1
|
Adah DA, Saidu L, Oniye SJ, Adah AS, Daoudu OB, Ola-Fadunsin SD. Molecular characterization and antibiotics resistance of Aeromonas species isolated from farmed African catfish Clarias gariepinus Burchell, 1822. BMC Vet Res 2024; 20:16. [PMID: 38184574 PMCID: PMC10771007 DOI: 10.1186/s12917-023-03860-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Aeromonas species are one of the most important etiologies of diseases in fish farms, leading to clinical manifestation and mortality and are associated with public health risks. This study aimed to investigate the prevalence, phenotypic and molecular characteristics of Aeromonas species isolated from farmed Clarias gariepinus using 16 S rRNA sequencing. Additionally, their antibiogram and multiple antibiotic resistance index were determined using a disc diffusion test. RESULTS A total of 230 Aeromonas strains were isolated from Clarias gariepinus with 40.9% obtained from diseased fish, and 25% isolated from apparently healthy ones. Five different species including Aeromonas caviae, Aeromonas veronii, Aeromonas hydrophila, Aeromonas dhakensis and Aeromonas enteropelogenes were fully identified and genetically characterized. Based on the available literature, this is the first report of Aeromonas enteropelogenes from the study area. The phylogenetic analysis showed genetic heterogeneity and distance within the species and the reference strains. The multiple resistant Aeromonas species were susceptible to ciprofloxacin, gentamycin, and florfenicol. The Aeromonas species' multiple antibiotic resistance index values varied between 0.20 and 0.80 and were isolated from the farms where antibiotics were intensively used. CONCLUSIONS The diversity of multidrug-resistant Aeromonas species isolated from fish farms is a major threat to fish production giving us more understanding of epidemiology and the multidrug Aeromonas species with a MAR index of greater than 0.2 were isolated from farms where antibiotic use was widespread. As a result, a considerably increased danger of multiple antibiotic resistance spreading to the fish culture environment may impact aquaculture production. Hence there is a need for appropriate and monitored drug usage.
Collapse
Affiliation(s)
- Deborah Arimie Adah
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria.
| | - Lawal Saidu
- Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - Sonnie Joshua Oniye
- Department of Biological Science, National Open University of Nigeria, Abuja, Nigeria
| | - Adakole Sylvanus Adah
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Oluwafemi Babatunde Daoudu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Shola David Ola-Fadunsin
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
de Guia ACM, Guia MRDUD, Monserate JJ, Salazar JR, Velasco RR, Mingala CN, Quiazon KMA. Detection of Aeromonas hydrophila possessing aerolysin gene using gold nanoparticle probe. J Adv Vet Anim Res 2023; 10:593-598. [PMID: 38370905 PMCID: PMC10868686 DOI: 10.5455/javar.2023.j714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Objective The aerolysin (aerA) is a virulence indicator used to identify the pathogenicity of the Aeromonas strain. Targeting a pathogen's crucial virulence gene for detection is essential, as it determines the potential threat to the host. This study aimed to develop a gold nanoparticle (AuNP) probe for detecting the gene aerA in Aeromonas hydrophila among field samples. Materials and Methods Kidney samples among both healthy and sick Nile tilapias in five provinces of Luzon Island were collected for bacterial analysis. Screening using specific primers targeting aerA was conducted in parallel with testing the AuNPs probe on the same sample set. The positive control provided by BFAR-NFLD, confirmed by polymerase chain reaction (PCR) assay, was used as a positive sample containing the target gene. Results The AuNP probe demonstrated a computed accuracy of 81.32%, sensitivity of 100%, and specificity of 81.26%. Among the 257 reactions, 59 were false positives, while no false negative results were observed. The AuNP probe could detect aerA at levels as low as 30 ng/µl. The low prevalence of the target gene may be attributed to the use of general media instead of specific media like Rimler-Shotts agar. Conclusion The established colorimetric detection method for A. hydrophila with the aerA gene offers a swift alternative to PCR, negating the requirement for advanced equipment like a thermal cycler.
Collapse
Affiliation(s)
- Arren Christian M. de Guia
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, The Philippines
- Freshwater Aquaculture Center—College of Fisheries, Central Luzon State University, Science City of Muñoz, The Philippines
| | - Mary Rose D. Uy-de Guia
- Production System and Nutrition Section, Philippine Carabao Center, Science City of Muñoz, The Philippines
| | - Juvy J. Monserate
- Department of Chemistry, College of Science, Central Luzon State University, Science City of Muñoz, The Philippines
| | - Joel R. Salazar
- Department of Chemistry, College of Science, Central Luzon State University, Science City of Muñoz, The Philippines
| | - Ravelina R. Velasco
- Freshwater Aquaculture Center—College of Fisheries, Central Luzon State University, Science City of Muñoz, The Philippines
| | - Claro N. Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, The Philippines
- Department of Animal Science, College of Agriculture, Institute of Graduate Studies, Central Luzon State University, Science City of Muñoz, The Philippines
| | - Karl Marx A. Quiazon
- Freshwater Aquaculture Center—College of Fisheries, Central Luzon State University, Science City of Muñoz, The Philippines
| |
Collapse
|
3
|
Dayana Senthamarai M, Rajan MR, Bharathi PV. Current risks of microbial infections in fish and their prevention methods: A review. Microb Pathog 2023; 185:106400. [PMID: 37863271 DOI: 10.1016/j.micpath.2023.106400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
A fast-expanding sector of agriculture worldwide is aquaculture. The production of fish internationally accounts for around 44 % of the total. Even though the aquaculture environment presents several difficulties, the current development in aquaculture production comes with an increase in infectious diseases, which significantly impacts the production, profitability, and sustainability of the worldwide aquaculture business. Many infectious agents, such as bacteria, viruses, fungi and parasites are causative agents for fish infections. Most infectious diseases found in all types of fish like marine water, freshwater and ornamental fishes are caused by bacteria, with many of them serving as secondary opportunistic invaders that attack sick animals by affecting their natural host immunity. To overcome this, addressing health issues based on methods that have been scientifically verified and advised will help lessen the effects of fish disease. This review aims to highlight some of the common microbial-infecting agents of fish in all types of aquatic systems and their effective methods for preventing infections in aquaculture.
Collapse
Affiliation(s)
- Murugeswaran Dayana Senthamarai
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul (Dt)-624 302, Tamilnadu, India.
| | - Muthuswami Ruby Rajan
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul (Dt)-624 302, Tamilnadu, India
| | - Palanichamy Vidhya Bharathi
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul (Dt)-624 302, Tamilnadu, India
| |
Collapse
|
4
|
Basak C, Chakraborty R. Gut-immunity modulation in Lepidocephalichthys guntea during Aeromonas hydrophila-infection and recovery assessed with transcriptome data. Heliyon 2023; 9:e22936. [PMID: 38130423 PMCID: PMC10735050 DOI: 10.1016/j.heliyon.2023.e22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The fish immune system, which consists of innate and adaptive immunologic processes, defends against viruses, bacteria, fungi, and parasites. The gut immunity is an integral part of the host immune system that controls immunological homeostasis, hosts' interactions with their microbiomes, and provides defence against a number of intestinal infections. Lepidocephalichthys guntea, a facultative air-breathing fish, was experimentally infected with Aeromonas hydrophila using intraperitoneal injection followed by bath challenge, and transcriptome data were used to examine the gut immune responses during disease progression and recovery from the diseased state without the use of medication. For the control or uninfected fish (FGC) and the infected fish that were kept for seven days (FGE1) and fifteen days (FGE2), separate water tanks were set up. Coding DNA sequences (CDS) for FGC and FGE1, FGC and FGE2, and FGE1 and FGE2 were analyzed for differential gene expression (DGE). The presence and expression of genes involved in the T cell receptor (TCR) signalling pathway, natural killer (NK) cell-mediated cytotoxicity pathway, and complement-mediated pathway, along with a large number of other immune-related proteins, and heat shock protein (HSPs) under various experimental conditions and its relationship to immune modulation of the fish gut was the primary focus of this study. Significant up-and-down regulation of these pathways shows that, in FGE1, the fish's innate immune system was engaged, whereas in FGE2, the majority of innate immune mechanisms were repressed, and adaptive immunity was activated. Expression of genes related to the immune system and heat-shock proteins was induced during this host's immunological response, and this information was then used to build a thorough network relating to immunity and the heat-shock response. This is the first study to examine the relationship between pathogenic bacterial infection, disease reversal, and modification of innate and adaptive immunity as well as heat shock response.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| |
Collapse
|
5
|
Zhou N, Wang Z, Yang L, Zhou W, Qin Z, Zhang H. Size-dependent toxicological effects of polystyrene microplastics in the shrimp Litopenaeus vannamei using a histomorphology, microbiome, and metabolic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120635. [PMID: 36370970 DOI: 10.1016/j.envpol.2022.120635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Due to the wide application of plastic products in human life, microplastic pollution in water has recently attracted more attention. Many studies have revealed the size-dependent toxicity of microplastics. Here, we investigated the toxicological effects of polystyrene microplastics (PS-MPs) on the white leg shrimp, Litopenaeus vannamei, a profitable aquaculture species, using a comprehensive histomorphological, microbiome, and metabolomic approach to verify whether smaller particles are more toxic than larger particles. L. vannamei were experimentally exposed to water containing PS-MPs of four sizes (0.1, 1.0, 5.0, and 20.0 μm) for 24 h at 10 mg/L (acute experiment) and 12 d at 1 mg/L (subchronic experiment). After 24 h of acute exposure, PS-MP accumulation in shrimp indicated that the ingestion and egestion of PS-MPs had a size-dependent effect, and smaller particles were more bioavailable. The tissue morphological results of subchronic experiments showed that, for the guts and gills, the smaller sizes of the PS-MPs exhibited greater damage. In addition, 16 S rRNA gene amplicon sequencing showed that the alpha diversity was higher under larger PS-MP exposure. Correlated with changes in intestinal bacteria, we found a greater enrichment of metabolic pathways in hemolymph proteins and metabolites in larger PS-MP groups, such as "arginine and proline metabolism", "protein digestion and absorption", "lysine degradation". Interestingly, the activity or content of biomarkers of oxidative stress showed a peak at 1 μm and 5 μm. Under specific sizes of PS-MPs, the abundance of the pathogen Vibrio and probiotic bacteria Rhodobacter (5-μm) and Bacillus and Halomonas (1-μm) were simultaneously enriched. Our results indicated that PS-MP exposure can cause size-dependent damage to shrimp, yet specific particle size can be influential differently in regard to some research indicators. Therefore, it can enhance our comprehensive understanding of the impacts of microplastics on shrimp health and suggests that specific particle size should be considered when assessing the size-dependent toxicity of microplastics.
Collapse
Affiliation(s)
- Ningjia Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Lifeng Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Wenyao Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China.
| |
Collapse
|
6
|
Prevalence, Virulence Gene Distribution and Alarming the Multidrug Resistance of Aeromonas hydrophila Associated with Disease Outbreaks in Freshwater Aquaculture. Antibiotics (Basel) 2021; 10:antibiotics10050532. [PMID: 34064504 PMCID: PMC8147934 DOI: 10.3390/antibiotics10050532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/15/2023] Open
Abstract
The study aims to evaluate the infection prevalence, virulence gene distribution and antimicrobial resistance of Aeromonas hydrophila associated in diseased outbreaks of cultured freshwater fish in Northern Vietnam. The confirmed A. hydrophila were screened for the presence of the five pitutative-virulence genes including aerolysin (aerA), hemolysin (hlyA), cytotonic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), and heat-stable enterotoxin (ast), and examined the susceptibility to 16 antibiotics. A total of 236 A. hydrophila isolates were recovered and confirmed from 506 diseased fish by phenotypic tests, PCR assays, and gyrB, rpoB sequenced analyses, corresponding to the infection prevalence at 46.4%. A total of 88.9% of A. hydrophila isolates harbored at least one of the tested virulence genes. The genes aerA and act were most frequently found (80.5% and 80.1%, respectively) while the ast gene was absent in all isolates. The resistance to oxacillin, amoxicillin and vancomycin exhibited the highest frequencies (>70%), followed by erythromycin, oxytetracycline, florfenicol, and sulfamethoxazole/trimethoprim (9.3–47.2%). The multiple antibiotic resistance (MAR) index ranged between 0.13–0.88 with 74.7% of the isolates having MAR values higher than 0.2. The results present a warning for aquaculture farmers and managers in preventing the spread of A. hydrophila and minimizing antibiotic resistance of this pathogen in fish farming systems.
Collapse
|
7
|
Setiaji J, Feliatra F, Teruna HY, Lukistyowati I, Suharman I, Muchlisin ZA, Johan TI. Antibacterial activity in secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. F1000Res 2020; 9:1491. [PMID: 33537126 PMCID: PMC7839275 DOI: 10.12688/f1000research.26215.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Disease causing bacteria such as Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa present a problem for fish farming. Treatment to remove them are generally carried out using antibiotics which have side effects on fish, the environment and humans. However, the use of antibacterial compounds derived from heterotrophic bacteria serve as a good alternative for antibiotics. Therefore, this study aimed to explore antibacterial activity in the secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. Methods: Heterotrophic bacteria namely Bacillus sp. JS04 MT102913.1, Bacillus toyonensis JS08 MT102920.1, Bacillus cereus JS10 MT102922.1, Bacillus sp. JS11 MT102923.1, Pseudoalteromonas sp. JS19 MT102924.1, Bacillus cereus JS22 MT102926.1, and Bacillus sp. strain JS25 MT102927.1 were used in this study. The sequences of these bacteria have been deposited and are available from NCBI GenBank. Each heterotrophic bacterium was cultured on 6L nutrient broth for 8 days, and extracts produced using ethyl acetate to obtain their secondary metabolites. These extracts were tested for their phytochemical contents using FT-IR and also tested for their inhibitory property in pathogenic bacteria by agar diffusion method. Results: Phytochemical test results showed that the seven heterotrophic bacterial isolates produced terpenoid compounds. Based on the inhibitory test, the secondary metabolite extracts from Bacillus sp strain JS04 had the highest inhibitory effect on the growth of pathogenic bacteria namely, V. alginolyticus (17.5 mm), A. hydrophila (16.8 mm), and P. aeruginosa (17.3 mm). Conclusion: It was concluded that the secondary metabolite extracts of heterotrophic bacteria inhibit the growth of V. alginolyticus, A. hydrophila, and P. aeruginosa.
Collapse
Affiliation(s)
- Jarod Setiaji
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
- Faculty of Agriculture, Universitas Islam Riau, Pekanbaru, Riau, Indonesia
| | - Feli Feliatra
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Hilwan Yuda Teruna
- Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Iesje Lukistyowati
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Indra Suharman
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Zainal Abidin Muchlisin
- Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | | |
Collapse
|