthood predicted any fertility measures. Females who were low-ranking during development had an elevated risk of losing infants later in life, and greater change in rank between development and adulthood predicted greater risk of infant loss. However, both effects were statistically marginal and consistent with alternative explanations, including adult environmental quality effects. Consequently, our data do not provide compelling support for either of these common explanations for the evolution of early life effects.
Collapse
Affiliation(s)
| | - Anup Malani
- University of Chicago Law School & National Bureau of Economic Research
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary, Anthropology; Departments of Evolutionary Anthropology & Biology, Duke University
| | - Susan C Alberts
- Departments of Evolutionary Anthropology & Biology, Duke University
| | | |
Collapse
|
5
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Howland MA. Recalibration of the stress response system over adult development: Is there a perinatal recalibration period? Dev Psychopathol 2023; 35:2315-2337. [PMID: 37641984 PMCID: PMC10901284 DOI: 10.1017/s0954579423000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During early life-sensitive periods (i.e., fetal, infancy), the developing stress response system adaptively calibrates to match environmental conditions, whether harsh or supportive. Recent evidence suggests that puberty is another window when the stress system is open to recalibration if environmental conditions have shifted significantly. Whether additional periods of recalibration exist in adulthood remains to be established. The present paper draws parallels between childhood (re)calibration periods and the perinatal period to hypothesize that this phase may be an additional window of stress recalibration in adult life. Specifically, the perinatal period (defined here to include pregnancy, lactation, and early parenthood) is also a developmental switch point characterized by heightened neural plasticity and marked changes in stress system function. After discussing these similarities, lines of empirical evidence needed to substantiate the perinatal stress recalibration hypothesis are proposed, and existing research support is reviewed. Complexities and challenges related to delineating the boundaries of perinatal stress recalibration and empirically testing this hypothesis are discussed, as well as possibilities for future multidisciplinary research. In the theme of this special issue, perinatal stress recalibration may be a mechanism of multilevel, multisystem risk, and resilience, both intra-individually and intergenerationally, with implications for optimizing interventions.
Collapse
Affiliation(s)
- Mariann A Howland
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Patterson SK, Petersen RM, Brent LJN, Snyder-Mackler N, Lea AJ, Higham JP. Natural Animal Populations as Model Systems for Understanding Early Life Adversity Effects on Aging. Integr Comp Biol 2023; 63:681-692. [PMID: 37279895 PMCID: PMC10503476 DOI: 10.1093/icb/icad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Adverse experiences in early life are associated with aging-related disease risk and mortality across many species. In humans, confounding factors, as well as the difficulty of directly measuring experiences and outcomes from birth till death, make it challenging to identify how early life adversity impacts aging and health. These challenges can be mitigated, in part, through the study of non-human animals, which are exposed to parallel forms of adversity and can age similarly to humans. Furthermore, studying the links between early life adversity and aging in natural populations of non-human animals provides an excellent opportunity to better understand the social and ecological pressures that shaped the evolution of early life sensitivities. Here, we highlight ongoing and future research directions that we believe will most effectively contribute to our understanding of the evolution of early life sensitivities and their repercussions.
Collapse
Affiliation(s)
- Sam K Patterson
- Department of Anthropology, New York University, New York City, 10003, USA
| | - Rachel M Petersen
- Department of Biological Science, Vanderbilt University, Nashville, 37232, USA
| | - Lauren J N Brent
- Department of Psychology, University of Exeter, Exeter, EX4 4QG, United Kingdom
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, and School of Human Evolution and Social Change, Arizona State University, Tempe, 85281, USA
| | - Amanda J Lea
- Department of Biological Science, Vanderbilt University, Nashville, 37232, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, M5G 1M1, Canada
| | - James P Higham
- Department of Anthropology, New York University, New York City, 10003, USA
| |
Collapse
|
8
|
Berghaenel A, Stevens JMG, Hohmann G, Deschner T, Behringer V. Evidence for adolescent length growth spurts in bonobos and other primates highlights the importance of scaling laws. eLife 2023; 12:RP86635. [PMID: 37667589 PMCID: PMC10479963 DOI: 10.7554/elife.86635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Adolescent growth spurts (GSs) in body length seem to be absent in non-human primates and are considered a distinct human trait. However, this distinction between present and absent length-GSs may reflect a mathematical artefact that makes it arbitrary. We first outline how scaling issues and inappropriate comparisons between length (linear) and weight (volume) growth rates result in misleading interpretations like the absence of length-GSs in non-human primates despite pronounced weight-GSs, or temporal delays between length- and weight-GSs. We then apply a scale-corrected approach to a comprehensive dataset on 258 zoo-housed bonobos that includes weight and length growth as well as several physiological markers related to growth and adolescence. We found pronounced GSs in body weight and length in both sexes. Weight and length growth trajectories corresponded with each other and with patterns of testosterone and insulin-like growth factor-binding protein 3 levels, resembling adolescent GSs in humans. We further re-interpreted published data of non-human primates, which showed that aligned GSs in weight and length exist not only in bonobos. Altogether, our results emphasize the importance of considering scaling laws when interpreting growth curves in general, and further show that pronounced, human-like adolescent length-GSs exist in bonobos and probably also many other non-human primates.
Collapse
Affiliation(s)
- Andreas Berghaenel
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine ViennaViennaAustria
| | - Jeroen MG Stevens
- Behavioral Ecology and Ecophysiology, Department of Biology, University of AntwerpAntwerpBelgium
- Centre for Research and Conservation, Royal Zoological Society of AntwerpAntwerpBelgium
- SALTO Agro- and Biotechnology, Odisee University of Applied SciencesSint-NiklaasBelgium
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Max-Planck-Institute of Animal BehaviourRadolfzellGermany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Comparative BioCognition, Institute of Cognitive Science, University of OsnabrückOsnabrückGermany
| | - Verena Behringer
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
9
|
Tung J, Lange EC, Alberts SC, Archie EA. Social and early life determinants of survival from cradle to grave: A case study in wild baboons. Neurosci Biobehav Rev 2023; 152:105282. [PMID: 37321362 PMCID: PMC10529797 DOI: 10.1016/j.neubiorev.2023.105282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Field studies of natural mammal populations present powerful opportunities to investigate the determinants of health and aging using fine-grained observations of known individuals across the life course. Here, we synthesize five decades of findings from one such study: the wild baboons of the Amboseli ecosystem in Kenya. First, we discuss the profound associations between early life adversity, adult social conditions, and key aging outcomes in this population, especially survival. Second, we review potential mediators of the relationship between early life adversity and survival in our population. Notably, our tests of two leading candidate mediators-social isolation and glucocorticoid levels-fail to identify a single, strong mediator of early life effects on adult survival. Instead, early adversity, social isolation, and glucocorticoids are independently linked to adult lifespans, suggesting considerable scope for mitigating the negative consequences of early life adversity. Third, we review our work on the evolutionary rationale for early life effects on mortality, which currently argues against clear predictive adaptive responses. Finally, we end by highlighting major themes emerging from the study of sociality, development, and aging in the Amboseli baboons, as well as important open questions for future work.
Collapse
Affiliation(s)
- Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Elizabeth C Lange
- Department of Biology, Duke University, Durham NC, USA; Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham NC, USA; Duke Population Research Institute, Duke University, Durham, NC, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
10
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555589. [PMID: 37693423 PMCID: PMC10491187 DOI: 10.1101/2023.08.30.555589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Exposure to adversity during early life is linked to lasting detrimental effects on evolutionary fitness across many taxa. However, due to the challenges of collecting longitudinal data, especially in species where one sex disperses, direct evidence from long-lived species remains relatively scarce. Here we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) at Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of ten forms of early life adversity for 6,599 macaques (3,230 male, 3,369 female), with a smaller sample size (N=299) for one form of adversity (maternal social isolation) which required high-resolution behavioral data. We found that individuals who experienced more early life adversity died earlier than those who experienced less adversity. Mortality risk was highest during early life, defined as birth to four years old, suggesting acute survival effects of adversity, but heightened mortality risk was also present in macaques who survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands, female philopatry, and male dispersal. By leveraging data on thousands of macaques collected over decades, our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing, and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities in long-lived species.
Collapse
Affiliation(s)
| | - Ella Andonov
- High School of American Studies at Lehman College, New York City
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | | | | | | | | | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Science, Vanderbilt University
- Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University
| | | | | |
Collapse
|
11
|
Mousikou M, Kyriakou A, Skordis N. Stress and Growth in Children and Adolescents. Horm Res Paediatr 2023; 96:25-33. [PMID: 34814153 DOI: 10.1159/000521074] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022] Open
Abstract
The infantile, childhood, and adolescent periods of growth and development also represent times of increased vulnerability to stressors. Growth velocity in each period is dependent on the interplay of genetic, environmental, dietary, socioeconomic, developmental, behavioral, nutritional, metabolic, biochemical, and hormonal factors. A stressor may impact growth directly through modulation of the growth hormone axis or indirectly through other factors. The adaptive response to stressors culminates in behavioral, physiological, and biochemical responses which together support survival and conservation of energy. The immediate response involves activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. The time-limited stress response is at once antigrowth, antireproductive, and catabolic with no lasting adverse consequences. However, chronic activation of the stress system and hypercortisolism have consequential negative impacts on growth, thyroid function, reproduction-puberty, and metabolism. High cortisol suppresses growth hormone-insulin-like growth factor 1, hypothalamic-pituitary-gonadal, and thyroid axes and has been reported to be responsible for an increase in visceral adiposity, a decrease in lean mass, suppression of osteoblastic activity with risk of osteoporosis, and induction of insulin resistance. Early-life adversities, emotional or physical, have been associated with long-term negative physical and mental health outcomes. Existing models of chronic stress corroborate that early-life adversities can affect growth and have consequences in other aspects of well-being throughout the lifespan. Targeted interventions to reduce stress during infancy, childhood, and adolescence can have far-reaching benefits to long-term health as well as attaining adequate growth. In this review, we describe the neuroendocrinology of the stress response, the factors influencing growth, and the impact of chronic stress on growth during critical periods of infancy, childhood, and puberty with particular reference to growth, thyroid, and gonadal axis.
Collapse
Affiliation(s)
- Maria Mousikou
- Department of Paediatric Endocrinology, Makarios Children's Hospital, Nicosia, Cyprus
| | - Andreas Kyriakou
- Department of Paediatric Endocrinology, Makarios Children's Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus.,School of Medicine, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
12
|
Urlacher SS, Kim EY, Luan T, Young LJ, Adjetey B. Minimally invasive biomarkers in human and non-human primate evolutionary biology: Tools for understanding variation and adaptation. Am J Hum Biol 2022; 34:e23811. [PMID: 36205445 PMCID: PMC9787651 DOI: 10.1002/ajhb.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The use of minimally invasive biomarkers (MIBs - physiological biomarkers obtained from minimally invasive sample types) has expanded rapidly in science and medicine over the past several decades. The MIB approach is a methodological strength in the field of human and non-human primate evolutionary biology (HEB). Among humans and our closest relatives, MIBs provide unique opportunities to document phenotypic variation and to operationalize evolutionary hypotheses. AIMS This paper overviews the use of MIBs in HEB. Our objectives are to (1) highlight key research topics which successfully implement MIBs, (2) identify promising yet under-investigated areas of MIB application, and (3) discuss current challenges in MIB research, with suggestions for advancing the field. DISCUSSION AND CONCLUSIONS A range of MIBs are used to investigate focal topics in HEB, including energetics and life history variation/evolution, developmental plasticity, and social status and dominance relationships. Nonetheless, we identify gaps in existing MIB research on traits such as physical growth and gut function that are central to the field. Several challenges remain for HEB research using MIBs, including the need for additional biomarkers and methods of assessment, robust validations, and approaches that are standardized across labs and research groups. Importantly, researchers must provide better support for adaptation and fitness effects in hypothesis testing (e.g., by obtaining complementary measures of energy expenditure, demonstrating redundancy of function, and performing lifetime/longitudinal analyses). We point to continued progress in the use of MIBs in HEB to better understand the past, present, and future of humans and our closest primate relatives.
Collapse
Affiliation(s)
- Samuel S. Urlacher
- Department of AnthropologyBaylor UniversityWacoTexasUSA
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Child and Brain Development ProgramCIFARTorontoOntarioCanada
| | - Elizabeth Y. Kim
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Department of BiologyBaylor UniversityWacoTexasUSA
| | - Tiffany Luan
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Lauren J. Young
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Brian Adjetey
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| |
Collapse
|
13
|
Baniel A, Petrullo L, Mercer A, Reitsema L, Sams S, Beehner JC, Bergman TJ, Snyder-Mackler N, Lu A. Maternal effects on early-life gut microbiota maturation in a wild nonhuman primate. Curr Biol 2022; 32:4508-4520.e6. [PMID: 36099914 DOI: 10.1016/j.cub.2022.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Early-life microbial colonization is an important process shaping host physiology,1-3 immunity,4-6 and long-term health outcomes7-10 in humans. However, our understanding of this dynamic process remains poorly investigated in wild animals,11-13 where developmental mechanisms can be better understood within ecological and evolutionarily relevant contexts.11,12 Using one of the largest developmental datasets on a wild primate-the gelada (Theropithecus gelada)-we used 16S rRNA amplicon sequencing to characterize gut microbiota maturation during the first 3 years of life and assessed the role of maternal effects in shaping offspring microbiota assembly. In contrast to recent data on chimpanzees, postnatal microbial colonization in geladas was highly similar to humans:14 microbial alpha diversity increased rapidly following birth, followed by gradual changes in composition until weaning. Dietary changes associated with weaning (from milk- to plant-based diet) were the main drivers of shifts in taxonomic composition and microbial predicted functional pathways. Maternal effects were also an important factor influencing the offspring gut microbiota. During nursing (<12 months), offspring of experienced (multi-time) mothers exhibited faster functional microbial maturation, likely reflecting the general faster developmental pace of infants born to these mothers. Following weaning (>18 months), the composition of the juvenile microbiota tended to be more similar to the maternal microbiota than to the microbiota of other adult females, highlighting that maternal effects may persist even after nursing cessation.15,16 Together, our findings highlight the dynamic nature of early-life gut colonization and the role of maternal effects in shaping this trajectory in a wild primate.
Collapse
Affiliation(s)
- Alice Baniel
- Center for Evolution and Medicine, Arizona State University, E Tyler Mall, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, E Tyler Mall, Tempe, AZ 85287, USA.
| | - Lauren Petrullo
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA
| | - Laurie Reitsema
- Department of Anthropology, University of Georgia, Jackson St., Athens, GA 30602, USA
| | - Sierra Sams
- Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA; Department of Anthropology, University of Michigan, S University Ave., Ann Arbor, MI 48109, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, N University Ave., Ann Arbor, MI 48109, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, E Tyler Mall, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, E Tyler Mall, Tempe, AZ 85287, USA; Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA; School for Human Evolution and Social Change, Arizona State University, Cady Mall, Tempe, AZ 85287, USA.
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Circle Rd., Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Feder JA, Beehner JC, Baniel A, Bergman TJ, Snyder-Mackler N, Lu A. Social drivers of maturation age in female geladas. Behav Ecol 2022; 33:654-664. [PMID: 35600996 PMCID: PMC9113362 DOI: 10.1093/beheco/arac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Female reproductive maturation is a critical life-history milestone, initiating an individual's reproductive career. Studies in social mammals have often focused on how variables related to nutrition influence maturation age in females. However, parallel investigations have identified conspicuous male-mediated effects in which female maturation is sensitive to the presence and relatedness of males. Here, we evaluated whether the more "classic" socioecological variables (i.e., maternal rank, group size) predict maturation age in wild geladas-a primate species with known male-mediated effects on maturation and a grassy diet that is not expected to generate intense female competition. Females delayed maturation in the presence of their fathers and quickly matured when unrelated, dominant males arrived. Controlling for these male effects, however, higher-ranking daughters matured at earlier ages than lower-ranking daughters, suggesting an effect of within-group contest competition. However, contrary to predictions related to within-group scramble competition, females matured earliest in larger groups. We attribute this result to either: 1) a shift to "faster" development in response to the high infant mortality risk posed by larger groups; or 2) accelerated maturation triggered by brief, unobserved male visits. While earlier ages at maturation were indeed associated with earlier ages at first birth, these benefits were occasionally offset by male takeovers, which can delay successful reproduction via spontaneous abortion. In sum, rank-related effects on reproduction can still occur even when socioecological theory would predict otherwise, and males (and the risks they pose) may prompt female maturation even outside of successful takeovers.
Collapse
Affiliation(s)
- Jacob A Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Circle Rd, Stony Brook, NY, USA
| | - Jacinta C Beehner
- Department of Anthropology, University of Michigan, S. University Ave, Ann Arbor, MI, USA
- Department of Psychology, University of Michigan, Church St, Ann Arbor, MI, USA
| | - Alice Baniel
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Church St, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, N. University Ave, Ann Arbor, MI, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, S. Cady Mall, Tempe, AZ, USA
| | - Amy Lu
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Circle Rd, Stony Brook, NY, USA
- Department of Anthropology, Stony Brook University, Circle Rd, Stony Brook, NY, USA
| |
Collapse
|
15
|
Early life adversity, inflammation, and immune function: An initial test of adaptive response models of immunological programming. Dev Psychopathol 2022; 34:539-555. [PMID: 35152928 DOI: 10.1017/s095457942100170x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Much research indicates that exposure to early life adversity (ELA) predicts chronic inflammatory activity, increasing one's risk of developing diseases of aging later in life. Despite its costs, researchers have proposed that chronic inflammation may be favored in this context because it would help promote immunological vigilance in environments with an elevated risk of infection and injury. Although intuitively appealing, the assumption that exaggerated inflammatory activity predicts favorable immunological outcomes among those exposed to ELA has not been tested. Here, we seek to address this gap, examining the links between exposure to ELA, inflammation, and immune function. Consistent with others' work, results revealed that those from low socioeconomic status (SES) childhood environments exhibited exaggerated unstimulated inflammatory activity relative to what was observed among those from higher SES childhood environments. Further, results revealed that - although levels of inflammation predicted the magnitude of immunological responses in those from higher SES backgrounds - for those who grew up in low SES environments, higher levels of inflammation were unrelated to the magnitude of immunological responses. Results suggest that exaggerated inflammatory activity in the context of ELA may not predict improved ability to manage acute immunological threats.
Collapse
|
16
|
Patterson SK, Strum SC, Silk JB. Early life adversity has long-term effects on sociality and interaction style in female baboons. Proc Biol Sci 2022; 289:20212244. [PMID: 35105243 PMCID: PMC8808103 DOI: 10.1098/rspb.2021.2244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Social bonds enhance fitness in many group-living animals, generating interest in the processes that create individual variation in sociality. Previous work on female baboons shows that early life adversity and temperament both influence social connectedness in adulthood. Early life adversity might shape sociality by reducing ability to invest in social relationships or through effects on attractiveness as a social partner. We examine how females' early life adversity predicts sociality and temperament in wild olive baboons, and evaluate whether temperament mediates the relationship between early life adversity and sociality. We use behavioural data on 31 females to quantify sociality. We measure interaction style as the tendency to produce grunts (signals of benign intent) in contexts in which the vocalization does not produce immediate benefits to the actor. Early life adversity was negatively correlated with overall sociality, but was a stronger predictor of social behaviours received than behaviours initiated. Females who experienced less early life adversity had more benign interaction styles and benign interaction styles were associated with receiving more social behaviours. Interaction style may partially mediate the association between early life adversity and sociality. These analyses add to our growing understanding of the processes connecting early life experiences to adult sociality.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York, NY, USA
| | - Shirley C. Strum
- Department of Anthropology, University of California, San Diego, CA, USA,Uaso Ngiro Baboon Project, Nairobi, Kenya
| | - Joan B. Silk
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA,Institute for Human Origins, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
17
|
Luevano L, Sutherland C, Gonzalez SJ, Hernández‐Pacheco R. Rhesus macaques compensate for reproductive delay following ecological adversity early in life. Ecol Evol 2022; 12:e8456. [PMID: 35136546 PMCID: PMC8809442 DOI: 10.1002/ece3.8456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022] Open
Abstract
Adversity early in life can shape the reproductive potential of individuals through negative effects on health and life span. However, long-lived populations with multiple reproductive events may present alternative life history strategies to optimize reproductive schedules and compensate for shorter life spans. Here, we quantify the effects of major hurricanes and density dependence as sources of early-life ecological adversity on Cayo Santiago rhesus macaque female reproduction and decompose their effects onto the mean age-specific fertility, reproductive pace, and lifetime reproductive success (LRS). Females experiencing major hurricanes exhibit a delayed reproductive debut but maintain the pace of reproduction past debut and show a higher mean fertility during prime reproductive ages, relative to unaffected females. Increasing density at birth is associated to a decrease in mean fertility and reproductive pace, but such association is absent at intermediate densities. When combined, our study reveals that hurricanes early in life predict a delay-overshoot pattern in mean age-specific fertility that supports the maintenance of LRS. In contrast to predictive adaptive response models of accelerated reproduction, this long-lived population presents a novel reproductive strategy where females who experience major natural disasters early in life ultimately overcome their initial reproductive penalty with no major negative fitness outcomes. Density presents a more complex relation with reproduction that suggests females experiencing a population regulated at intermediate densities early in life will escape density dependence and show optimized reproductive schedules. Our results support hypotheses about life history trade-offs in which adversity-affected females ensure their future reproductive potential by allocating more energy to growth or maintenance processes at younger adult ages.
Collapse
Affiliation(s)
- Logan Luevano
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCaliforniaUSA
| | - Chris Sutherland
- The Center for Research into Ecological and Environmental ModelingUniversity of St. AndrewsSt. AndrewsUK
| | - Stephanie J. Gonzalez
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCaliforniaUSA
| | - Raisa Hernández‐Pacheco
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCaliforniaUSA
| |
Collapse
|
18
|
Effects of early life adversity on maternal effort and glucocorticoids in wild olive baboons. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03056-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
|
20
|
Hagen R, Vitali V, Catania F. Cross-Generational Effects and Non-random Developmental Response to Temperature Variation in Paramecium. Front Cell Dev Biol 2020; 8:584219. [PMID: 33195230 PMCID: PMC7606892 DOI: 10.3389/fcell.2020.584219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Unicellular organisms such as ciliates are largely neglected in research on adaptive developmental plasticity, although their nuclear dualism offers ideal circumstances to study development outside an embryonic context. Here, we gain first insights into the ability of the ciliate Paramecium to develop potentially adaptive phenotypic changes in response to early-life adversity. We show that, upon exposure to unconventional culture temperatures, germ line-to-soma differentiation gives rise to coordinated molecular changes that may help attune the number of functional gene copies to the new external conditions. The non-random somatic heterogeneity that developmental plasticity generates is largely epigenetically controlled, shaped by the parental experience, and may prompt a stress response. These findings establish Paramecium as a new model system to study the molecular basis and evolutionary significance of developmental plasticity. In echoing previous indications in mammals, they call for an incorporation of intergenerational effects in adaptation studies.
Collapse
Affiliation(s)
- Rebecca Hagen
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Valerio Vitali
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Francesco Catania
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Ham AC, Temple DH, Klaus HD, Hunt DR. Evaluating life history trade-offs through the presence of linear enamel hypoplasia at Pueblo Bonito and Hawikku: A biocultural study of early life stress and survival in the Ancestral Pueblo Southwest. Am J Hum Biol 2020; 33:e23506. [PMID: 32924230 DOI: 10.1002/ajhb.23506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Due to the indelible nature of enamel, bioarchaeologists use linear enamel hypoplasia (LEH) to detect early investments in surviving stress and have identified an association between LEH presence and constraints in growth and maintenance as well as an increased susceptibility to future stress events. This study evaluates heterogenous frailty and susceptibility to death in relation to episodes of early life stress, as reflected by LEH presence, in the Ancestral Pueblo Southwest. This study hypothesizes that LEH presence will be associated with decreased survivorship and an increased likelihood of mortality in both samples. MATERIALS AND METHODS This study uses two samples, one from Pueblo Bonito (A.D. 800-1200; n = 28) and the second from Hawikku (A.D. 1300-1680; n = 103). Kaplan-Meier survival analysis with a log-rank test was used to evaluate the effect of LEH presence on survivorship for the two samples. RESULTS Survival analysis reveals statistically significant differences in mortality risk between individuals with and without LEH for the Hawikku sample, but no significant differences for the Pueblo Bonito sample. CONCLUSION The results demonstrate differences in the response to early life stress at the Hawikku and Pueblo Bonito sites, likely reflecting context. The Pueblo Bonito sample represents a high-status group, and survival following LEH may be the result of cultural buffering. Hawikku dates to a period associated with increased levels of disease and malnutrition as well as Spanish colonization. This environment may have exacerbated mortality risk for individuals in the region who survived early life stress and signifies the consequences of European colonialism in the New World.
Collapse
Affiliation(s)
- Allison C Ham
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Daniel H Temple
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Haagen D Klaus
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - David R Hunt
- Physical Anthropology Division, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Brückmann R, Tuchscherer M, Tuchscherer A, Gimsa U, Kanitz E. Early-Life Maternal Deprivation Predicts Stronger Sickness Behaviour and Reduced Immune Responses to Acute Endotoxaemia in a Pig Model. Int J Mol Sci 2020; 21:ijms21155212. [PMID: 32717860 PMCID: PMC7432595 DOI: 10.3390/ijms21155212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Early-life adversity may have programming effects on neuroendocrine and immune adaptation mechanisms in humans and socially living animals. Using a pig model, we investigated the effect of daily 2-h maternal and littermate deprivation from postnatal days 2–15, either alone (DA) or in a group of littermates (DG) on the neuroendocrine, immunological and behavioural responses of piglets challenged with the bacterial endotoxin lipopolysaccharide (LPS) on day 42. LPS increased plasma concentrations of cortisol, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) and induced typical signs of sickness in all piglets. DA+DG piglets showed stronger signs of sickness compared to control (C) piglets. Plasma TNF-α concentrations were significantly lower in DA+DG males. In addition, the TNF-α/IL-10 ratio was significantly lower in DA than in DG and C males. Gene expression analyses showed lower hypothalamic TNF-α mRNA expression and diminished mRNA expression of the mineralocorticoid receptor (MR) and IL-10 in the amygdala of DA+DG piglets in response to LPS. Interestingly, males showed a higher MR- and a lower IL-10 mRNA expression in the amygdala than females. The present data suggest that repeated maternal deprivation during early life may alter neuroendocrine and immune responses to acute endotoxaemia in a sex-specific manner.
Collapse
Affiliation(s)
- Roberto Brückmann
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Ulrike Gimsa
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
- Correspondence: (U.G.); (E.K.); Tel.: +49-38208-68-803 (U.G.); +49-38208-68-807 (E.K.)
| | - Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
- Correspondence: (U.G.); (E.K.); Tel.: +49-38208-68-803 (U.G.); +49-38208-68-807 (E.K.)
| |
Collapse
|
23
|
Hoffman KW, Lee JJ, Corcoran CM, Kimhy D, Kranz TM, Malaspina D. Considering the Microbiome in Stress-Related and Neurodevelopmental Trajectories to Schizophrenia. Front Psychiatry 2020; 11:629. [PMID: 32719625 PMCID: PMC7350783 DOI: 10.3389/fpsyt.2020.00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Early life adversity and prenatal stress are consistently associated with an increased risk for schizophrenia, although the exact pathogenic mechanisms linking the exposures with the disease remain elusive. Our previous view of the HPA stress axis as an elegant but simple negative feedback loop, orchestrating adaptation to stressors among the hypothalamus, pituitary, and adrenal glands, needs to be updated. Research in the last two decades shows that important bidirectional signaling between the HPA axis and intestinal mucosa modulates brain function and neurochemistry, including effects on glucocorticoid hormones and brain-derived neurotrophic factor (BDNF). The intestinal microbiome in earliest life, which is seeded by the vaginal microbiome during delivery, programs the development of the HPA axis in a critical developmental window, determining stress sensitivity and HPA function as well as immune system development. The crosstalk between the HPA and the Microbiome Gut Brain Axis (MGBA) is particularly high in the hippocampus, the most consistently disrupted neural region in persons with schizophrenia. Animal models suggest that the MGBA remains influential on behavior and physiology across developmental stages, including the perinatal window, early childhood, adolescence, and young adulthood. Understanding the role of the microbiome on critical risk related stressors may enhance or transform of understanding of the origins of schizophrenia and offer new approaches to increase resilience against stress effects for preventing and treating schizophrenia.
Collapse
Affiliation(s)
- Kevin W. Hoffman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jakleen J. Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheryl M. Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Centers (MIRECC), New York, NY, United States
| | - David Kimhy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Centers (MIRECC), New York, NY, United States
| | - Thorsten M. Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Strauss ED, Shizuka D, Holekamp KE. Juvenile rank acquisition is associated with fitness independent of adult rank. Proc Biol Sci 2020; 287:20192969. [PMID: 32126950 DOI: 10.1098/rspb.2019.2969] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Social rank is a significant determinant of fitness in a variety of species. The importance of social rank suggests that the process by which juveniles come to establish their position in the social hierarchy is a critical component of development. Here, we use the highly predictable process of rank acquisition in spotted hyenas to study the consequences of variation in rank acquisition in early life. In spotted hyenas, rank is 'inherited' through a learning process called 'maternal rank inheritance.' This pattern is very consistent: approximately 80% of juveniles acquire the exact rank expected under the rules of maternal rank inheritance. The predictable nature of rank acquisition in these societies allows the process of rank acquisition to be studied independently from the ultimate rank that each juvenile attains. In this study, we use Elo-deviance scores, a novel application of the Elo-rating method, to calculate each juvenile's deviation from the expected pattern of maternal rank inheritance during development. Despite variability in rank acquisition among juveniles, most of these juveniles come to attain the exact rank expected of them according to the rules of maternal rank inheritance. Nevertheless, we find that transient variation in rank acquisition in early life is associated with long-term fitness consequences for these individuals: juveniles 'underperforming' their expected ranks show reduced survival and lower lifetime reproductive success than better-performing peers, and this relationship is independent of both maternal rank and rank achieved in adulthood. We also find that multiple sources of early life adversity have cumulative, but not compounding, effects on fitness. Future work is needed to determine if variation in rank acquisition directly affects fitness, or if some other variable, such as maternal investment or juvenile condition, causes variation in both of these outcomes.
Collapse
Affiliation(s)
- Eli D Strauss
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| |
Collapse
|