1
|
Cao S, Li S, Zhang Z, Zhang L, Jiang L. Preparation and evaluation of novel Agriophyllum squarrosum starch nanoparticles for encapsulation of lycopene with enhanced retention rate and bioactivity during simulated in-vitro digestion. Int J Biol Macromol 2025; 288:138436. [PMID: 39647755 DOI: 10.1016/j.ijbiomac.2024.138436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
In this study, we developed novel Agriophyllum squarrosum starch nanoparticles (ASSNPs) for the encapsulation of lycopene (LYC), aiming to enhance its stability and bioactivity under adverse environmental and digestive conditions. The small-granule starch extracted from A. squarrosum seeds was processed using ionic liquids (ILs) as an effective "green" solvent, followed by a systematic treatment involving ultrasonication and pullulanase to prepare the ASSNPs. The resulting nanoparticles exhibited small size, narrow particle size distribution, negative zeta potential, and high encapsulation efficiency of up to 64.3 %. The structures of ASSNPs were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. These analytical techniques confirmed the successful encapsulation of LYC and revealed increased intermolecular interactions. Stability and degradation experiments demonstrated that the retention of the LYC in the complexes was significantly higher than that of the unencapsulated LYC, highlighting the superior protective effects of ASSNPs on the storage and digestive stability of LYC. This research elucidated the structural features of the complex between ASSNPs and LYC, underscoring the potential of ASSNPs as a food-grade delivery system. This approach offers a sustainable method for enhancing the bioavailability of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Shaopan Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Senqiao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
2
|
Hassanzadeh N, Dekamin MG, Valiey E. A supramolecular magnetic and multifunctional Titriplex V-grafted chitosan organocatalyst for the synthesis of acridine-1,8-diones and 2-amino-3-cyano-4 H-pyran derivatives. NANOSCALE ADVANCES 2024:d4na00264d. [PMID: 39502107 PMCID: PMC11533062 DOI: 10.1039/d4na00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In this research, a new supramolecular magnetic modified chitosan, namely, Fe3O4@CS-TDI-Titriplex V, was designed and prepared conveniently by grafting diethylenetriaminepentaacetic acid (Titriplex V) onto a biopolymeric chitosan backbone having urethane, urea, ester and amide functional groups. The obtained magnetic biopolymeric nanomaterial was properly characterized by different spectroscopic, microscopic or analytical methods including FTIR spectroscopy, EDX spectroscopy, XRD, FESEM, TG-DTA and VSM. The application of the supramolecular Fe3O4@CS-TDI-Titriplex V nanocomposite as a heterogeneous solid acidic organocatalyst was investigated to promote the three-component synthesis of both acridinediones and 2-amino-3-cyano-4H-pyran derivatives as important pharmaceutical scaffolds under green conditions. The obtained nanomaterial exhibited proper catalytic activity in the above mentioned transformations through multicomponent reaction (MCR) strategies. The reactions proceeded very well in the presence of the Fe3O4@CS-TDI-Titriplex V solid acid nanomaterial in EtOH to afford the corresponding acridinediones and 2-amino-3-cyano-4H-pyran derivatives in high to excellent yields. The key advantages of the present protocol include the use of a renewable, biopolymeric and biodegradable solid acid as well as a simple procedure for the preparation of the hybrid material. Furthermore, the Fe3O4@CS-TDI-Titriplex V nanomaterial was used four times with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Najmeh Hassanzadeh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
3
|
Zhang H, Lin S, Xie R, Zhong W, Wang H, Farag MA, Hussain H, Arroo RRJ, Chen X, Xiao J. Thermal degradation of (2R, 3R)-dihydromyricetin in neutral aqueous solution at 100 ℃. Food Chem 2024; 435:137560. [PMID: 37793280 DOI: 10.1016/j.foodchem.2023.137560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
In the field of thermal degradation of flavonoids, current studies mainly focused on flavonols. However, the thermal degradation of dihydroflavonols in aqueous solution has received limited attention compared to flavonols. The single C2-C3 bonds of dihydroflavonols, which differs from the C2-C3 double bond in flavonols, may cause different degradation mechanisms. Dihydromyricetin (DMY) is a typical dihydroflavonol with six hydroxyl groups, and possesses various health effects. We explored the thermal degradation of DMY in neutral aqueous solution (pH 7) at 100 ℃. Ultra-performance liquid chromatography combined with photodiode array and electrospray ionization quadrupole-time-of-flight tandem mass spectrometric detection (UPLC-PDA-ESI-QTOF-MS/MS) provided suitable platform for exploring DMY degradation pathways, and negative ion mode was applied. Thermal treatment led to a decline in DMY level with time, accompanied by the appearance of various degradation products of DMY. Degradation mechanisms of DMY included isomerization, oxidation, hydroxylation, dimerization and ring cleavage. The pyrogallol-type ring B of DMY might be initially oxidized into ortho-quinone, which could further attack another DMY to form dimers. In addition, hydroxylation is likely to occur at C-2, C-3 of DMY or DMY dimers, which then further yields ring-cleavage products via breakage of the O1-C2 bond, C2-C3 bond, or C3-C4 bond. The 3-hydroxy-5-(3,3,5,7-tetrahydroxy-4-oxochroman-2-yl) cyclohexa-3,5-diene-1, 2-dione (m/z 333.0244) and unknown compound m/z 435.0925 were annotated as key intermediates in DMY degradation. Four phenolic acids, including 3,4,5-trihydroxybenzoic acid (m/z 169.0136, RT 1.4 min), 2,4,6-trihydroxyphenylglyoxylic acid (m/z 197.0084, RT 1.7 min), 2-oxo-2-(2,4,6-trihydroxyphenyl) acetaldehyde (m/z 181.0132, RT 2.4 min), and 2,4,6-trihydroxybenzoic acid (m/z 169.0139, RT 2.5 min) were identified as the major end products of DMY degradation. In addition, 5-((3,5dihydroxyphenoxy) methyl)-3-hydroxycyclohexa-3,5-diene-1,2-dione (m/z 261.0399, RT 11.7 min) and unidentified compound with m/z 329.0507 (RT 1.0 min) were also suggested to be end products of DMY degradation. These results provide novel insights on DMY stability and degradation products. Moreover, the heat treatment of DMY aqueous solution was found to gradually reduce the antioxidant activities of DMY, and even destroy the beneficial effect of DMY on the gut microbiota composition.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macau.
| | - Shiye Lin
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Ruiwei Xie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Weizhi Zhong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| | - Randolph R J Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, United Kingdom.
| | - Xiaojia Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau.
| | - Jianbo Xiao
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| |
Collapse
|
4
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
5
|
Akhter S, Arman MSI, Tayab MA, Islam MN, Xiao J. Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin. Crit Rev Food Sci Nutr 2022; 64:5073-5092. [PMID: 36416093 DOI: 10.1080/10408398.2022.2149466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
6
|
Rambaran T, Schirhagl R. Nanotechnology from lab to industry - a look at current trends. NANOSCALE ADVANCES 2022; 4:3664-3675. [PMID: 36133326 PMCID: PMC9470025 DOI: 10.1039/d2na00439a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology holds great promise and is hyped by many as the next industrial evolution. Medicine, food and cosmetics, agriculture and environmental health, and technology industries already profit from nanotechnology innovations and their influence is expected to increase drastically in the near future. However, there are also many challenges that need to be overcome to bring a nanotechnological product or business to the market. In this article we discuss current examples of nanotechnology that have been successfully introduced in the market and their relevance and geographical spread. We then discuss different partners for scientists and their role in the commercialization process. Finally, we review the different steps it takes to bring a nanotechnology to the market, highlight the many difficulties related to these steps, and provide a roadmap for the journey from lab to industry which can be beneficial to researchers.
Collapse
Affiliation(s)
- Theresa Rambaran
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University 90187 Umeå Sweden
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University Antonius Deusinglaan 1 9713AW Groningen The Netherlands
| |
Collapse
|
7
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Affiliation(s)
- Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
9
|
Liu Y, Zhe W, Zhang R, Peng Z, Wang Y, Gao H, Guo Z, Xiao J. Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. Using deep eutectic solvent: optimization, identification, and comparison with traditional methods. ULTRASONICS SONOCHEMISTRY 2022; 86:106005. [PMID: 35429898 PMCID: PMC9035432 DOI: 10.1016/j.ultsonch.2022.106005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 05/06/2023]
Abstract
Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochemicals. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesised with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodology The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27 μmol Fe(Ⅱ)E/g DW) and 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64 μmol TE/g DW), closely matching the experimental results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Additionally, DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens.
Collapse
Affiliation(s)
- Yuxin Liu
- School of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Wang Zhe
- School of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ziting Peng
- School of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yuxi Wang
- School of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Heqi Gao
- School of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life Science, Hainan University, Haikou 570228, China
| | - Juan Xiao
- School of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| |
Collapse
|