1
|
Chen Z, Li X, Liu Q, Li W, Wang T, Ding D. Recent advances in AIE-based platforms for cancer immunotherapy. J Control Release 2024; 376:1-19. [PMID: 39343142 DOI: 10.1016/j.jconrel.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Aggregation-induced emission luminogens (AIEgens) possess the unique property of enhanced fluorescence and photostability in aggregated states, making them exceptional materials for the convergence of imaging and phototherapy. With their inherent advantages, AIEgens are propelling the field of nanomedicine into a vibrant frontier in the phototheranostics of a spectrum of diseases, particularly in the realm of cancer immunotherapy. AIEgens-based therapeutics enhance the cancer immune response through a variety of approaches, including real-time image-guided precise therapy, induction of programmed cell death, metabolic reprogramming, and modulation of the tumor microenvironment. Additionally, they contribute to the synergistic effect of immune checkpoint inhibition, a pivotal aspect of modern cancer immunotherapy strategies. This review offers a comprehensive overview of the integration of AIEgens in nanomedicine and their role in immune adaptation, highlighting the advantages, basic action mechanisms, and recent advancement of AIEgens as promising therapeutic platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Ziyi Chen
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Tianjiao Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China; Nankai International Advanced Research Institute, Futian District, Shenzhen 518045, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
2
|
You W, Cai Z, Xiao F, Zhao J, Yu X, Wang W, Chen Z, Hu W, Sun G, Wang Z. Local delivery of MoS2/FeS2 heterojunction by biomolecular microneedles for multimodal therapy of infected wounds. CHEMICAL ENGINEERING JOURNAL 2024; 498:155722. [DOI: 10.1016/j.cej.2024.155722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
|
3
|
Wang X, Ding B, Liu W, Qi L, Li J, Zheng X, Song Y, Li Q, Wu J, Zhang M, Chen H, Wang Y, Li Y, Sun B, Ma P. Dual Starvations Induce Pyroptosis for Orthotopic Pancreatic Cancer Therapy through Simultaneous Deprivation of Glucose and Glutamine. J Am Chem Soc 2024; 146:17854-17865. [PMID: 38776361 DOI: 10.1021/jacs.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pancreatic cancer is a highly fatal disease, and existing treatment methods are ineffective, so it is urgent to develop new effective treatment strategies. The high dependence of pancreatic cancer cells on glucose and glutamine suggests that disrupting this dependency could serve as an alternative strategy for pancreatic cancer therapy. We identified the vital genes glucose transporter 1 (GLUT1) and alanine-serine-cysteine transporter 2 (ASCT2) through bioinformatics analysis, which regulate glucose and glutamine metabolism in pancreatic cancer, respectively. Human serum albumin nanoparticles (HSA NPs) for delivery of GLUT1 and ASCT2 inhibitors, BAY-876/V-9302@HSA NPs, were prepared by a self-assembly process. This nanodrug inhibits glucose and glutamine uptake of pancreatic cancer cells through the released BAY-876 and V-9302, leading to nutrition deprivation and oxidative stress. The inhibition of glutamine leads to the inhibition of the synthesis of the glutathione, which further aggravates oxidative stress. Both of them lead to a significant increase in reactive oxygen species, activating caspase 1 and GSDMD and finally inducing pyroptosis. This study provides a new effective strategy for orthotopic pancreatic cancer treatment by dual starvation-induced pyroptosis. The study for screening metabolic targets using bioinformatics analysis followed by constructing nanodrugs loaded with inhibitors will inspire future targeted metabolic therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Jiating Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Zheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yiqin Song
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qiyuan Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiawen Wu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Meng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Gu J, Cheng D, Li H, Yu T, Zhang Z, Liu Y, Wang X, Lu X, Li J. Radioactive hybrid semiconducting polymer nanoparticles for imaging-guided tri-modal therapy of breast cancer. J Mater Chem B 2024; 12:6091-6101. [PMID: 38828732 DOI: 10.1039/d4tb00834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Due to the rapid progression and aggressive metastasis of breast cancer, its diagnosis and treatment remain a great challenge. The simultaneous inhibition of tumor growth and metastasis is necessary for breast cancer to obtain ideal therapeutic outcomes. We herein report the development of radioactive hybrid semiconducting polymer nanoparticles (SPNH) for imaging-guided tri-modal therapy of breast cancer. Two semiconducting polymers are used to form SPNH with a diameter of around 60 nm via nano-coprecipitation and they are also labeled with iodine-131 (131I) to enhance the imaging functions. The formed SPNH show good radiolabeling stability and excellent photodynamic and photothermal effects under 808 nm laser irradiation to produce singlet oxygen (1O2) and heat. Moreover, SPNH can generate 1O2 with ultrasound irradiation via their sonodynamic properties. After intravenous tail vein injection, SPNH can effectively accumulate in the subcutaneous 4T1 tumors of living mice as verified via fluorescence and single photon emission computed tomography (SPECT) imaging. With the irradiation of tumors using an 808 nm laser and US, SPNH mediate photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT) to kill tumor cells. Such a tri-modal therapy leads to an improved efficacy in inhibiting tumor growth and suppressing tumor metastasis compared to the sole SDT and combinational PDT-PTT. This study thus demonstrates the applications of SPNH to diagnose tumors and combine different therapies for effective breast cancer treatment.
Collapse
Affiliation(s)
- Junhao Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Danling Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Haiyan Li
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, P. R. China.
| | - Tao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Zhenghe Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Xiaoying Wang
- Office of Hospital Infection and Disease Control and Prevention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China.
| | - Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, P. R. China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
5
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|