1
|
Wang R, Yu Y, Yu W, Sun S, Lei Y, Li Y, Lu C, Zhai J, Bai F, Ren F, Huang J, Chen J. Roles of Probiotics, Prebiotics, and Postbiotics in B-cell mediated Immune Regulation. J Nutr 2024:S0022-3166(24)01178-7. [PMID: 39551357 DOI: 10.1016/j.tjnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024] Open
Abstract
Probiotics, prebiotics, and postbiotics can significantly influence B-cell-related diseases through their immunomodulatory effects. They enhance the immune system's function, particularly affecting B cells, which originate in the bone marrow and are crucial for antibody production and immune memory. These substances have therapeutic potential in managing allergies, autoimmune diseases, and inflammatory conditions by regulating the gut microbiota, strengthening epithelial barriers, and directly interacting with various components of the innate and adaptive immune systems. The review highlights the critical need for further research into the precise mechanisms through which probiotics, prebiotics, and postbiotics modulate B cells. Gaining this understanding could facilitate the development of more effective treatments for B-cell-related diseases by harnessing the immunomodulatory properties of these dietary components.
Collapse
Affiliation(s)
- R Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yf Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wr Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Sy Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ym Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yx Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Cx Lu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jn Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fr Bai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fz Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jq Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - J Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Jiang Z, Yang G, Wang G, Wan J, Zhang Y, Song W, Zhang H, Ni J, Zhang H, Luo M, Wang K, Peng B. SEC14L3 knockdown inhibited clear cell renal cell carcinoma proliferation, metastasis and sunitinib resistance through an SEC14L3/RPS3/NFκB positive feedback loop. J Exp Clin Cancer Res 2024; 43:288. [PMID: 39425205 PMCID: PMC11490128 DOI: 10.1186/s13046-024-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) arises from the renal parenchymal epithelium and is the predominant malignant entity of renal cancer, exhibiting increasing incidence and mortality rates over time. SEC14-like 3 (SEC14L3) has emerged as a compelling target for cancer intervention; nevertheless, the precise clinical implications and molecular underpinnings of SEC14L3 in ccRCC remain elusive. METHODS By leveraging clinical data and data from the TCGA-ccRCC and GEO datasets, we investigated the association between SEC14L3 expression levels and overall survival rates in ccRCC patients. The biological role and mechanism of SEC14L3 in ccRCC were investigated via in vivo and in vitro experiments. Moreover, siRNA-SEC14L3@PDA@MUC12 nanoparticles (SSPM-NPs) were synthesized and assessed for their therapeutic potential against SEC14L3 through in vivo and in vitro assays. RESULTS Our investigation revealed upregulated SEC14L3 expression in ccRCC tissues, and exogenous downregulation of SEC14L3 robustly suppressed the malignant traits of ccRCC cells. Mechanistically, knocking down SEC14L3 facilitated the ubiquitination-mediated degradation of ribosomal protein S3 (RPS3) and augmented IκBα accumulation in ccRCC. This concerted action thwarted the nuclear translocation of P65, thereby abrogating the activation of the nuclear factor kappa B (NFκB) signaling pathway and impeding ccRCC cell proliferation and metastasis. Furthermore, diminished SEC14L3 levels exerted a suppressive effect on NFKB1 expression within the NFκB signaling cascade. NFKB1 functions as a transcriptional regulator capable of binding to the SEC14L3 enhancer and promoter, thereby promoting SEC14L3 expression. Consequently, the inhibition of SEC14L3 expression was further potentiated, thus forming a positive feedback loop. Additionally, we observed that downregulation of SEC14L3 significantly increased the sensitivity of ccRCC cells to sunitinib. The evaluation of SSPM-NPs nanotherapy highlighted its effectiveness in combination with sunitinib for inhibiting ccRCC growth. CONCLUSION Our findings not only underscore the promise of SEC14L3 as a therapeutic target but also unveil an SEC14L3/RPS3/NFκB positive feedback loop that curtails ccRCC progression. Modulating SEC14L3 expression to engage this positive feedback loop might herald novel avenues for ccRCC treatment.
Collapse
Affiliation(s)
- Ziming Jiang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangcan Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiayi Wan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yifan Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wei Song
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinliang Ni
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
3
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|