1
|
Marshall H, de la Filia AG, Cavalieri R, Mallon EB, Clark JM, Ross L. Lack of paternal silencing and ecotype-specific expression in head and body lice hybrids. Evol Lett 2024; 8:455-465. [PMID: 38818422 PMCID: PMC11134467 DOI: 10.1093/evlett/qrae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 06/01/2024] Open
Abstract
Paternal genome elimination (PGE) is a non-Mendelian inheritance system, described in numerous arthropod species, in which males develop from fertilized eggs, but their paternally inherited chromosomes are eliminated before or during spermatogenesis. Therefore, PGE males only transmit their maternally inherited set of chromosomes to their offspring. In addition to the elimination of paternal chromosomes, diverse PGE species have also repeatedly evolved the transcriptional silencing of the paternal genome, making males effectively haploid. However, it is unclear if this paternal chromosome silencing is mechanistically linked to the chromosome elimination or has evolved at a later stage, and if so, what drives the haploidization of males under PGE. In order to understand these questions, here we study the human louse, Pediculus humanus, which represents an ideal model system, as it appears to be the only instance of PGE where males eliminate, but not silence their paternal chromosomes, although the latter remains to be shown conclusively. In this study, we analyzed parent-of-origin allele-specific expression patterns in male offspring of crosses between head and body lice ecotypes. We show that hybrid adult males of P. humanus display biparental gene expression, which constitutes the first case of a species with PGE in which genetic activity of paternal chromosomes in the soma is not affected by embryonic silencing or (partial or complete) elimination. We did however also identify a small number of maternally biased genes (potentially imprinted genes), which may be involved in the elimination of paternal chromosomes during spermatogenesis. Finally, we have identified genes that show ecotype-specific expression bias. Given the low genetic diversity between ecotypes, this is suggestive for a role of epigenetic processes in ecotype differences.
Collapse
Affiliation(s)
- Hollie Marshall
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Cavalieri
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Eamonn B Mallon
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - John M Clark
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
da Silva J. The kin selection theory of genomic imprinting and modes of reproduction in the eusocial Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:677-695. [PMID: 36457233 DOI: 10.1111/brv.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Genomic imprinting is known from flowering plants and mammals but has not been confirmed for the Hymenoptera even though the eusocial Hymenoptera are prime candidates for this peculiar form of gene expression. Here, the kin selection theory of genomic imprinting is reviewed and applied to the eusocial Hymenoptera. The evidence for imprinting in eusocial Hymenoptera with the typical mode of reproduction, involving the sexual production of diploid female offspring, which develop into workers or gynes, and the arrhenotokous parthenogenesis of haploid males, is also reviewed briefly. However, the focus of this review is how atypical modes of reproduction, involving thelytokous parthenogenesis, hybridisation and androgenesis, may also select for imprinting. In particular, naturally occurring hybridisation in several genera of ants may provide useful tests of the role of kin selection in the evolution of imprinting. Hybridisation is expected to disrupt the coadaptation of antagonistically imprinted loci, and thus affect the phenotypes of hybrids. Some of the limited data available on hybrid worker reproduction and on colony sex ratios support predictions about patterns of imprinting derived from kin selection theory.
Collapse
Affiliation(s)
- Jack da Silva
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Shi Y, Nachman RJ, Gui SH, Piot N, Kaczmarek K, Zabrocki J, Dow JAT, Davies SA, Smagghe G. Efficacy and biosafety assessment of neuropeptide CAPA analogues against the peach-potato aphid (Myzus persicae). INSECT SCIENCE 2022; 29:521-530. [PMID: 34263534 DOI: 10.1111/1744-7917.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Insect CAPA neuropeptidesare considered to affect water and ion balance by mediating the physiological metabolism activities of the Malpighian tubules. In previous studies, the CAPA-PK analogue 1895 (2Abf-Suc-FGPRLamide) was reported to decrease aphid fitness when administered through microinjection or via topical application. However, a further statistically significant decrease in the fitness of aphids and an increased mortality could not be established with pairwise combinations of 1895 with other CAPA analogue. In this study, we assessed the topical application of new combinations of 1895 with five CAPA-PVK analogues on the fitness of aphids. We found that 1895 and CAPA-PVK analogue 2315 (ASG-[β3 L]-VAFPRVamide) was statistically the most effective combination to control the peach potato aphid Myzus persicae nymphs via topical application, leading to 72% mortality. Additionally, the combination (1895+2315) was evaluated against a selection of beneficial insects, that is, a pollinator (Bombus terrestris) and three natural enemies (Chrysoperla carnea, Nasonia vitripennis, and Adalia bipunctata). We found no significant influence on food intake, weight increase, and survival for the pollinator and the three representative natural enemies. These results could facilitate to further establish and generate CAPA analogues as alternatives to broad spectrum and less friendly insecticides.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ronald J Nachman
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
| | - Shun-Hua Gui
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Krzysztof Kaczmarek
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Janusz Zabrocki
- U.S. Department of Agriculture, Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, College Station, Austin, Texas, USA
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, 90-924, Poland
| | - Julian A T Dow
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Shireen-A Davies
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Hitchcock TJ, Gardner A, Ross L. Sexual antagonism in haplodiploids. Evolution 2021; 76:292-309. [PMID: 34773705 DOI: 10.1111/evo.14398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Females and males may face different selection pressures, such that alleles conferring a benefit in one sex may be deleterious in the other. Such sexual antagonism has received a great deal of theoretical and empirical attention, almost all of which has focused on diploids. However, a sizeable minority of animals display an alternative haplodiploid mode of inheritance, encompassing both arrhenotoky, whereby males develop from unfertilized eggs, and paternal genome elimination (PGE), whereby males receive but do not transmit a paternal genome. Alongside unusual genetics, haplodiploids often exhibit social ecologies that modulate the relative value of females and males. Here we develop a series of evolutionary-genetic models of sexual antagonism for haplodiploids, incorporating details of their molecular biology and social ecology. We find that: 1) PGE promotes female-beneficial alleles more than arrhenotoky, and to an extent determined by the timing of elimination - and degree of silencing of - the paternal genome; 2) sib-mating relatively promotes female-beneficial alleles, as do other forms of inbreeding, including limited male-dispersal, oedipal-mating, and the pseudo-hermaphroditism of Icerya purchasi; 3) resource competition between related females inhibits the invasion of female-beneficial alleles; and 4) sexual antagonism foments conflicts between parents and offspring, endosymbionts and hosts, and maternal-origin and paternal-origin genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, UK
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Olney KC, Gibson JD, Natri HM, Underwood A, Gadau J, Wilson MA. Lack of parent-of-origin effects in Nasonia jewel wasp: A replication and extension study. PLoS One 2021; 16:e0252457. [PMID: 34111141 PMCID: PMC8191985 DOI: 10.1371/journal.pone.0252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022] Open
Abstract
In diploid cells, the paternal and maternal alleles are, on average, equally expressed. There are exceptions from this: a small number of genes express the maternal or paternal allele copy exclusively. This phenomenon, known as genomic imprinting, is common among eutherian mammals and some plant species; however, genomic imprinting in species with haplodiploid sex determination is not well characterized. Previous work reported no parent-of-origin effects in the hybrids of closely related haplodiploid Nasonia vitripennis and Nasonia giraulti jewel wasps, suggesting a lack of epigenetic reprogramming during embryogenesis in these species. Here, we replicate the gene expression dataset and observations using different individuals and sequencing technology, as well as reproduce these findings using the previously published RNA sequence data following our data analysis strategy. The major difference from the previous dataset is that they used an introgression strain as one of the parents and we found several loci that resisted introgression in that strain. Our results from both datasets demonstrate a species-of-origin effect, rather than a parent-of-origin effect. We present a reproducible workflow that others may use for replicating the results. Overall, we reproduced the original report of no parent-of-origin effects in the haplodiploid Nasonia using the original data with our new processing and analysis pipeline and replicated these results with our newly generated data.
Collapse
Affiliation(s)
- Kimberly C. Olney
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Joshua D. Gibson
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Heini M. Natri
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Avery Underwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Juergen Gadau
- Institut fuer Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ashe A, Colot V, Oldroyd BP. How does epigenetics influence the course of evolution? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200111. [PMID: 33866814 PMCID: PMC8059608 DOI: 10.1098/rstb.2020.0111] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetics is the study of changes in gene activity that can be transmitted through cell divisions but cannot be explained by changes in the DNA sequence. Epigenetic mechanisms are central to gene regulation, phenotypic plasticity, development and the preservation of genome integrity. Epigenetic mechanisms are often held to make a minor contribution to evolutionary change because epigenetic states are typically erased and reset at every generation, and are therefore, not heritable. Nonetheless, there is growing appreciation that epigenetic variation makes direct and indirect contributions to evolutionary processes. First, some epigenetic states are transmitted intergenerationally and affect the phenotype of offspring. Moreover, bona fide heritable 'epialleles' exist and are quite common in plants. Such epialleles could, therefore, be subject to natural selection in the same way as conventional DNA sequence-based alleles. Second, epigenetic variation enhances phenotypic plasticity and phenotypic variance and thus can modulate the effect of natural selection on sequence-based genetic variation. Third, given that phenotypic plasticity is central to the adaptability of organisms, epigenetic mechanisms that generate plasticity and acclimation are important to consider in evolutionary theory. Fourth, some genes are under selection to be 'imprinted' identifying the sex of the parent from which they were derived, leading to parent-of-origin-dependent gene expression and effects. These effects can generate hybrid disfunction and contribute to speciation. Finally, epigenetic processes, particularly DNA methylation, contribute directly to DNA sequence evolution, because they act as mutagens on the one hand and modulate genome stability on the other by keeping transposable elements in check. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | | |
Collapse
|
8
|
de la Filia AG, Mongue AJ, Dorrens J, Lemon H, Laetsch DR, Ross L. Males That Silence Their Father's Genes: Genomic Imprinting of a Complete Haploid Genome. Mol Biol Evol 2021; 38:2566-2581. [PMID: 33706381 PMCID: PMC8136510 DOI: 10.1093/molbev/msab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Mongue
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Dorrens
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Lemon
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R Laetsch
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Oldroyd BP, Yagound B. Parent-of-origin effects, allele-specific expression, genomic imprinting and paternal manipulation in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200425. [PMID: 33866807 DOI: 10.1098/rstb.2020.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.,BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| | - Boris Yagound
- BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Galbraith DA, Ma R, Grozinger CM. Tissue-specific transcription patterns support the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Mol Ecol 2021; 30:1029-1041. [PMID: 33326651 DOI: 10.1111/mec.15778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Kin selection may act differently on genes inherited from parents (matrigenes and patrigenes), resulting in intragenomic conflict. This conflict can be observed as differential expression of matrigenes and patrigenes, or parent-specific gene expression (PSGE). In honey bees (Apis mellifera), intragenomic conflict is hypothesized to occur in multiple social contexts. Previously, we found that patrigene-biased expression in reproductive tissues was associated with increased reproductive potential in worker honey bees, consistent with the prediction that patrigenes are selected to promote selfish behaviour in this context. Here, we examined brain gene expression patterns to determine if PSGE is also found in other tissues. As before, the number of transcripts showing patrigene expression bias was significantly greater in the brains of reproductive vs. sterile workers, while the number of matrigene-biased transcripts was not significantly different. Twelve transcripts out of the 374 showing PSGE in either tissue showed PSGE in both brain and reproductive tissues; this overlap was significantly greater than expected by chance. However, the majority of transcripts show PSGE only in one tissue, suggesting the epigenetic mechanisms mediating PSGE exhibit plasticity between tissues. There was no significant overlap between transcripts that showed PSGE and transcripts that were significantly differentially expressed. Weighted gene correlation network analysis identified modules which were significantly enriched in both types of transcripts, suggesting that these genes may influence each other through gene networks. Our results provide further support for the kin selection theory of intragenomic conflict, and provide valuable insights into the mechanisms which may mediate this process.
Collapse
Affiliation(s)
- David A Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Howe J, Schiøtt M, Li Q, Wang Z, Zhang G, Boomsma JJ. A novel method for using RNA-seq data to identify imprinted genes in social Hymenoptera with multiply mated queens. J Evol Biol 2020; 33:1770-1782. [PMID: 33030255 DOI: 10.1111/jeb.13716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022]
Abstract
Genomic imprinting results in parent-of-origin-dependent gene expression biased towards either the maternally or paternally derived allele at the imprinted locus. The kinship theory of genomic imprinting argues that this unusual expression pattern can be a manifestation of intra-genomic conflict between the maternally and paternally derived halves of the genome that arises because they are not equally related to the genomes of social partners. The theory thus predicts that imprinting may evolve wherever there are close interactions among asymmetrically related kin. The social Hymenoptera with permanent caste differentiation are suitable candidates for testing the kinship theory because haplodiploid sex determination creates strong relatedness asymmetries and nursing workers interact closely with kin. However, progress in the search for imprinted genes in the social Hymenoptera has been slow, in part because tests for imprinting rely on reciprocal crosses that are impossible in most species. Here, we develop a method to systematically search for imprinting in haplodiploid social insects without crosses, using instead samples of pooled individuals collected from natural colonies. We tested this protocol using data available for the leaf-cutting ant Acromyrmex echinatior, providing the first genome-wide search for imprinting in any ant. Although we identified several genes as potentially imprinted, none of the four genes tested could be verified as imprinted using digital droplet PCR, highlighting the need for higher quality genomic assemblies that accurately map duplicated genes.
Collapse
Affiliation(s)
- Jack Howe
- Department of Biology, Section for Ecology and Evolution, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Department of Biology, Section for Ecology and Evolution, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, China
| | | | - Guojie Zhang
- Department of Biology, Section for Ecology and Evolution, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - Jacobus J Boomsma
- Department of Biology, Section for Ecology and Evolution, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|