1
|
Grecco KD, Santos KR, Aragão FB, Galter IN, Lascola MB, Dos Santos SN, Trindade JL, Silva EZM, Fernandes MN, Matsumoto ST. Toxicogenetic, biochemical, and physiological effects of azoxystrobin and carbendazim fungicides over Lactuca sativa L. and Phaseolus vulgaris L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44036-44048. [PMID: 38922465 DOI: 10.1007/s11356-024-34013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.
Collapse
Affiliation(s)
- Kalia Dável Grecco
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Kristian Rodolfo Santos
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil.
| | - Francielen Barroso Aragão
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Iasmini Nicoli Galter
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Mylena Boeque Lascola
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Sara Nascimento Dos Santos
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Juliana Lima Trindade
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Enzo Zini Moreira Silva
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Center for Biological and Health Sciences, Federal University of São Carlos, Rodovia Washington Luiz, Km 235 Monjolinho, São Carlos, São Paulo, SP, 13565-905, Brazil
| | - Silvia Tamie Matsumoto
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| |
Collapse
|
2
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
3
|
Kumar J, Sen Gupta D, Djalovic I, Kumar S, Siddique KHM. Root-omics for drought tolerance in cool-season grain legumes. PHYSIOLOGIA PLANTARUM 2021; 172:629-644. [PMID: 33314181 DOI: 10.1111/ppl.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Root traits can be exploited to increase the physiological efficiency of crop water use under drought. Root length, root hairs, root branching, root diameter, and root proliferation rate are genetically defined traits that can help to improve the water productivity potential of crops. Recently, high-throughput phenotyping techniques/platforms have been used to screen the germplasm of major cool-season grain legumes for root traits and their impact on different physiological processes, including nutrient uptake and yield potential. Advances in omics approaches have led to the dissection of genomic, proteomic, and metabolomic structures of these traits. This knowledge facilitates breeders to improve the water productivity and nutrient uptake of cultivars under limited soil moisture conditions in major cool-season grain legumes that usually face terminal drought. This review discusses the advances in root traits and their potential for developing drought-tolerant cultivars in cool-season grain legumes.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Ivica Djalovic
- Maize Department, Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T, Mathew I, Shayanowako A. Genome-wide association analysis of bean fly resistance and agro-morphological traits in common bean. PLoS One 2021; 16:e0250729. [PMID: 33914796 PMCID: PMC8084209 DOI: 10.1371/journal.pone.0250729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment of agronomic superior and bean fly resistant common bean varieties aredependent on genetic variation and the identification of genes and genomic regions controlling economic traits. This study's objective was to determine the population structure of a diverse panel of common bean genotypes and deduce associations between bean fly resistance and agronomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common bean genotypes were phenotyped in two seasons at two locations and genotyped with 16 565 SNP markers. The genotypes exhibited significant variation for bean fly damage severity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed significant variation for agro-morphological traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield (GYD). The genotypes were delineated into two populations, which were based on the Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chromosomes. Three markers were identified, each having pleiotropic effects on two traits: M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD). The identified markers are useful for marker-assisted selection in the breeding program to develop common bean genotypes with resistance to bean fly damage.
Collapse
Affiliation(s)
- Wilson Nkhata
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rob Melis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rowland Chirwa
- Alliance of Biodiversity International and CIAT, Chitedze Agricultural Station, Lilongwe, Malawi
| | - Tenyson Mzengeza
- Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Isack Mathew
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
5
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|