1
|
Xie Q, Liu Z. Chemometrics of the composition and antioxidant capacity of essential oils obtained from six Cupressaceae taxa. Sci Rep 2024; 14:18612. [PMID: 39127791 PMCID: PMC11316816 DOI: 10.1038/s41598-024-69600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Essential oils (EOs) are complex and susceptible to environmental conditions, they have a wide range of biological activities and are often used to differentiate between similar species. In this study, gas chromatography-mass spectrometry (GC-MS) coupled with chemometric analysis was applied to systematically analyse and evaluate EOs constituents and antioxidant activity of six Chinese Cupressaceae taxa (Platycladus orientalis Franco, P. orientalis Franco 'Sieboldii', P. orientalis Franco 'Aurea', Juniperus chinensis Roxb., J. chinensis Roxb. 'Kaizuca', and J. sabina L.) under identical conditions. The antioxidant activity of the EOs was evaluated using 2,2 -diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing power (FRAP), and the total phenolic content (TPC) of the EOs was determined by Folin-Ciocalteau reagent. In total, seventy individual constituents were identified with the main components being α-pinene, sabinene, D-limonene, bornyl acetate, δ-3-carene and β-myrcene. Principal component analysis (PCA) and hierarchal cluster analysis (HCA) successfully discriminated the six taxa into three chemotypes and the unique chemotype revealed that J. chinensis 'Kaizuca' may be a species rather than a cultivar of J. chinensis. The results of OPLS-DA analysis showed that the three compounds screened, namely, α-pinene, sabinene, and δ-3-carene, can completely distinguish Platycladus spp. from Juniperus spp. The DPPH assay results ranged from 576.14 (J. chinensis 'Kaizuca') to 1146.12 (J. sabina) μmol eq Trolox/mL EO, while the ABTS values ranged from 1579.62 (P. orientalis 'Aurea') to 5071.82 (J. sabina) μmol eq Trolox/mL. In the FRAP assay, the values ranged from 1086.50 (J. chinensis 'Kaizuca') to 1191.18 (J. sabina) μmol eq Trolox/ml and the TPC of the EOs studied ranged from 15.17 (J. chinensis 'Kaizuca') to 39.37 (J. sabina) mg GAE/mL EO. The results consistently showed that J. sabina possessed the strongest antioxidant activity and can be preferentially used as a rich source of potentially natural antioxidants.
Collapse
Affiliation(s)
- Qing Xie
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhihong Liu
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
2
|
Fikry E, Orfali R, Tawfeek N, Perveen S, Ghafar S, El-Domiaty MM, El-Shafae AM. Unveiling the Bioactive Efficacy of Cupressus sempervirens 'Stricta' Essential Oil: Composition, In Vitro Activities, and In Silico Analyses. Pharmaceuticals (Basel) 2024; 17:1019. [PMID: 39204124 PMCID: PMC11357629 DOI: 10.3390/ph17081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Prior studies have extensively investigated the essential oil derived from the Mediterranean cypress, Cupressus sempervirens. However, the 'Stricta' variety, known for its ornamental value, has received less attention in terms of its oil composition and potential health benefits. The objective of this research was to comprehensively analyze the chemical components and medicinal properties of the essential oil extracted from C. sempervirens 'Stricta' (CSSLEO) grown in Egypt. Utilizing gas chromatography-mass spectrometry (GC-MS), the investigation identified 22 compounds within CSSLEO, with α-pinene and δ-3-carene being predominant, accounting for 96.01% of the oil. In vitro assays evaluated CSSLEO's cytotoxic effects on cancer cell lines, revealing notable anticancer potential. Additionally, the oil displayed antidiabetic properties by impeding crucial enzymes involved in glucose metabolism. Complementary in silico network pharmacology and molecular docking studies provided insights into the possible interactions between CSSLEO's key compounds and essential proteins and pathways in cancer treatment. The results underscored CSSLEO's intricate composition and its promising applications in cancer prevention and diabetes management. The conclusions drawn from this research underscore the need for further investigation to validate CSSLEO's clinical effectiveness and to gain a deeper understanding of its therapeutic mechanisms, with a view to harnessing its potential in oncology and endocrinology.
Collapse
Affiliation(s)
- Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (M.M.E.-D.); (A.M.E.-S.)
| | - Raha Orfali
- Department of Pharmacognosy, Collage of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (M.M.E.-D.); (A.M.E.-S.)
| | - Shagufta Perveen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Safina Ghafar
- Department of Pharmacognosy, Collage of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maher M. El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (M.M.E.-D.); (A.M.E.-S.)
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (M.M.E.-D.); (A.M.E.-S.)
| |
Collapse
|
3
|
Dabouri Farimani F, Hosseini M, Amirahmadi S, Akbarian M, Shirazinia M, Barabady M, Rajabian A. Cedrol supplementation ameliorates memory deficits by regulating neuro-inflammation and cholinergic function in lipopolysaccharide-induced cognitive impairment in rats. Heliyon 2024; 10:e30356. [PMID: 38707398 PMCID: PMC11068808 DOI: 10.1016/j.heliyon.2024.e30356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Cedrol, a sesquiterpene alcohol, is found in a high amount in several conifers. It possess several beneficial health effects, including antioxidant and anti-inflammatory properties. Objective: This study evaluates the neuroprotective role of cedrol against lipopolysaccharide (LPS)-induced neuroinflammation and memory loss in rats. Methods Wistar rats were treated with cedrol (7.5, 15, and 30 mg/kg, oral, two weeks). During the last week, the rats (except for the control group) were treated with LPS (intraperitoneal injection, 1 mg/kg) to induce memory impairment. After that, the animals were subjected to behavioral studies (Morris water maze and passive avoidance) and biochemical assessments. Results Our results showed a significant decrease in learning and memory function-in LPS-induced rats which were reversed by cedrol. Also, there was a significant increase in the cerebral levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and malondialdehyde (MDA) as well as acetylcholinesterase (AChE) activity in LPS-treated rats. Besides, a significant reduction in total thiol and superoxide dismutase levels was observed in LPS-treated rats. However, cedrol significantly decreased the brain level of AChE, TNF-α, and IL-1β. Administration of cedrol also restored the oxidative stress markers. Conclusion the beneficial effects of cedrol against LPS-induced memory impairment could be due to antioxidant activities and modulation of neuro-inflammatory mediators.
Collapse
Affiliation(s)
- Faezeh Dabouri Farimani
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moselm Barabady
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Hu H, Li D, Bai R, Zhang W, Luo H, Yu E. Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy. Int J Mol Sci 2023; 24:15203. [PMID: 37894884 PMCID: PMC10607841 DOI: 10.3390/ijms242015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oils of Juniperus are highly beneficial medicinally. The present study aimed to assess the chemodiversity and bioactivity of Juniperus formosana, Juniperus przewalskii, Juniperus convallium, Juniperus tibetica, Juniperus komarovii, and Juniperus sabina essential oils from the Qinghai-Tibet Plateau. The results revealed 92 components in six essential oils: α-pinene (2.71-17.31%), sabinene (4.91-19.83%), and sylvestrene (1.84-8.58%) were the main components. Twelve components were firstly reported in Juniperus oils, indicating that the geographical location and climatic conditions of the Qinghai-Tibet Plateau produced the unique characteristics of Juniperus essential oils. The chemodiversity of Juniperus essential oils varied greatly, with J. sabina having the most recognized components (64) and the highest chemodiversity (Shannon-Wiener index of 3.07, Simpson's diversity index of 0.91, and Pielou evenness of 0.74). According to the chemodiversity of essential oils, the six plants were decided into the α-pinene chemotype (J. formosana), hedycaryol chemotype (J. przewalskii, J. komarovii, J. convallium, J. tibetica), and sabinene chemotype (J. sabina). PCA, HCA and OPLS-DA showed that J. formosana and J. sabina were distantly related to other plants, which provides a chemical basis for the classification of Juniperus plants. Furthermore, bioactivity tests exhibited certain antioxidant and antibacterial effects in six Juniperus oils. And the bioactivities of J. convallium, J. tibetica, and J. komarovvii were measured for the first time, broadening the range of applications of Juniperus. Correlation analysis of components and bioactivities showed that δ-amorphene, β-udesmol, α-muurolol, and 2-nonanone performed well in the determination of antioxidant activity, and α-pinene, camphene, β-myrcene, as well as (E)-thujone, had strong inhibitory effects on pathogenic bacteria, providing a theoretical basis for further research on these components.
Collapse
Affiliation(s)
- Huizhong Hu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Ruxue Bai
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Weiping Zhang
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Hong Luo
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Enping Yu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| |
Collapse
|
5
|
Fotiadou E, Panou E, Graikou K, Sakellarakis FN, Chinou I. Volatiles of All Native Juniperus Species Growing in Greece-Antimicrobial Properties. Foods 2023; 12:3506. [PMID: 37761215 PMCID: PMC10530231 DOI: 10.3390/foods12183506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Juniper (Juniperus L., Cupressaceae Bartlett) trees are of high commercial value, as their essential oils are widely applied in the food and cosmetic industries due to their bioactivities. The genus Juniperus comprises eight species in Greece, and in the current work, we report the chemical analyses of their volatiles (GC-MS) obtained from the leaves and cones of all indigenous species found in the country, as well as their antimicrobial properties. The studied species were J. oxycedrus L., J. excelsa M. Bieb., J. foetidissima Willd., J. communis L., J. macrocarpa Sibth. & Sm., J. turbinata Guss., J. sabina L. and J. drupacea Labill., and a total of 164 constituents were identified. Monoterpenes, followed by sesquiterpenes, appeared as the dominant compounds in all investigated species. Most of the studied essential oils belonged to the α-pinene chemotype, with amounts of α-cedrol, sabinene, limonene and myrcene among the abundant metabolites, except for J. sabina, which belonged to the sabinene chemotype. Through antimicrobial tests, it was observed that the essential oils of most of the cones showed better activity compared with the respective leaves. The essential oils of the cones of J. foetidissima, J. communis and J. turbinata showed the strongest activity against the tested microorganisms. Additionally, in these three species, the content of thujone, which is a toxic metabolite found in essential oils of many Juniperus species, was considerably low. Taking into consideration the chemical profile, safety and antimicrobial activity, these three Greek Juniperus species seemed to provide the most promising essential oils for further exploitation in the food and cosmetics industries.
Collapse
Affiliation(s)
- Evgenia Fotiadou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece; (E.F.); (E.P.); (K.G.)
| | - Evgenia Panou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece; (E.F.); (E.P.); (K.G.)
| | - Konstantia Graikou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece; (E.F.); (E.P.); (K.G.)
| | | | - Ioanna Chinou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece; (E.F.); (E.P.); (K.G.)
| |
Collapse
|
6
|
Biosynthesis of Silver Nanoparticles Using Astragalus flavesces Leaf: Identification, Antioxidant Activity, and Catalytic Degradation of Methylene Blue. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Essential Oils and Extracts of Juniperus macrocarpa Sm. and Juniperus oxycedrus L.: Comparative Phytochemical Composition and Anti-Proliferative and Antioxidant Activities. PLANTS 2022; 11:plants11081025. [PMID: 35448753 PMCID: PMC9031627 DOI: 10.3390/plants11081025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/30/2023]
Abstract
In this work, we conducted a comparative phytochemical, chemotaxonomic, and biological study of essential oils (EOs) and extracts (ethyl acetate and methanol) obtained from the leaves of Juniperusmacrocarpa and J. oxycedrus. The dominant compounds of J. macrocarpa EO, analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), are α-pinene, sabinene, manoyl oxide, and germacrene D, whereas α-pinene, limonene, (Z,E)-farnesol, β-pinene, and γ-cadinene are the most representative volatiles of J. oxycedrus EOs. A multivariate analysis of EOs, included a selection of literature data comparing our samples to samples of J. oxycedrus/macrocarpa/deltoides from the Mediterranean area, was performed. As evident by high-performance liquid chromatography (HPLC) analyses, apigenin, (−)-epicatechin, and luteolin were abundant in J. oxycedrus extracts, while gallic acid, kaempferol-3-O-glucoside, and protocatechuic acid were the dominant constituents of J. macrocarpa extracts. EOs and extracts have been investigated for their potential antioxidant properties and anti-proliferative activity against lung adenocarcinoma (A549), breast cancer (MCF-7 and MDA-MB-231), and lung large cell carcinoma (COR-L23) human cell lines. The methanol and ethyl acetate extracts of J. oxycedrus exerted the most valuable antioxidant activity and exhibited the most promising activity against the COR-L23 cell line with an IC50 of 26.0 and 39.1 μg/mL, respectively, lower than that obtained with the positive control (IC50 of 45.5 μg/mL). To the best of our knowledge, this is the first report highlighting the anti-proliferative activity of J. oxycedrus and J. macrocarpa extracts against this lung cancer cell line. Our results indicate that J. oxycedrus may be considered a source of natural compounds with antioxidant and anti-proliferative effects that could be suitable for future applications.
Collapse
|
8
|
Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species. Molecules 2021; 26:molecules26247644. [PMID: 34946725 PMCID: PMC8709035 DOI: 10.3390/molecules26247644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/05/2022] Open
Abstract
Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.
Collapse
|
9
|
Kurtca M, Tumen I, Keskin H, Tabanca N, Yang X, Demirci B, Kendra PE. Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa. Molecules 2021; 26:molecules26247504. [PMID: 34946585 PMCID: PMC8704769 DOI: 10.3390/molecules26247504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The present study analyzed the chemical composition of Juniperus foetidissima Willd. essential oils (EOs) and evaluated their attractancy and toxicity to two agriculturally important tephritid fruit flies. The composition of hydrodistilled EOs obtained from leaves (JFLEO) and fruits (JFFEO) of J. foetidissima was analyzed by GC-FID and GC-MS. The main compounds were α-pinene (45%) and cedrol (18%) in the JFLEO and α-pinene (42%), α-thujone (12%), and β-thujone (25%) in the JFFEO. In behavioral bioassays of the male Mediterranean fruit fly, Ceratitis capitata (Wiedemann), both JFLEO and JFFEO showed strong attraction comparable to that observed with two positive controls, Melaleuca alternifolia and Tetradenia riparia EOs. In topical bioassays of the female Caribbean fruit fly, Anastrepha suspensa (Loew), the toxicity of JFFEO was two-fold higher than that of JFLEO, with the LD50 values being 10.46 and 22.07 µg/µL, respectively. This could be due to differences in chemical components between JFLEO and JFFEO. The JFFEO was dominated by 48% monoterpene hydrocarbons (MH) and 46% oxygenated monoterpenes (OM), while JFLEO consisted of 57% MH, 18% OM, and 20% oxygenated sesquiterpenes (OS). This is the first study to evaluate the attractancy and toxicity of J. foetidissima EOs to tephritid fruit flies. Our results indicate that JFFEO has the potential for application to the management of pest tephritid species, and further investigation is warranted.
Collapse
Affiliation(s)
- Mehmet Kurtca
- Department of Chemistry, Faculty of Science, Selcuk University, 42130 Konya, Turkey;
| | - Ibrahim Tumen
- Faculty of Health Sciences, Bandirma Onyedi Eylul University, 10200 Bandirma, Turkey
- Correspondence: (I.T.); (P.E.K.)
| | - Hasan Keskin
- Department of Forest Products Chemistry, Faculty of Forestry, Bartin University, 74100 Bartin, Turkey;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA; (N.T.); (X.Y.)
| | - Xiangbing Yang
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA; (N.T.); (X.Y.)
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey;
| | - Paul E. Kendra
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA; (N.T.); (X.Y.)
- Correspondence: (I.T.); (P.E.K.)
| |
Collapse
|
10
|
Xavier V, Finimundy TC, Heleno SA, Amaral JS, Calhelha RC, Vaz J, Pires TCSP, Mediavilla I, Esteban LS, Ferreira ICFR, Barros L. Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules 2021; 26:molecules26247472. [PMID: 34946554 PMCID: PMC8708991 DOI: 10.3390/molecules26247472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cupressus sempervirens L., Juniperus communis L. and Cistus ladanifer L. are Mediterranean arboreal and shrub species that possess essential oils (EO) in their leaves and branches. This study aimed at characterizing the EOs obtained by steam distillation from the three species collected in different locations from Spain (Almazán, Andévalo, Barriomartín, Cerezal, Ermitas and Huéscar). For this purpose, volatiles composition was determined by GC-MS, and different bioactivities were evaluated. The highest content in terpenes was observed in C. sempervirens (Huéscar origin) followed by J. communis (Almazán origin), corresponding to 92% and 91.9% of total compounds, respectively. With exception of C. ladanifer from Cerezal that presented viridiflorol as the most abundant compound, all the three species presented in common the α-pinene as the major compound. The EOs from C. ladanifer showed high antibacterial potential, presenting MIC values from 0.3 to 1.25 mg/mL. Concerning other bioactivities, C. ladanifer EO revealed an oxidation inhibition of 83%, while J. communis showed cytotoxicity in the MCF-7 cell line, and C. sempervirens and C. ladanifer EOs exhibited the highest potential on NCI-H460 cell lines. Nevertheless, some EOs revealed toxicity against non-tumoral cells but generally presented a GI50 value higher than that of the tumor cell lines.
Collapse
Affiliation(s)
- Virginie Xavier
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Tiane C. Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
- REQUIMTE/LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Josiana Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Irene Mediavilla
- CEDER-CIEMAT, Autovía de Navarra A-15, Salida 56, 42290 Lubia, Spain;
| | - Luis Saúl Esteban
- CEDER-CIEMAT, Autovía de Navarra A-15, Salida 56, 42290 Lubia, Spain;
- Correspondence: (L.S.E.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.X.); (T.C.F.); (S.A.H.); (J.S.A.); (R.C.C.); (J.V.); (T.C.S.P.P.); (I.C.F.R.F.)
- Correspondence: (L.S.E.); (L.B.)
| |
Collapse
|
11
|
Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules 2021; 26:molecules26123659. [PMID: 34203980 PMCID: PMC8232667 DOI: 10.3390/molecules26123659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Juniperus excelsa M. Bieb and J. sabina L. contain essential oil (EO), while J. sabina also contains podophyllotoxin, which is used as a precursor for anti-cancer drugs. Two studies were conducted. The first assessed the variability in the EO profile and podophyllotoxin concentration of the two junipers, depending on the location and tree gender. The main EO constituents of J. excelsa were α-cedrol, α-limonene and α-pinene, while the constituents in J. sabina were sabinene, terpinen-4-ol, myrtenyl acetate and α-cadinol. The podophyllotoxin yield of 18 J. sabina accessions was 0.07–0.32% (w/w), but this was not found in any of the J. excelsa accessions. The second study assessed the effect of hydrodistillation (Clevenger apparatus) and steam distillation (in a semi-commercial apparatus) on the EO profile and bioactivity. The extraction type did not significantly alter the EO composition. The EO profiles of the two junipers and their accessions were different and may be of interest to the industry utilizing juniper leaf EO. Breeding and selection programs could be developed with the two junipers (protected species) in order to identify chemotypes with (1) a high EO content and desirable composition, and (2) a high concentration of podophyllotoxin in J. sabina. Such chemotypes could be established as agricultural crops for the commercial production of podophyllotoxin and EO.
Collapse
|
12
|
The Ecological Status of Juniperus foetidissima Forest Stands in the Mt. Oiti-Natura 2000 Site in Greece. SUSTAINABILITY 2021. [DOI: 10.3390/su13063544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Junipers face multiple threats induced both by climate and land use changes, impacting their expansion and reproductive dynamics. The aim of this work is to evaluate the ecological status of Juniperus foetidissima Willd. forest stands in the protected Natura 2000 site of Mt. Oiti in Greece. The study of the ecological status is important for designing and implementing active management and conservation actions for the species’ protection. Tree size characteristics (height, breast height diameter), age, reproductive dynamics, seed production and viability, tree density, sex, and habitat expansion were examined. The data analysis revealed a generally good ecological status of the habitat with high plant diversity. However, at the different juniper stands, subpopulations present high variability and face different problems, such as poor tree density, reduced numbers of juvenile trees or poor seed production, inadequate male:female ratios, a small number of female trees, reduced numbers of seeds with viable embryos, competition with other woody species, grazing, and illegal logging. From the results, the need for site-specific active management and interventions is demonstrated in order to preserve or achieve the good status of the habitat at all stands in the region.
Collapse
|
13
|
Nehme R, Andrés S, Pereira RB, Ben Jemaa M, Bouhallab S, Ceciliani F, López S, Rahali FZ, Ksouri R, Pereira DM, Abdennebi-Najar L. Essential Oils in Livestock: From Health to Food Quality. Antioxidants (Basel) 2021; 10:330. [PMID: 33672283 PMCID: PMC7926721 DOI: 10.3390/antiox10020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Using plant essential oils (EOs) contributes to the growing number of natural plants' applications in livestock. Scientific data supporting the efficacy of EOs as anti-inflammatory, antibacterial and antioxidant molecules accumulates over time; however, the cumulative evidence is not always sufficient. EOs antioxidant properties have been investigated mainly from human perspectives. Still, so far, our review is the first to combine the beneficial supporting properties of EOs in a One Health approach and as an animal product quality enhancer, opening new possibilities for their utilization in the livestock and nutrition sectors. We aim to compile the currently available data on the main anti-inflammatory effects of EOs, whether encapsulated or not, with a focus on mammary gland inflammation. We will also review the EOs' antioxidant activities when given in the diet or as a food preservative to counteract oxidative stress. We emphasize EOs' in vitro and in vivo ruminal microbiota and mechanisms of action to promote animal health and performance. Given the concept of DOHaD (Developmental Origin of Health and Diseases), supplementing animals with EOs in early life opens new perspectives in the nutrition sector. However, effective evaluation of the significant safety components is required before extending their use to livestock and veterinary medicine.
Collapse
Affiliation(s)
- Ralph Nehme
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- INRAE, Institut Agro, STLO, F-35042 Rennes, France;
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
| | - Renato B. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Meriem Ben Jemaa
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine Università degli Studi di Milano, 20122 Milano, Italy;
| | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain
| | - Fatma Zohra Rahali
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - David M. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Latifa Abdennebi-Najar
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| |
Collapse
|