1
|
Abdullah, Ahmad N, Xiao J, Tian W, Khan NU, Hussain M, Ahsan HM, Hamed YS, Zhong H, Guan R. Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156352. [PMID: 39740381 DOI: 10.1016/j.phymed.2024.156352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects. PURPOSE This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved. METHOD Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms. RESULTS Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption. CONCLUSION Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.
Collapse
Affiliation(s)
- Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naveed Ahmad
- Multan College of Food & Nutrition Sciences, Multan Medical & Dental College, Multan, Pakistan
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahya Saud Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Gao Y, Hu M, Meng W, Wen W, Zhang P, Fan B, Wang F, Li S. Study on the quality of soybean proteins fermented by Bacillus subtilis BSNK-5: Insights into nutritional, functional, safety, and flavor properties. Food Chem 2024; 443:138523. [PMID: 38286093 DOI: 10.1016/j.foodchem.2024.138523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Microbial fermentation emerges as a promising strategy to elevate the quality of soybean proteins in food industry. This study conducted a comprehensive assessment of the biotransformation of four types of soybean proteins by Bacillus subtilis BSNK-5, a proteinase-rich bacterium. BSNK-5 had good adaptability to each protein. Soluble protein, peptides and free amino acids increased in fermented soybean proteins (FSPs) and dominant after 48-84 h fermentation, enhancing nutritional value. Extensive proteolysis of BSNK-5 also improved antioxidant and antihypertensive activities, reaching peak level after 48 h fermentation. Furthermore, excessive proteolysis effectively enhanced the generation of beneficial spermidine without producing toxic histamine after fermentation, and formed the flavor profile with 56 volatiles in 48 h FSPs. Further degradation of amino acids showed a positive correlation with off-flavors, particularly the enrichment of 3-methylbutanoic acid. These findings establish a theoretical foundation for regulating moderate fermentation by BSNK-5 to enabling the high-value utilization of soybean protein.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Elgaffry O, Darwish WS, El Bayoumi RM, Hussein MA, Megahed A, Reda LM, Basiony A, Dawod YF. Biogenic amines' residues in meat products with a reference to their microbial status. Open Vet J 2024; 14:1394-1402. [PMID: 39055756 PMCID: PMC11268902 DOI: 10.5455/ovj.2024.v14.i6.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Meat products are widely recognized as substantial sources of protein derived from animals. Biogenic amines (BAs), naturally occurring toxins, are generated via the metabolism of specific amino acids by a vast array of microorganisms, including pathogenic and nonpathogenic strains. Aim The aim of this study was to ascertain the quantity of BAs produced in five meat products that are commercially available in Egypt. Additionally, the estimated daily BA intakes of the Egyptian populace as a result of consuming these animal products were computed. Additionally, a study was undertaken to investigate the relationship between total BAs (TBAs) and microbial counts, specifically total bacterial counts (TBCs), total psychrophilic counts (TPsC), total Staphylococcus aureus (TSC), and total Enterobacteriaceae count (TEC) as they pertained to the meat products under investigation. Methods One hundred samples of meat products (n = 20 for each) were selected at random from Egyptian markets. The collected samples included minced meat, luncheon, sausage, pasterma, and canned meat. The microbiological status and BA content of these samples were evaluated. Results Total BAs were calculated for the examined samples beef mince had the highest TBA content at 918.22 ± 21.3 mg/Kg followed by sausage at 575.1 ± 12.8 mg/Kg, luncheon at 567.1 ± 17.8 mg/Kg, pasterma at 417.0 ± 31.8 mg/Kg, and canned meat at 242.8 ± 21.8 mg/Kg. The calculated estimated human daily intake (EDI) values for TBA ranged between 21.24 in canned meat to 80.34 in beef mince. It was determined that beef mince had the highest microbial contamination rates as indicated by the high TBC, TPsC, TSC, and TEC at 5.69 ± 0.4, 4.2 ± 0.5, 2.4 ± 0.2, and 4.69 ± 0.1 log 10 cfu/g. Such counts were 3.6 ± 0.2, 2.4 ± 0.2, 1.2 ± 0.1, and 4.3± 0.2 log 10 cfu/g in sausage, 3.4 ± 0.3, 2.2 ± 0.1, 1.1 ± 0.1, and 4.0 ± 0.1 log 10 cfu/g in luncheon, 2.5 ± 0.1, 1.0 ± 0.1, 1.4 ± 0.08, and 2.69 ± 0.2 log 10 cfu/g in pasterma; while none of the examined canned meat harbored microbial contamination. Conclusion This study indicated the presence of several BAs in meat products sold in Egypt. According to the EDI values of the examined BAs, the consumption of meat products by the Egyptian populace did not pose a risk. However, it is imperative that the handling, storage, distribution, and promotion of meat products conform to sanitary protocols.
Collapse
Affiliation(s)
- Omnia Elgaffry
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wageh Sobhy Darwish
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. El Bayoumi
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed A. Hussein
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman Megahed
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa M. Reda
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Basiony
- Infection Control Unit, Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| | - Yomna F. Dawod
- Student Hospital, Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Improving the Shelf Life and Quality of Minced Beef by Cassia Glauca Leaf Extracts during Cold Storage. Processes (Basel) 2023. [DOI: 10.3390/pr11010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Minced beef is a popular meat product due to its low price and superior nutritional value. The contamination of minced beef is a significant risk for the worldwide meat market. Both natural and synthetic preservatives are used to expand the shelf life and improve the quality properties of meat. The harmful effects of synthetic preservatives make natural preservatives more appealing. Therefore, this research was performed to study the impact of different concentrations of Cassia glauca leaf extract (CGE) on increasing the shelf life of minced beef. Seventy-two minced beef samples were divided into control, 0.25, 0.5, and 1% w/w CGE treated groups. The control and treated samples were kept at 3 ± 1 °C in the refrigerator for 15 days. Minced beef samples’ sensory, chemical, and microbiological properties were assessed every three days. The gained results showed that the CGE addition effectively decreased the microbial count and maintained the minced beef’s sensory and chemical quality. Additionally, CGE extended the shelf life of minced meat up to 15 days under the proper refrigeration condition compared to the control group, which decomposed after the sixth day of refrigeration. Our study suggested that CGE could be used as a natural preservative for refrigerated minced meat.
Collapse
|
5
|
Tsafack PB, Tsopmo A. Effects of bioactive molecules on the concentration of biogenic amines in foods and biological systems. Heliyon 2022; 8:e10456. [PMID: 36105466 PMCID: PMC9465362 DOI: 10.1016/j.heliyon.2022.e10456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Biogenic amines (BAs) are a group of molecules naturally present in foods that contain amino acids, peptides, and proteins as well as in biological systems. In foods, their concentrations typically increase during processing and storage because of exposure to microorganisms that catalyze their formation by releasing amino acid decarboxylases. The concentrations of BAs above certain values are indicative of unsafe foods due to associate neuronal toxicity, allergenic reactions, and increase risks of cardiovascular diseases. There are therefore various strategies that focus on the control of BAs in foods mostly through elimination, inactivation, or inhibition of the growth of microorganisms. Increasingly, there are works on bioactive compounds that can decrease the concentration of BAs through their antimicrobial activity as well as the inhibition of decarboxylating enzymes that control their formation in foods or amine oxidases and N-acetyltransferase that control the degradation in vivo. This review focusses on the role of food-derived bioactive compounds and the mechanism by which they regulate the concentration of BAs. The findings are that most active molecules belong to polyphenols, one of the largest groups of plant secondary metabolites, additionally other useful +compounds are present in extracts of different herbs and spices. Different mechanisms have been proposed for the effects of polyphenols depending on the model system. Studies on the effects in vivo are limited and there is a lack of bioavailability and transport data which are important to assess the importance of the bioactive molecules.
Collapse
Affiliation(s)
- Patrick Blondin Tsafack
- Nutrition and Functional Food, School of Biosciences and Veterinary Medicine, University of Camerino, Via A. D'Accorso, 16, Camerino, Italy
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
6
|
Lin Z, Wu ZY, Zhang WX. Bioinformatics analysis of amino acid decarboxylases related to four major biogenic amines in pickles. Food Chem 2022; 393:133339. [PMID: 35653994 DOI: 10.1016/j.foodchem.2022.133339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Microbial amino acid decarboxylases (AADs) produce biogenic amines (BAs) in fermented food. However, a systematic comparison of the AADs' properties from different microorganisms in pickle fermentation remains unexplored. Here, we bioinformatically analyzed the amino acid sequences of AADs corresponding to four major BAs for common microorganisms in pickle fermentation. We showed that their sequences, besides tyrosine decarboxylase, differed among microorganisms. Overall, the AAD sequences varied lesser among bacterial species than between bacteria and fungi, with those in Lactobacillus sharing occasionally high similarity with other bacteria. Most AADs were predicted as stable cytosolic endoenzymes. Molecular docking showed that most commonly used spice components in pickle production, especially pepper, chili, and ginger, strongly bind to the AAD active sites, thus may inhibit the enzymes and reduce the BA accumulation. This study provides insights for deeply understanding the different microbial AAD properties in pickle fermentation and reducing BAs by appropriately using spices.
Collapse
Affiliation(s)
- Ze Lin
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zheng-Yun Wu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| | - Wen-Xue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
7
|
Dai Z, Han L, Li Z, Gu M, Xiao Z, Lu F. Combination of Chitosan, Tea Polyphenols, and Nisin on the Bacterial Inhibition and Quality Maintenance of Plant-Based Meat. Foods 2022; 11:foods11101524. [PMID: 35627094 PMCID: PMC9140481 DOI: 10.3390/foods11101524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plant-based meat products have gained attention in the food industry and with consumers. Plant-based meat products primarily comprise plant proteins and are rich in nutrients. However, the products are highly susceptible to bacterial contamination during storage. Biological preservatives are easily degradable alternatives to chemical preservatives and can preserve different kinds of food. In order to investigate the preservation properties of chitosan (CS), tea polyphenols (TPs), and nisin treatments on plant-based meats, the sensory evaluation, color difference, pH, TBARS, and the total plate count of E. coli, S. aureus, and Salmonella, indicators of the biological preservative-treated plant-based meat, were determined in this study. The experiment involved blank control- and biological preservative-treated samples. We found that the total microbial count exceeded the national standard provisions in the control samples stored for 14 days. The colors, tissue structures, and flavors of plant-based meat have gradually deteriorated, with the sensory score dropping from 90 to 52. The sample had a loose tissue structure and an obvious sour taste. However, the shelf life of the plant-based meat samples treated with different combinations of the biological preservatives increased compared to the shelf life of the control samples. After 56 d of storage, 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin sensory reduction to 56, the total number of colonies and S. aureus were 4.91 and 2.95 lg CFU/g, approaching the national standard threshold; E. coli was 2 lg CFU/g, reaching the national standard threshold. Thus, the samples treated with 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin had the longest shelf life (56 days) among all experimental groups. Hence, this study reveals that a combination of biological preservatives may be a non-toxic alternative for the efficient preservation of plant-based meat products.
Collapse
Affiliation(s)
- Zenghui Dai
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Linna Han
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
8
|
Schirone M, Esposito L, D’Onofrio F, Visciano P, Martuscelli M, Mastrocola D, Paparella A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022; 11:foods11060788. [PMID: 35327210 PMCID: PMC8947279 DOI: 10.3390/foods11060788] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Biogenic amines (BAs) can be found in a wide range of meat and meat products, where they are important as an index for product stability and quality, but also for their impact on public health. This review analyzes the scientific evidence gathered so far on the presence and role of biogenic amines in meat and meat products, also considering the effect of technological conditions on BAs accumulation or decrease. The data provided can be useful for developing solutions to control BAs formation during the shelf-life, for example by novel starters for dry cured products, as well as by packaging technologies and materials for fresh meats. Further research, whose trends are reviewed in this paper, will fill the knowledge gaps, and allow us to protect such perishable products along the distribution chain and in the home environment.
Collapse
Affiliation(s)
| | | | | | - Pierina Visciano
- Correspondence: (P.V.); (M.M.); Tel.: +39-0861-266911 (P.V. & M.M.)
| | | | | | | |
Collapse
|
9
|
Pashangeh S, Shekarforoush SS, Aminlari M, Hosseinzadeh S, Nizet V, Dahesh S, Rahmdel S. Inhibition of histamine accumulation by novel histamine-degrading species of Staphylococcus sp. isolated from goats and sheep milk. Food Sci Nutr 2022; 10:354-362. [PMID: 35154673 PMCID: PMC8825735 DOI: 10.1002/fsn3.2723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Histamine is an active amine compound that occurs in various fermented foods that may cause adverse effects on the human health. Certain microorganisms are able to degrade histamine by an oxidative deamination reaction. Therefore, the present study aimed to quantify histamine-forming and/or -degrading activity of the isolates derived from milk of goat and sheep herds, in Iran, by the capillary zone electrophoresis (CZE) method; and we evaluated the molecular characteristics of staphylococcal isolates. Among 243 staphylococcal isolates, 29 histamine-degrading bacteria were identified. One of these isolates, identified as Staph. epidermidis, No. 605, exhibited the highest activity compared to others, degrading available histamine to 58.33% within 24 h. By polymerase chain reaction (PCR) analysis, the isolate, No. 605 that exhibited remarkable histamine-degrading activity lacked the genes encoding coagulase and DNase, nor did it harbor any of the five classical enterotoxin genes. This is the first report to show that seven Staphylococcus species, including Staph. chromogenes, Staph. aureus, Staph. haemolyticus, Staph. epidermidis, Staph. pseudintermedius, Staph. agnetis, and Staph. hyicus, were able to degrade histamine, which were hitherto not known to have this capacity. Therefore, histamine-degrading activity is a definite criterion to introduce fermenting organisms able to decrease histamine content in different food products.
Collapse
Affiliation(s)
- Safoora Pashangeh
- Department of Food Hygiene and Public HealthSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Mahmoud Aminlari
- Department of BiochemistrySchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public HealthSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Victor Nizet
- Department of PediatricsSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Samira Dahesh
- Department of PediatricsSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Samane Rahmdel
- Department of Food Hygiene and Public HealthSchool of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
10
|
El‐Ghareeb WR, Elhelaly AE, Abdallah KME, El‐Sherbiny HMM, Darwish WS. Formation of biogenic amines in fish: Dietary intakes and health risk assessment. Food Sci Nutr 2021; 9:3123-3129. [PMID: 34136177 PMCID: PMC8194964 DOI: 10.1002/fsn3.2271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 01/30/2023] Open
Abstract
Biogenic amines (BAs) are toxicants that are produced during the proteolytic activities of some microorganisms, or naturally during the metabolism of their precursor amino acids. The objective of this study was to estimate the formed BAs in six types of fish retailed in Egypt including tilapia, mullet, mackerel, sardine, herring, and tuna. In addition, total mesophilic (TMC) and total psychrophilic (TPsC) bacterial counts were investigated. Furthermore, the estimated daily intakes (EDI) of BAs via the ingestion of various types of fish in Egypt were calculated, and their potential health risks were discussed. The achieved results indicated the formation of histamine (HIS), tyramine (TYR), cadaverine (CAD), putrescine, spermine, and spermidine at different concentrations. Tilapia had the lowest concentration levels for the different BAs. In contrast, mackerel and tuna had the highest concentrations of BAs. Total biogenic amines (TBAs) showed significant positive correlations with TMC in the examined fish species. The recorded EDI values of the different BAs in the current study would not have adverse effects, except for mackerel and tuna. Excessive consumption of fish contaminated with BA might have serious health hazards such as symptoms of histamine poisoning, including rashes, flushing, palpitations, and asthma. Therefore, the adoption of strict hygienic measures during the processing, storage, and distribution of fish is highly recommended to reduce the formation of BAs in fish.
Collapse
Affiliation(s)
- Waleed Rizk El‐Ghareeb
- Department of Public HealthCollege of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Abdelazim Elsayed Elhelaly
- Department of Frontier Science for ImagingSchool of MedicineGifu UniversityGifuJapan
- Department of Food Hygiene and ControlFaculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | | | | | - Wageh Sobhy Darwish
- Food Control DepartmentFaculty of Veterinary MedicineZagazig UniversityZagazigEgypt
| |
Collapse
|
11
|
Jaguey-Hernández Y, Aguilar-Arteaga K, Ojeda-Ramirez D, Añorve-Morga J, González-Olivares LG, Castañeda-Ovando A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res Int 2021; 144:110341. [PMID: 34053537 DOI: 10.1016/j.foodres.2021.110341] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Fermented and/or protein-rich foods, the most widely consumed worldwide, are the most susceptible to the presence of high levels of biogenic amines (BAs). Many reviews have focused on BAs toxicity and presence in foods; however, technological strategies such as evaluation of physical parameters, the addition of natural or synthetic compounds or the use of specific starter cultures of BAs reduction, and quick detection methods have been scarcely approached. In current research, there has been a focus on fast detection of BAs through colorimetric methods that allow these compounds to be quickly and easily identified by consumers. To reduce BAs presence in food, several alternatives have been developed and investigated with the aim of preventing negative effects caused by their intake, which can be applied before, during, or after processing. Food safety is one of the most important concerns of consumer and sanitary authorities. Therefore, detecting toxins such as BAs in food has become a priority for research. Recent reports that focus on the development of rapid detection methods of BAs are reviewed in this analysis. These methods have been successfully applied to food matrices with little to no sample pretreatment. Several alternatives for BAs reduction in food was also summarized. These findings will help the food industry to improve its processes for developing safe food.
Collapse
Affiliation(s)
- Yari Jaguey-Hernández
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Karina Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Carr. Tepatepec-San Juan Tepa km. 2, 42660 Francisco I. Madero, Hgo., Mexico
| | - Deyanira Ojeda-Ramirez
- Universidad Autonoma del Estado de Hidalgo, Veterinary Medicine Department, Rancho Universitario Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, 43600 Tulancingo, Hgo., Mexico
| | - Javier Añorve-Morga
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Luis Guillermo González-Olivares
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico
| | - Araceli Castañeda-Ovando
- Universidad Autonoma del Estado de Hidalgo, Chemistry Department, Carr. Pachuca-Tulancingo km. 4.5, 42184 Mineral de la Reforma, Hgo., Mexico.
| |
Collapse
|
12
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Djenane D, Aboudaou M, Djenane F, García-Gonzalo D, Pagán R. Improvement of the Shelf-Life Status of Modified Atmosphere Packaged Camel Meat Using Nisin and Olea europaea Subsp. laperrinei Leaf Extract. Foods 2020; 9:foods9091336. [PMID: 32971898 PMCID: PMC7555406 DOI: 10.3390/foods9091336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The impact of combined biopreservation treatment with Olea europaea subsp. laperrinei leave extracts (laper.OLE) and nisin on the quality attributes of camel steaks packaged under high O2 (80%) and CO2 (20%) atmosphere was investigated during refrigerated (1 ± 1 °C) long-term storage. As measured by reversed phase HPLC/DAD analysis, oleuropein is the phenolic compound most present in the chemical composition of laper.OLE (63.03%). Camel steaks treated with laper.OLE had a lower concentration of thiobarbituric acid-reactive substances (TBA-RSs) in the course of 30 days of storage. Surface metmyoglobin (MetMb) increased at a reduced rate in laper.OLE-treated samples compared to control samples. Neither modified atmosphere packaging (MAP) nor biopreservation treatments significantly altered the tenderness of camel steaks, expressed in terms of Warner-Bratzler shear force (WBSF), as compared to control samples. After 30 days of storage, psychrotrophic bacteria and Pseudomonas spp. counts were significantly lower in camel steaks treated with a combination of laper.OLE and nisin than in untreated steaks. Moreover, samples treated with laper.OLE received higher scores on bitterness acceptability. In sum, the use of combined biopreservation methods could be a sustainable solution for the preservation and promotion of the quality characteristics of camel meat in arid regions.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Correspondence: ; Tel.: +213-779-001-384; Fax: +213-261-861-56
| | - Malek Aboudaou
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Fatiha Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| |
Collapse
|