1
|
Liao JF, Lee CC, Lee MC, Hsu HY, Wang MF, Huang CC, Young SL, Watanabe K, Lin JS. A comprehensive approach, based on the use of Caenorhabditis elegans, mouse, and human models, elucidates the impact of Lactiplantibacillus plantarum TWK10 on exercise performance and longevity. Curr Res Food Sci 2025; 10:101015. [PMID: 40144895 PMCID: PMC11937699 DOI: 10.1016/j.crfs.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
The functionality of probiotics is highly influenced by culture and processing conditions, making batch stability validation through human or mouse trials impractical. Here, we employed a comprehensive approach using Caenorhabditis elegans, mouse and human models to elucidate the beneficial effects of Lactiplantibacillus plantarum TWK10 (TWK10). In C. elegans, TWK10 administration significantly prolonged lifespan by 26.1 ± 11.9 % (p < 0.05), enhanced locomotion (p < 0.01) and muscle mass (p < 0.001), elevated glycogen storage (p < 0.05), and reduced lipid accumulation (p < 0.001), outperforming Lacticaseibacillus rhamnosus GG and L. plantarum type strain ATCC 14917T. We also confirmed the equivalence of laboratory-prepared and mass-produced TWK10 in ergogenic efficacy using C. elegans assay. In mice, oral administration of mass-produced TWK10 significantly enhanced exercise performance and glycogen storage in muscle and liver in a dose-dependent manner. In a clinical study involving healthy male adults, significant improvements in grip strength (1.1-fold, p < 0.01) and exhaustion time (1.27-fold, p < 0.01), and significant reductions in circulating lactate and ammonia levels were observed in the TWK10 group (1 × 1010 colony-forming unit/day) compared to the control group. Both humans and mice receiving mass-produced TWK10 showed improved body composition with increased muscle mass and reduced fat mass. In conclusion, TWK10 demonstrates superior longevous and ergogenic effects in C. elegans compared to reference strains. The consistent ergogenic efficacy of mass-produced TWK10 across C. elegans, mice, and humans, highlights the utility of C. elegans as a reliable model for probiotic research and industrial application.
Collapse
Affiliation(s)
- Jian-Fu Liao
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Chia-Chia Lee
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Road., Guishan District, Taoyuan City, 333325, Taiwan
- Center for General Education, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City, 110, Taiwan
| | - Han-Yin Hsu
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City, 43301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Road., Guishan District, Taoyuan City, 333325, Taiwan
| | - San-Land Young
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Koichi Watanabe
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei City, 10672, Taiwan
| | - Jin-Seng Lin
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| |
Collapse
|
2
|
Cheng Y, Lee C, Lee M, Hsu H, Lin J, Huang C, Watanabe K. Effects of heat-killed Lactiplantibacillus plantarum TWK10 on exercise performance, fatigue, and muscle growth in healthy male adults. Physiol Rep 2023; 11:e15835. [PMID: 37816697 PMCID: PMC10564709 DOI: 10.14814/phy2.15835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Consumption of Lactiplantibacillus plantarum TWK10 (TWK10) has beneficial probiotic effects, improves exercise endurance performance, regulates body composition, and mitigates aging-related problems in mice and humans. Here, we investigated the effects of heat-killed TWK10 on exercise endurance performance, muscle weight and strength, fatigue, and body composition in a double-blind, placebo-controlled clinical trial. Thirty healthy males aged 20-40 years were assigned to the Control group or heat-killed TWK10 group (TWK10-HK) in a balanced order according to each individual's initial maximal oxygen uptake. After 6-week administration, the exercise endurance time in the TWK10-HK was significantly increased (p = 0.0028) compared with that in the Control group. The grip strength on the right and left hands of the subjects was significantly increased (p = 0.0002 and p = 0.0140, respectively) in the TWK10-HK compared with that in the Control group. Administration of heat-killed TWK10 resulted in a significant increase (p = 0.0275) in muscle weight. After 6-week administration, serum lactate, and ammonia levels were significantly lower in the TWK10-HK group than in the Control group during the exercise and recovery periods. These findings demonstrate that heat-killed TWK10 has significant potential to be used as a postbiotic for humans.
Collapse
Affiliation(s)
- Yi‐Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH IncorporationKaohsiungTaiwan
| | - Chia‐Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH IncorporationKaohsiungTaiwan
| | - Mon‐Chien Lee
- Graduate Institute of Sports ScienceNational Taiwan Sport UniversityTaoyuanTaiwan
| | - Han‐Yin Hsu
- Culture Collection & Research Institute, SYNBIO TECH IncorporationKaohsiungTaiwan
| | - Jin‐Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH IncorporationKaohsiungTaiwan
| | - Chi‐Chang Huang
- Graduate Institute of Sports ScienceNational Taiwan Sport UniversityTaoyuanTaiwan
| | - Koichi Watanabe
- Culture Collection & Research Institute, SYNBIO TECH IncorporationKaohsiungTaiwan
- Department of Animal Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Lee CC, Liao YC, Lee MC, Cheng YC, Chiou SY, Lin JS, Huang CC, Watanabe K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms 2022; 10:2181. [PMID: 36363775 PMCID: PMC9692508 DOI: 10.3390/microorganisms10112181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 03/21/2024] Open
Abstract
Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve exercise performance, regulate body composition, and ameliorate age-related declines. Here, we performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise performance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day), and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-associated features and reduced exercise-induced inflammation, compared with controls. Viable TWK10 significantly promoted improved body composition, by increasing muscle mass proportion and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predictive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10. In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively. Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Shiou-Yun Chiou
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Koichi Watanabe
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
4
|
Li Y, Wang S, Quan K, Ma D, Zhang H, Zhang W, Chen Z, Kwok LY, Zhang Y, Sun Z. Co-administering yeast polypeptide and the probiotic, Lacticaseibacillus casei Zhang, significantly improves exercise performance. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Murphy EA, Velázquez KT. The role of diet and physical activity in influencing the microbiota/microbiome. DIET, INFLAMMATION, AND HEALTH 2022:693-745. [DOI: 10.1016/b978-0-12-822130-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Liu C, Cheung W, Li J, Chow SK, Yu J, Wong SH, Ip M, Sung JJY, Wong RMY. Understanding the gut microbiota and sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle 2021; 12:1393-1407. [PMID: 34523250 PMCID: PMC8718038 DOI: 10.1002/jcsm.12784] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/03/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gut microbiota dysbiosis and sarcopenia commonly occur in the elderly. Although the concept of the gut-muscle axis has been raised, the casual relationship is still unclear. This systematic review analyses the current evidence of gut microbiota effects on muscle/sarcopenia. METHODS A systematic review was performed in PubMed, Embase, Web of Science, and The Cochrane Library databases using the keywords (microbiota* OR microbiome*) AND (sarcopen* OR muscle). Studies reporting the alterations of gut microbiota and muscle/physical performance were analysed. RESULTS A total of 26 pre-clinical and 10 clinical studies were included. For animal studies, three revealed age-related changes and relationships between gut microbiota and muscle. Three studies focused on muscle characteristics of germ-free mice. Seventy-five per cent of eight faecal microbiota transplantation studies showed that the recipient mice successfully replicated the muscle phenotype of donors. There were positive effects on muscle from seven probiotics, two prebiotics, and short-chain fatty acids (SCFAs). Ten studies investigated on other dietary supplements, antibiotics, exercise, and food withdrawal that affected both muscle and gut microbiota. Twelve studies explored the potential mechanisms of the gut-muscle axis. For clinical studies, 6 studies recruited 676 elderly people (72.8 ± 5.6 years, 57.8% female), while 4 studies focused on 244 young adults (29.7 ± 7.8 years, 55.4% female). The associations of gut microbiota and muscle had been shown in four observational studies. Probiotics, prebiotics, synbiotics, fermented milk, caloric restriction, and exercise in six studies displayed inconsistent effects on muscle mass, function, and gut microbiota. CONCLUSIONS Altering the gut microbiota through bacteria depletion, faecal transplantation, and various supplements was shown to directly affect muscle phenotypes. Probiotics, prebiotics, SCFAs, and bacterial products are potential novel therapies to enhance muscle mass and physical performance. Lactobacillus and Bifidobacterium strains restored age-related muscle loss. Potential mechanisms of microbiome modulating muscle mainly include protein, energy, lipid, and glucose metabolism, inflammation level, neuromuscular junction, and mitochondrial function. The role of the gut microbiota in the development of muscle loss during aging is a crucial area that requires further studies for translation to patients.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Wing‐Hoi Cheung
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Jie Li
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Simon Kwoon‐Ho Chow
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Jun Yu
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Sunny Hei Wong
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Margaret Ip
- Department of MicrobiologyThe Chinese University of Hong KongHong Kong SARChina
| | - Joseph Jao Yiu Sung
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Xie G, Zheng H, Qiu Z, Lin Z, Peng Q, Dula Bealu G, Elsheery NI, Lu Y, Shen C, Fu J, Yang H, Han J, Lu J, Liu G. Study on relationship between bacterial diversity and quality of Huangjiu (Chinese Rice Wine) fermentation. Food Sci Nutr 2021; 9:3885-3892. [PMID: 34262745 PMCID: PMC8269602 DOI: 10.1002/fsn3.2369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Huangjiu (Chinese rice wine) is brewed in an open environment, where bacteria play an important role during the fermentation process. In this study, bacterial community structure and composition changes in the fermented mash liquid of mechanized Huangjiu, well-fermented manual Huangjiu (wines of good qualities), and poorly fermented manual Huangjiu (wines of poor qualities: spoilage, high acidity, low alcohol content) in different fermentation stages from Guyuelongshan Shaoxing Huangjiu company were analyzed via metagenomic sequencing. And bacterial metabolic difference was analyzed via gene prediction of metabolic pathway enzymes. The results showed that the bacterial diversity degree was abundant, and the number of bacterial species in every sample was approximately 200-400. Lactic acid bacteria (LAB) dominated the bacterial community of Huangjiu fermentation, and lactobacillus was predominant species in well-fermented Huangjiu while Lactobacillus brevis had an absolute dominance in spoilage Huangjiu. Further, gene prediction revealed that transformation of malate to pyruvate and lactate anabolism was more active in mash liquid of well-fermented manual Huangjiu, while acetate accumulation was stronger in mash liquid of poorly fermented manual Huangjiu, which explained acidity excess reason in poorly fermented Huangjiu at gene level.
Collapse
Affiliation(s)
- Guangfa Xie
- College of Biology and Environmental EngineeringCollege of Shaoxing CRWZhejiang Shuren UniversityHangzhouChina
| | - Huajun Zheng
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
| | - Zheling Qiu
- Shaoxing Jianhu Brewing Co., LtdShaoxingChina
| | - Zichen Lin
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
| | - Qi Peng
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
- California Institute of Food and Agricultural ResearchUniversity of CaliforniaDavisCAUSA
| | - Girma Dula Bealu
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
| | | | - Yin Lu
- College of Biology and Environmental EngineeringCollege of Shaoxing CRWZhejiang Shuren UniversityHangzhouChina
| | - Chi Shen
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
| | - Jianwei Fu
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
| | - Huanyi Yang
- School of Life ScienceNational Engineering Research Center for Chinese CRW (Branch Center)Shaoxing UniversityShaoxingChina
| | | | - Jian Lu
- School of BiotechnologyNational Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
| | | |
Collapse
|
9
|
Huang T, Zhou W, Ma X, Jiang J, Zhang F, Zhou W, He H, Cui G. Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiol Lett 2021; 368:6293841. [PMID: 34089327 DOI: 10.1093/femsle/fnab063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity, which is often caused by adipocyte metabolism dysfunction, is rapidly becoming a serious global health issue. Studies in the literature have shown that camellia oil (Camellia oleifera Abel) exerted potential lipid regulation and other multiple biological activities. Here, we aimed to investigate the effects of camellia oil on obese mice induced by a high-fat diet and to explore gut microbiota alterations after camellia oil intervention. The results showed that oral administration of camellia oil dramatically attenuated the fat deposits, serum levels of the total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting plasma glucose, the atherosclerosis index, the hepatic steatosis and inflammation in high-fat diet-induced obese mice. Meanwhile, the high-density lipoprotein cholesterol level in obese mice was enhanced after the camellia oil treatment. Furthermore, 16S rRNA analysis showed that certain aspects of the gut microbiota, especially the gut microbiota diversity and the relative abundance of Actinobacteria, Coriobacteriaceae, Lactobacillus and Anoxybacillus, were significantly increased by camellia oil treatment while the ratio of Firmicutes to Bacteroidetes was decreased. Taken together, our finding suggested that camellia oil was a potential dietary supplement and functional food for ameliorating fat deposits, hyperglycemia and fatty liver, probably by modifying the gut microbiota composition.
Collapse
Affiliation(s)
- Tianyang Huang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Weikang Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiangguo Ma
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Jianhui Jiang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Fuan Zhang
- Guizhou Camellia Oil Engineering Technology Research Center, Tongren, Guizhou, China
| | - Wanmeng Zhou
- Guizhou Camellia Oil Engineering Technology Research Center, Tongren, Guizhou, China
| | - Hao He
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|