1
|
Nawaz L, Grieve DJ, Muzaffar H, Iftikhar A, Anwar H. Methanolic Extract of Phoenix Dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024; 13:1196. [PMID: 39056777 PMCID: PMC11274523 DOI: 10.3390/cells13141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-β 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-β 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.
Collapse
Affiliation(s)
- Laaraib Nawaz
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK;
| | - Humaira Muzaffar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Arslan Iftikhar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Haseeb Anwar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| |
Collapse
|
2
|
Bajaber MA, Hameed A, Hussain G, Noreen R, Ibrahim M, Batool S, Qayyum MA, Farooq T, Parveen B, Khalid T, Kanwal P. Chitosan nanoparticles loaded with Foeniculum vulgare extract regulate retrieval of sensory and motor functions in mice. Heliyon 2024; 10:e25414. [PMID: 38352784 PMCID: PMC10862683 DOI: 10.1016/j.heliyon.2024.e25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, chitosan nanoparticles (CSNPs) encapsulating Foeniculum vulgare (FV) seed extract (SE) were prepared for the controlled delivery of bioactive phytoconstituents. The prepared CSNPs encapsulating FVSE as sustain-releasing nanoconjugate (CSNPs-FVSE) was used as a potent source of functional metabolites including kaempferol and quercetin for accelerated reclamation of sensory and motor functions following peripheral nerve injury (PNI). The nanoconjugate exhibited in vitro a biphasic diffusion-controlled sustained release of quercetin and kaempferol ensuring prolonged therapeutic effects. The CSNPs-FVSE was administered through gavaging to albino mice daily at a dose rate of 25 mg/kg body weight from the day of induced PNI till the end of the experiment. The conjugate-treatment induced a significant acceleration in the regain of motor functioning, evaluated from the sciatic function index (SFI) and muscle grip strength studies. Further, the hotplate test confirmed a significantly faster recuperation of sensory functions in conjugate-treated group compared to control. An array of underlying biochemical pathways regulates the regeneration under well-optimized glucose and oxidant levels. Therefore, oxidant status (TOS), blood glycemic level and total antioxidant capacity (TAC) were evaluated in the conjugate-treated group and compared with the controls. The treated subjects exhibited controlled oxidative stress and regulated blood sugars compared to the non-treated control. Thus, the nanoconjugate enriched with polyphenolics significantly accelerated the regeneration and recovery of functions after nerve lesions. The biocompatible nanocarriers encapsulating the nontoxic natural bioactive constitutents have great medicinal and economic value.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Government College University Faisalabad, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Shaheera Batool
- Department of Biochemistry, CMH Institute of Medical Sciences Multan, Multan, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Tanzeela Khalid
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Perveen Kanwal
- Department of Chemistry, The Women University of Multan, Multan, 66000, Pakistan
| |
Collapse
|
3
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Bajaber MA, Hussain G, Farooq T, Noreen R, Ibrahim M, Umbreen H, Batool S, Rehman K, Hameed A, Farid MF, Khalid T. Nanosuspension of Foeniculum Vulgare Promotes Accelerated Sensory and Motor Function Recovery after Sciatic Nerve Injury. Metabolites 2023; 13:metabo13030391. [PMID: 36984831 PMCID: PMC10058352 DOI: 10.3390/metabo13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The seed extract of Foeniculum vulgare (FV) was used for the preparation of a nanosuspension (NS) with an enhanced bioavailability of phytoconstituents. Subsequently, it was employed as a potent source of polyphenols, such as quercetin and kaempferol, to accelerate the regeneration and recovery of motor and sensory function in injured nerves. The NS was administered through daily gauging as NS1 (0.5 mg/mL) and NS2 (15 mg/mL), at a dose rate of 2 g/kg body weight until the end of the study. The NS-mediated retrieval of motor functions was studied by evaluating muscle grip strength and the sciatic functional index. The recovery of sensory functions was assessed by the hotplate test. Several well-integrated biochemical pathways mediate the recovery of function and the regeneration of nerves under controlled blood glucose and oxidative stress. Consequently, the NS-treated groups were screened for blood glucose, total antioxidant capacity (TAC), and total oxidant status (TOS) compared to the control. The NS administration showed a significant potential to enhance the recuperation of motor and sensory functions. Moreover, the oxidative stress was kept under check as a result of NS treatments to facilitate neuronal generation. Thus, the nanoformulation of FV with polyphenolic contents accelerated the reclamation of motor and sensory function after nerve lesion.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Huma Umbreen
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shaheera Batool
- Department of Biochemistry, CMH Institute of Medical Sciences Multan, Multan 60000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan, Multan 60000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (T.K.)
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tanzeela Khalid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (T.K.)
| |
Collapse
|
5
|
Imran M, Hussain G, Hameed A, Iftikhar I, Ibrahim M, Asghar R, Nisar I, Farooq T, Khalid T, Rehman K, Assiri MA. Metabolites of Moringa oleifera Activate Physio-Biochemical Pathways for an Accelerated Functional Recovery after Sciatic Nerve Crush Injury in Mice. Metabolites 2022; 12:1242. [PMID: 36557280 PMCID: PMC9788086 DOI: 10.3390/metabo12121242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the functional metabolites of Moringa oleifera (MO) were screened to evaluate their possible role in accelerated functional retrieval after peripheral nerve injury (PNI). MO leaves were used for extract preparation using solvents of different polarities. Each dry extract was uniformly mixed in rodents' chow and supplemented daily at a dose rate of 2 g/kg body weight from the day of nerve crush until the completion of the trial. The sciatic functional index (SFI) and muscle grip strength were performed to assess the recovery of motor functions, whereas the hotplate test was performed to measure the regain of sensory functions. An optimal level of oxidative stress and a controlled glycemic level mediates a number of physio-biochemical pathways for the smooth progression of the regeneration process. Therefore, total oxidant status (TOS), total antioxidant capacity (TAC) and glycemic levels were analyzed in metabolite-enriched extract-treated groups compared to the control. The supplementation of polar extracts demonstrated a significantly high potential to induce the retrieval of sensory and motor functions. Further, they were highly effective in controlling oxidative stress, facilitating accelerated nerve generation. This study has highlighted MO as a sustainable source of nutritive metabolites and a valuable target for drug development.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Reseach Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Faculty of life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Iftikhar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rahat Asghar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Izzat Nisar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tanzila Khalid
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Reseach Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
| |
Collapse
|
6
|
Zafar S, Rasul A, Iqbal J, Anwar H, Imran A, Jabeen F, Shabbir A, Akram R, Maqbool J, Sajid F, Arshad MU, Hussain G, Islam S. Calotropis procera (leaves) supplementation exerts curative effects on promoting functional recovery in a mouse model of peripheral nerve injury. Food Sci Nutr 2021; 9:5016-5027. [PMID: 34532013 PMCID: PMC8441272 DOI: 10.1002/fsn3.2455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Peripheral nerve injuries are among those complicated medical conditions, which are still waiting for their highly effective first-line therapies. In this study, the role of Calotropis procera crude leaves was evaluated at different doses for their effectiveness in improving functional recovery following sciatic nerve injury-induced in the mouse model. Thirty-two healthy albino mice were divided into four groups as Normal chow group (control, n = 8) and C. procera chow groups (50 mg/kg (n = 8), 100 mg/kg (n = 8) and 200 mg/kg (n = 8)). Behavioral analyses were performed to assess and compare improved functional recovery along with skeletal muscle mass measurement in all groups. Serum samples were analyzed for oxidative stress markers. Results showed that C. procera leaves at dose-dependent manner showed statistically prominent (p < .05) increase in sensorimotor functions reclamation as confirmed by behavioral analyses along with muscle mass restoration and prominent decline in TOS and momentous increase in TAC along with the augmented activity of antioxidative enzymes.
Collapse
Affiliation(s)
- Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javed Iqbal
- Department of NeurologyAllied HospitalFaisalabad Medical UniversityFaisalabadPakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhat Jabeen
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Asghar Shabbir
- Department of BiosciencesCOMSATS Institute of Information TechnologyIslamabadPakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|