1
|
Du H, Li S, Yao H, Wang N, Zhao R, Meng F. Bacteriocin Mining in Lactiplantibacillus pentosus PCZ4 with Broad-Spectrum Antibacterial Activity and Its Biopreservative Effects on Snakehead Fish. Foods 2024; 13:3863. [PMID: 39682938 DOI: 10.3390/foods13233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Some lactic acid bacteria (LAB) produce antibacterial substances such as bacteriocins, making them promising candidates for food preservation. In our study, Lactiplantibacillus pentosus PCZ4-a strain with broad-spectrum antibacterial activity-was isolated from traditional fermented kimchi in Sichuan. Whole-genome sequencing of PCZ4 revealed one chromosome and three plasmids. Through BAGEL4 mining, classes IIa and IIb bacteriocin plantaricin S were identified. Additionally, two new antibacterial peptides, Bac1109 and Bac2485, were predicted from scratch by limiting open reading frames. Furthermore, during refrigerated storage of snakehead fish, PCZ4 crude extract reduced the total bacterial count, slowed the increase in TVB-N and pH values, improved the sensory quality of the snakehead, and extended its shelf life by 2 days. Meanwhile, PCZ4 effectively inhibited the growth of artificially contaminated Aeromonas hydrophila in snakehead fish. These findings indicate that Lp. pentosus PCZ4 can produce multiple antibacterial substances with strong potential for food preservation applications.
Collapse
Affiliation(s)
- Hechao Du
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
| | - Siyu Li
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
| | - Hongliang Yao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
| | - Nannan Wang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ruiqiu Zhao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
2
|
Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, Rastegar H, Mohammadi SA, Azadmard-Damirchi S. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications. J Appl Microbiol 2024; 135:lxae274. [PMID: 39496524 DOI: 10.1093/jambio/lxae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
Bacteriocins, natural antimicrobial peptides produced by bacteria, present eco-friendly, non-toxic, and cost-effective alternatives to traditional chemical antimicrobial agents in the food industry. This review provides a comprehensive update on the classification of bacteriocins in food preservation. It highlights the significant industrial potential of pediocin-like and two-peptide bacteriocins, emphasizing chemical synthesis methods like Fmoc-SPPS to meet the demand for bioactive bacteriocins. The review details the mode of action, focusing on mechanisms such as transmembrane potential disruption and pH-dependent effects. Furthermore, it addresses the limitations of bacteriocins in food preservation and explores the potential of nanotechnology-based encapsulation to enhance their antimicrobial efficacy. The benefits of nanoencapsulation, including improved stability, extended antimicrobial spectrum, and enhanced functionality, are underscored. This understanding is crucial for advancing the application of bacteriocins to ensure food safety and quality.
Collapse
Affiliation(s)
- Sara Bahrami
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Dadgarnejad
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ali Mohammadi
- Faculty of Nursing and Midwifery, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Wang Y, Fu X, Wang Y, Wang J, Kong L, Guo H. Antibacterial Activity and Cytotoxicity of the Novel Bacteriocin Pkmh. Int J Mol Sci 2024; 25:9153. [PMID: 39273101 PMCID: PMC11395391 DOI: 10.3390/ijms25179153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Bacteriocins are a class of proteins produced by bacteria that are toxic to other bacteria. These bacteriocins play a role in bacterial competition by helping to inhibit potential competitors. In this study, we isolated and purified a novel bacteriocin Pkmh, different from the previously reported bacteriocin PA166, from Pseudomonas sp. strain 166 by ammonium sulfate precipitation, dialysis membrane method, ion exchange chromatography, and gel filtration chromatography. SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) revealed that the molecular weight of Pkmh is approximately 35 kDa. Pkmh exhibited potent antimicrobial activity against bovine Mannheimia haemolytica (M. haemolytica) with low cytotoxicity, and lower hemolytic activity was observed. In addition, Pkmh retained antimicrobial activity at different pH ranges (2-10) and temperature conditions (40, 60, 80, 100 °C). Our analysis of its antimicrobial mechanism showed that Pkmh acts on bacterial cell membranes, increasing their permeability and leading to cell membrane rupture and death. In conclusion, Pkmh exhibited low hemolytic activity, low toxicity, and potent antibacterial effects, suggesting its potential as a promising candidate for clinical therapeutic drugs.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Xiaojia Fu
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Yue Wang
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Jun Wang
- College of Life Science, Jilin Normal University, Siping 136000, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiyong Guo
- College of Life Science, Jilin Normal University, Siping 136000, China
| |
Collapse
|
4
|
Anyairo CS, Unban K, Wongputtisin P, Rojtinnakorn J, Shetty K, Khanongnuch C. Bacillus spp. Isolated from Miang as Potential Probiotics in Nile Tilapia Culture-In Vitro Research. Microorganisms 2024; 12:1687. [PMID: 39203529 PMCID: PMC11357345 DOI: 10.3390/microorganisms12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Among 79 Bacillus spp. isolated from Miang, a fermented tea in north Thailand, 17 Bacillus strains were selected with probiotic potential in Nile tilapia culture based on the capabilities of bacteriocin production and associated antimicrobial activities against fish pathogens, Aeromonas hydrophila and Streptococcus agalactiae. However, only six isolates were selected for further extensive studies based on the strength of their antimicrobial activities and their tolerance against simulated gastrointestinal conditions. The molecular identification by 16S rRNA gene sequence analysis revealed that five isolates, K2.1, K6.1, K7.1, K15.4, and K22.6, were Bacillus tequilensis, and the isolate K29.2 was Bacillus siamensis. B. siamensis K29.2 showed complete susceptibility to antibiotics tested in this study, while B. tequilensis K 15.4 showed moderate resistance to some antibiotics; therefore, both strains were selected as potential probiotic bacteria. B. tequilensis K15.4 and B. siamensis K29.2 were capable of the production and secretion of extracellular protease and polysaccharide degrading enzymes, including cellulase, xylanase, and β-mannanase. The tannin tolerant test also demonstrated their ability to grow on selective agar plates and secrete cellulase and β-mannanase in the presence of hydrolyzable tannin. In addition, in vitro digestion of commercial fish substrate revealed that the extracellular enzymes produced by both strains efficiently reacted with feed protein and polysaccharides. Based on the results from this study, B. siamensis K29.2 was deemed to have the highest potential multifunctional probiotic qualities for application in Nile tilapia culture, while the antibiotic-resistant gene in B. tequilensis K15.4 must be clarified before field application.
Collapse
Affiliation(s)
- Chioma Stella Anyairo
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
| | - Kridsada Unban
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Muang, Chiang Mai 50100, Thailand
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand;
| | - Jiraporn Rojtinnakorn
- Faculty of Fisheries and Technology, Maejo University, Sansai, Chiang Mai 50120, Thailand;
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
- Research Center for Multidisciplinary Approaches to Miang, Science and Technology Research Institute Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Research Center for Microbial Diversity and Sustainable Utilization, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Elnar AG, Kim GB. In Vitro and In Silico Characterization of N-Formylated Two-Peptide Bacteriocin from Enterococcus faecalis CAUM157 with Anti-Listeria Activity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10265-9. [PMID: 38743207 DOI: 10.1007/s12602-024-10265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Enterococcus faecalis CAUM157 (KACC 81148BP), a Gram-positive bacteria isolated from raw cow's milk, was studied for its bacteriocin production. The antimicrobial activity of CAUM157 was attributed to a two-peptide class IIb bacteriocin with potent activity against food-borne pathogen Listeria monocytogenes and periodontal disease-causing pathogens (Prevotella intermedia KCTC 15693 T and Fusobacterium nucleatum KCTC 2488 T). M157 bacteriocins exhibit high temperature and pH stability and resist hydrolytic enzyme degradation and detergent denaturation, potentially due to their structural conformation. Based on amino acid sequence, M157A and M157B were predicted to be 5.176 kDa and 5.182 kDa in size, respectively. However, purified bacteriocins and chemically synthesized N-formylated M157 peptides both showed 5.204 kDa (M157A) and 5.209 kDa (M157B) molecular mass, confirming the formylation of the N-terminal methionine of both peptides produced by strain CAUM157. Furthermore, the strain demonstrated favorable growth and fermentation with minimal bacteriocin production when cultured in whey-based media, whereas a 1.0% tryptone or soytone supplementation resulted in higher bacteriocin production. Although Ent. faecalis CAUM157 innately harbors genes for virulence factors and antimicrobial resistance (e.g., tetracycline and erythromycin), its bacteriocin production is valuable in circumventing the need for live microorganisms, particularly in food applications for pathogen control.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
6
|
Tiwari I, Bhojiya AA, Prasad R, Porwal S, Varma A, Choudhary DK. Putative Role of Anti-microbial Peptide Recovered from Lactiplantibacillus spp. in Biocontrol Activity. Curr Microbiol 2024; 81:88. [PMID: 38311656 DOI: 10.1007/s00284-023-03586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024]
Abstract
Antimicrobial peptides (AMPs) stand as a promising alternative to conventional pesticides, leveraging a multifaceted approach to combat plant pathogens. This study focuses on identifying and characterizing the AMP produced by Lactiplantibacillus argentoratensis strain IT, demonstrating potent antibacterial activity against various harmful microorganisms. Evaluation of AMPs' antibacterial activity was conducted through an agar well diffusion assay, a reliable method for assessing secondary metabolite antimicrobial efficacy. The study unveils the antimicrobial potential of the purified extract obtained from Lactiplantibacillus argentoratensis IT, isolated from goat milk. Notably, the AMP exhibited robust antibacterial activity against phytopathogens affecting solanaceous crops, including the Gram-negative Ralstonia solanacearum. Expression conditions and purification methods were optimized to identify the peptide's mass and sequence, utilizing LC-MS and SDS-PAGE. This paper underscores the application potential of Lactiplantibacillus spp. IT as a biocontrol agent for managing bacterial infectious diseases in plants. Results indicate optimal AMP production at 37 °C, with a culture broth pH of 5 during fermentation. The obtained peptide sequence corresponded to peaks at 842.5 and 2866.4 m/z ratio, with a molecular weight of approximately 5 kDa according to tricine SDS-PAGE analysis. In conclusion, this study lays the foundation for utilizing Lactiplantibacillus spp. IT derived AMPs in plant biocontrol strategies, showcasing their efficacy against bacterial phytopathogens. These findings contribute valuable insights for advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Ishan Tiwari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ali Asger Bhojiya
- Department of Botany, U.S. Ostwal P.G. College, Mangalwad, Chittorgarh, Rajasthan, 312024, India
| | - Ram Prasad
- Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
7
|
Golnari M, Bahrami N, Milanian Z, Rabbani Khorasgani M, Asadollahi MA, Shafiei R, Fatemi SSA. Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Sci Rep 2024; 14:1457. [PMID: 38228716 PMCID: PMC10791968 DOI: 10.1038/s41598-024-51823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Despite the current use of some Bacillus spp. as probiotics, looking for and introducing new efficient and safe potential probiotic strains is one of the most important topics in both microbiology and food industry. This study aimed to isolate, identify, and evaluate the probiotic characteristics and safety of some Bacillus spp. from natural sources. Thirty-six spore-forming, Gram-positive, and catalase-positive Bacillus isolates were identified in 54 samples of soil, feces and dairy products. Bacterial identification was performed using 16S rDNA sequencing. To evaluate the probiotic potential of isolates, the resistance of bacterial cells to simulated gastrointestinal tract (GIT) conditions, the presence of enterotoxin genes, their susceptibility to antibiotics, antimicrobial and hemolytic activities and biochemical profiles were investigated. The results revealed that eight sporulating Bacillus spp. isolates fulfilled all tested probiotic criteria. They showed a high growth rate, non-hemolytic and lecithinase activity, and resistance to simulated GIT conditions. These strains exhibited broad-spectrum antibacterial activity against pathogenic bacteria. In addition, they did not exhibit antibacterial resistance to the 12 tested antibiotics. The results of this study suggest that these isolates can be considered as candidates for functional foods and as safe additives to improve diet quality.
Collapse
Affiliation(s)
- Mohsen Golnari
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Bahrami
- Department of Microbiology, NourDanesh Institute of Higher Education, Meymeh, Iran
| | - Zahra Milanian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rasoul Shafiei
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Safa-Ali Fatemi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
Choeisoongnern T, Chaiyasut C, Sivamaruthi BS, Makhamrueang N, Peerajan S, Sirilun S, Sittiprapaporn P. Bacteriocin-Producing Enterococcus faecium OV3-6 as a Bio-Preservative Agent to Produce Fermented Houttuynia cordata Thunb. Beverages: A Preliminary Study. Foods 2023; 12:3520. [PMID: 37835173 PMCID: PMC10572304 DOI: 10.3390/foods12193520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Microbial contamination affects the quality of the fermented Houttuynia cordata Thunb. (H. cordata) beverage (FHB). The present study aimed to assess the bio-preservative property of Enterococcus faecium OV3-6 (E. faecium OV3-6) during the production of FHB. The antimicrobial activity against Escherichia coli, Salmonella, Bacillus cereus, and Staphylococcus aureus and the survival of E. faecium OV3-6 were studied. Then, FHB fermentation was performed with different preservatives (non-preservative, E. faecium OV3-6, cell-free supernatant of E. faecium OV3-6, and nisin) with and without representative pathogens. The maximum antimicrobial activity against S. aureus and B. cereus was observed after 18 h of cultivation in an MRS medium. E. faecium OV3-6 was used as a starter to produce the FHB, and the strain survived up to 48 h in the fermented beverage. E. faecium OV3-6 and its cell-free supernatant inhibited the growth of E. coli, Salmonella, B. cereus, and S. aureus in the stimulated FHB. The non-preservatives and nisin-containing FHB showed inhibition against Gram-positive pathogens. The FHB treated with E. faecium OV3-6 was rich in lactic acid bacteria, and the product was at an acceptable level of pH (less than 4.3). Certain limitations were identified in the study, such as lack of nutritional, metabolomics analysis, and safety and consumer acceptability of FHB. The results suggested that E. faecium OV3-6 could be used as a bio-preservative to produce fermented plant beverages (FPBs).
Collapse
Affiliation(s)
- Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| |
Collapse
|
9
|
Wang J, Shan H, Li P, Liu Y, Zhang X, Xu J, Li S. Antibacterial Effects of Theaflavins against Staphylococcus aureus and Salmonella paratyphi B: Role of Environmental Factors and Food Matrices. Foods 2023; 12:2615. [PMID: 37444352 DOI: 10.3390/foods12132615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to investigate the effects of different environmental factors (temperature, pH, and NaCl) and food matrices (skimmed milk powder, lecithin, and sucrose) on the antibacterial activity of theaflavins (TFs) against Staphylococcus aureus (S. aureus) and Salmonella paratyphi B (S. paratyphi B). TFs showed a larger diameter of inhibition zone (DIZ, 12.58 ± 0.09 mm-16.36 ± 0.12 mm) value against S. aureus than that of S. paratyphi B (12.42 ± 0.43 mm-15.81 ± 0.24 mm) at the same concentration (2-10 mg/mL). When temperatures were 25-121 °C, the DIZ of TFs against both S. aureus and S. paratyphi B was not significantly different. As pH increased from 2 to 10, their DIZ values decreased significantly from 16.78 ± 0.23 mm to 13.43 ± 0.08 mm and 15.63 ± 0.42 mm to 12.18 ± 0.14 mm, respectively. Their DIZ values increased slightly as the NaCl concentration increased from 0.2 mol/L to 0.8 mol/L, while their DIZ values decreased significantly for skimmed milk powder concentrations in the range of 20-120 g/L. Regarding the concentrations of lecithin and sucrose were 2-12 g/L and 10-60 g/L, their DIZ values showed no significant change against S. paratyphi B, but an increased trend for S. aureus. Under the above different environmental factors and food matrices, TFs maintained excellent antibacterial activity against S. aureus and S. paratyphi B, providing a theoretical guidance for applying TFs as novel antibacterial additives in the food industry.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yanan Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xun Zhang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jingguo Xu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Khaleghi M, Khorrami S, Jafari-Nasab T. Pediococcus acidilactici isolated from traditional cheese as a potential probiotic with cytotoxic activity against doxorubicin-resistant MCF-7 cells. 3 Biotech 2023; 13:170. [PMID: 37188290 PMCID: PMC10169992 DOI: 10.1007/s13205-023-03597-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
The considerable flexibility of cancerous cells to escape from chemical and biological drugs makes it clear that much is to be done to control and eliminate such cells. Probiotic bacteria, in this regard, have shown promising performance. In this study, we isolated and characterized lactic acid bacteria from traditional cheese. Then we evaluated their activity against doxorubicin-resistant MCF-7 cells (MCF-7/DOX) through MTT assay, Annexin V/PI protocol, real-time PCR, and western blotting. Among the isolates, one strain with more than 97% similarity with Pediococcus acidilactici showed considerable probiotics properties. Low pH, high bile salts, and NaCl could not significantly affect this strain while it was susceptible to antibiotics. Also, it had a potent antibacterial activity. Besides, the cell-free supernatant of this strain (CFS) significantly reduced the viability of MCF-7 and MCF-7/DOX cancerous cells (to about 10% and 25%, respectively), while it was safe for normal cells. Also, we found that CFS could regulate the Bax/Bcl-2 at mRNA and protein levels to induce apoptosis in drug-resistant cells. We determined 75% early apoptosis, 10% late apoptosis, and 15% necrosis in the cells treated with the CFS. These findings can accelerate the development of probiotics as promising alternative treatments to overcome drug-resistant cancers.
Collapse
Affiliation(s)
- Moj Khaleghi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sadegh Khorrami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Tayebeh Jafari-Nasab
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
11
|
Coelho-Rocha ND, de Jesus LCL, Barroso FAL, da Silva TF, Ferreira E, Gonçalves JE, Dos Santos Martins F, de Oliveira Carvalho RD, Barh D, Azevedo VADC. Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2023; 15:160-174. [PMID: 36028786 DOI: 10.1007/s12602-022-09978-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/20/2023]
Abstract
Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.
Collapse
Affiliation(s)
- Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José Eduardo Gonçalves
- Department of Pharmaceutic Products, Pharmacy Faculty, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, Nonakuri, Purba Medinipur, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
12
|
Screening of a Novel Lactiplantibacillus plantarum MMB-05 and Lacticaseibacillus casei Fermented Sandwich Seaweed Scraps: Chemical Composition, In Vitro Antioxidant, and Volatile Compounds Analysis by GC-IMS. Foods 2022; 11:foods11182875. [PMID: 36141001 PMCID: PMC9498330 DOI: 10.3390/foods11182875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Lactic acid fermentation is a promising method for developing sandwich seaweed scraps. The objectives of this study were to investigate the effect of fermentation with Lactiplantibacillus plantarum MMB-05, Lactiplantibacillus casei FJAT-7928, mixed bacteria (1:1, v/v) and control on the physicochemical indexes, in vitro antioxidant activity, and volatile compounds of Porphyra yezoensis sauce. Sensory evaluation was also performed. The results indicated that all lactic acid bacteria strains grew well in P. yezoensis sauce after 72 h of fermentation, with the viable cell counts of L. plantarum MMB-05 exceeding 10.0 log CFU/mL, the total phenolic content increasing by 16.54%, and the lactic acid content increasing from 0 to 44.38 ± 0.11 mg/mL. Moreover, the metabolism of these strains significantly increased the content of umami, sweet and sour free amino acids in P. yezoensis sauce. The total antioxidant capacity of L. plantarum MMB-05, L. casei FJAT-7928, mix and control groups increased by 594.59%, 386.49%, 410.27%, and 287.62%, respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) analysis suggested that aldehydes and ketones accounted for the largest proportion, and the relative contents of acids and alcohols in P. yezoensis sauce increased significantly after lactic acid bacteria fermentation. In addition, the analysis of dynamic principal component analysis (PCA) and fingerprinting showed that the volatile components of the four treatment methods could be significantly distinguished. Overall, the L. plantarum MMB-05 could be recommended as an appropriate starter for fermentation of sandwich seaweed scraps, which provides a fundamental knowledge for the utilization of sandwiched seaweed scraps.
Collapse
|
13
|
De Marco I, Fusieger A, Nero LA, Kempka AP, Moroni LS. Bacteriocin-like inhibitory substances (BLIS) synthesized by Lactococcus lactis LLH20: Antilisterial activity and application for biopreservation of minimally processed lettuce (Lactuca sativa L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Šmídová Z, Rysová J. Gluten-Free Bread and Bakery Products Technology. Foods 2022; 11:foods11030480. [PMID: 35159630 PMCID: PMC8834121 DOI: 10.3390/foods11030480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products.
Collapse
|
15
|
Isolation and partial characterization of a novel bacteriocin from Pseudomonas azotoformans with antimicrobial activity against Pasterella multocida. Arch Microbiol 2022; 204:112. [PMID: 34982208 DOI: 10.1007/s00203-021-02639-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
In this study, a bacteriocin PA996 isolated from Pseudomonas azotoformans (P. azotoformans) was purified to homogeneity by ammonium sulphate precipitation and SP-Sepharose column chromatography. P. azotoformans began to grow at 6 h, reached exponential phase at 12-18 h. Bacteriocin PA996 was produced at 18 h and reached a maximum level of 2400 AU/mL. The molecular mass of purified bacteriocin PA996 was estimated by SDS-PAGE and its molecular mass was approximately 50 kDa. By screening in vitro, the bacteriocin PA996 showed an antimicrobial activity against Pasteurella multocida (P. multocida). The bacteriocin PA996 showed antibacterial activity in the range of pH2-10 and it was heat labile. The inhibitory activities were diminished after treatment with proteinase K, trypsin and papain, respectively, while catalase treatment was ineffective. The minimal inhibitory concentration (MIC) and bactericidal kinetics curves showed that the bacteriocin PA996 had a good inhibitory ability against P. multocida. Our data indicate that bacteriocin PA996 could inhibit the growth of P. maltocida and it may have the potential to apply as an alternative therapeutic drug.
Collapse
|
16
|
Down-regulation of biofilm-associated genes in mecA-positive methicillin-resistant S. aureus treated with M. communis extract and its antibacterial activity. AMB Express 2021; 11:85. [PMID: 34110520 PMCID: PMC8192652 DOI: 10.1186/s13568-021-01247-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Considering the prevalence of resistance to antibiotics, the discovery of effective agents against resistant pathogens is of extreme urgency. Herein, 26 mecA-positive methicillin-resistant S. aureus (MRSA) isolated from clinical samples were identified, and their resistance to 11 antibiotics was investigated. Next, the antibacterial and anti-biofilm activity of the ethanolic extract of M. communis on these strains was evaluated. Furthermore, the effect of this extract on the expression of biofilm-associated genes, icaA, icaD, bap, sarA, and agr, was studied. According to the results, all isolated strains were multidrug-resistant and showed resistance to oxacillin and tetracycline. Also, 96.15 and 88.46 % of them were resistant to gentamicin and erythromycin. However, the extract could effectively combat the strains. The minimum inhibitory concentration (MIC) against different strains ranged from 1.56 to 25 mg/ml and the minimum bactericidal concentration (MBC) was between 3.125 and 50 mg/ml. Even though most MRSA (67 %) strongly produced biofilm, the sub-MIC concentration of the extract destroyed the pre-formed biofilm and affected the bacterial cells inside the biofilm. It could also inhibit biofilm development by significantly decreasing the expression of icaA, icaD, sarA and bap genes involved in biofilm formation and development. In conclusion, the extract inhibits biofilm formation, ruins pre-formed biofilm, and kills cells living inside the biofilm. Furthermore, it down-regulates the expression of necessary genes and nips the biofilm formation in the bud.
Collapse
|
17
|
Jafari-Nasab T, Khaleghi M, Farsinejad A, Khorrami S. Probiotic potential and anticancer properties of Pediococcus sp. isolated from traditional dairy products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00593. [PMID: 33598413 PMCID: PMC7868823 DOI: 10.1016/j.btre.2021.e00593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Herein, 18 lactic acid bacteria isolated from 30 samples of traditional dairy products were identified, and their probiotic potential was evaluated. According to the results, almost all strains showed the probiotic properties sufficiently, though M1 had better characterise. 16S rRNA gene sequencing revealed that this strain belongs to the Pediococcus sp. (<95 % similarity). This strain had substantial antipathogenic activity and did not show any worrying antibiotic resistance. Also, the strain was resistant to high concentrations of bile salt (1 %), NaCl (6.5 %), and low pH (2). Furthermore, it was revealed that cell-free supernatant (CFS), heat-killed cells and live cells derived from M1 significantly decreased the viability of MCF-7 cells so that the CFS resulted in 85 % cell death. Flow cytometry and western blot analysis determined that this compound induced apoptosis in the cancerous cells through increasing the BAX protein expression and decreasing the Bcl-2 protein expression.
Collapse
Affiliation(s)
- Tayebeh Jafari-Nasab
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Moj Khaleghi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadegh Khorrami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|