1
|
Gong M, Zhang T, Wu Y, Shang J, Su E, Cao Y, Zhang J. Synergizing postharvest physiology and nanopackaging for edible mushroom preservation. Food Chem 2025; 463:141099. [PMID: 39260167 DOI: 10.1016/j.foodchem.2024.141099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The cultivation of edible mushrooms is increasing because of their widely recognized nutritional benefits. Advancements in cultivation techniques have facilitated large-scale mushroom production, meeting the growing consumer demand. This rise in cultivation has led to an increasingly urgent demand for advanced postharvest preservation methods to extend the shelf life of these mushrooms. The postharvest preservation of fresh edible mushrooms involves complex physiological changes and metabolic activities closely associated with gas composition, microbial presence, moisture content, ambient temperature, and enzymatic activity. Preserving edible mushrooms through various preservation strategies (physical, chemical, biological, and nanopackaging approaches) relies on regulating postharvest factors. Nanopackaging can preserve mushrooms' sensory and nutritional qualities due to the specific characteristics of nanomaterials, such as antimicrobial properties and gas/moisture barriers. Furthermore, the review explores current trends, fundamental mechanisms, and upcoming challenges in utilizing nanomaterials, particularly their capacity to enhance the "cell wall" integrity of edible mushrooms by regulating postharvest factors.
Collapse
Affiliation(s)
- Ming Gong
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Jiangsu Environment and Development Research Center; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Tongyan Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junjun Shang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Erzheng Su
- Jiangsu Environment and Development Research Center; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Cao
- Jiangsu Environment and Development Research Center; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Liang Y, Luo K, Wang B, Huang B, Fei P, Zhang G. Inhibition of polyphenol oxidase for preventing browning in edible mushrooms: A review. J Food Sci 2024; 89:6796-6817. [PMID: 39363229 DOI: 10.1111/1750-3841.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Edible mushrooms are rich in nutrients and bioactive compounds, but their browning affects their quality and commercial value. This article reviews various methods to inhibit polyphenol oxidase (PPO)-induced browning in mushrooms. Physical methods such as heat treatment, low temperatures, irradiation, and ultrasound effectively reduce PPO activity but may affect mushroom texture and flavor. Chemical inhibitors, including synthetic chemicals and natural plant extracts, provide effective PPO inhibition but require careful monitoring of their content. Biological methods, including gene editing and microbial fermentation, show promise in targeting PPO genes and enhancing antioxidant production. Combining these methods offers a comprehensive strategy for preserving mushroom quality, extending shelf life, and maintaining nutritional value. PRACTICAL APPLICATION: These approaches can be applied in the food industry to improve post-harvest mushroom preservation, enhance product quality, and reduce waste, benefiting both producers and consumers. Further research and innovation are needed to optimize the practical application of these methods in large-scale processing and storage conditions.
Collapse
Affiliation(s)
- Yingqi Liang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Kaimei Luo
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingli Wang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingqing Huang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Peng Fei
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Guoguang Zhang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| |
Collapse
|
3
|
Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106763. [PMID: 38219551 PMCID: PMC10825639 DOI: 10.1016/j.ultsonch.2024.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.
Collapse
Affiliation(s)
- Mianli Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| |
Collapse
|
4
|
Saebi MR, Moradinezhad F, Ansarifar E. Quality preservation and decay reduction of minimally processed seedless barberry fruit via postharvest ultrasonic treatment. Food Sci Nutr 2023; 11:7816-7825. [PMID: 38107101 PMCID: PMC10724632 DOI: 10.1002/fsn3.3698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 12/19/2023] Open
Abstract
Seedless barberry fruit is one of the important horticultural products of Iran, which has health benefits due to great amounts of phenolic compounds, flavonoids, and antioxidant activity. However, fresh barberry fruit has a short shelf life even at cold storage, mainly due to high water content and thin skin that leads to fungal decay and high postharvest loss. We examined the effectiveness of the postharvest ultrasonic technology on the quality preservation and nutritional value of fresh seedless barberry fruit and their decay reduction during cold storage. Experimental treatments were the time and temperature of ultrasound (US) and included: (1) control, fruit without US, (2) 5 min US at 20°C, (3) 5 min US at 30°C, (4) 5 min US at 40°C, (5) 10 min US at 20°C, (6) 10 min US at 30°C, (7) 10 min US at 40°C, (8) 15 min US at 20°C, (9) 15 min US at 30°C, and (10) 15 min US at 40°C. After applying the treatments, the fruits were sealed in polyethylene bags and stored at 4 ± 1°C for 20 days. The results showed that all US treatments had higher titratable acidity, antioxidant activity, phenol content, and vitamin C content than the control. However, the highest titratable acidity and antioxidant activity values were obtained in US treatments at 40°C and 30°C for 15 min. Also, US treatment significantly reduced the total soluble solids, decay percentage, and microbial load of fresh barberry fruit. As the US treatment temperature increased from 20°C to 40°C, the decay and microbial load of fruit significantly decreased. In conclusion, this study proved the potential application of the US for preserving the quality of fresh seedless barberry fruit, and the most optimal US temperature and its application time was 40°C for 15 min.
Collapse
Affiliation(s)
- Mohammad Reza Saebi
- Department of Horticultural Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Farid Moradinezhad
- Department of Horticultural Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Elham Ansarifar
- Department of Public Health, School of Health, Social Determinants of Health Research CenterBirjand University of Medical ScienceBirjandIran
| |
Collapse
|
5
|
Tarlak F, Costa JCCP. Comparison of modelling approaches for the prediction of kinetic growth parameters of Pseudomonas spp. in oyster mushroom ( Pleurotus ostreatus). FOOD SCI TECHNOL INT 2023; 29:631-640. [PMID: 35642261 DOI: 10.1177/10820132221105476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In predictive microbiology, primary and secondary models can be used to predict microbial growth, usually in a two-step modelling approach. The inverse dynamic modelling approach is an alternative method to direct modelling methods, in which the primary and secondary models are fitted simultaneously from non-isothermal data, minimising experimental effort and costs. Thus, the main aim of the present study was to compare the prediction capabilities of the mathematical modelling approaches used for calculating growth kinetics of microorganisms in predictive food microbiology field. For this purpose, the bacterial growth data of Pseudomonas spp. in oyster mushroom (Pleurotus ostreatus) subjected to isothermal and non-isothermal storage temperatures were collected from previously published growth curves. Temperature-dependent kinetic growth parameters (maximum specific growth rate 'µmax' and lag phase duration 'λ') were described as a function of storage temperature using the direct two-step, direct one-step and inverse dynamic modelling approach based on Baranyi and Huang models. The fitting capability of the modelling approaches was separately compared, and the one-step modelling approach for the direct methods provided better goodness of fit results regardless of used primary models, which leads the Huang model with being RMSE = 0.226 and R2adj = 0.949 became best for direct methods. Like seen in direct methods, the Huang model gave better goodness of fit results than Baranyi model for inverse method. Results revealed there was no significant difference (p > 0.05) between the growth kinetic parameters obtained from direct one-step modelling approach and inverse modelling approaches based on the Huang model. Satisfactorily statistical indexes show that the inverse dynamic modelling approach can be reliably used as an alternative way of describing the growth behaviour of Pseudomonas spp. in oyster mushroom in a fast and minimum labour effort.
Collapse
Affiliation(s)
- Fatih Tarlak
- Department of Nutrition and Dietetics, Istanbul Gedik University, Kartal, Istanbul, Turkey
| | - Jean Carlos Correia Peres Costa
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (CeiA3), University of Cordoba, Córdoba, Spain
| |
Collapse
|
6
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Zheng Z, Wu L, Li Y, Deng W, Chen S, Song H. Effects of Different Blanching Methods on the Quality of Tremella fuciformis and Its Moisture Migration Characteristics. Foods 2023; 12:foods12081669. [PMID: 37107464 PMCID: PMC10137464 DOI: 10.3390/foods12081669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Blanching is a critical step in the processing of Tremella fuciformis (T. fuciformis). The effects of different blanching methods (boiling water blanching (BWB), ultrasonic-low temperature blanching (ULTB), and high-temperature steam (HTS)) on the quality and moisture migration characteristics of T. fuciformis were investigated. The results showed that the T. fuciformis blanched by ULTB (70 °C, 2 min, 40 kHz, 300 W) had the best quality, including a brighter appearance, superior texture, and good sensory features, with a polysaccharide content of 3.90 ± 0.02%. The moisture migration characteristics of T. fuciformis after blanching exhibited four peaks, displayed strong and weak chemically bound water, immobilized water, and free water, whereas ULTB had a weak effect on the freedom of water in T. fuciformis. The study will provide the foundation for the factory processing of T. fuciformis.
Collapse
Affiliation(s)
- Zhipeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Li Wu
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Yibin Li
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Wei Deng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shouhui Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Jiang W, Zhu D, Zhao L, Liu Y, Wang C, Farid MS, Gu Y, Li J, Li T, Sun Y, Li W, Cheng F. l-Cysteine Treatment Delayed the Quality Deterioration of Fresh-Cut Button Mushrooms by Regulating Oxygen Metabolism, Inhibiting Water Loss, and Stimulating Endogenous H 2S Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:974-984. [PMID: 36550784 DOI: 10.1021/acs.jafc.2c06795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although fresh-cut button mushrooms are popular with consumers, quality deterioration presents a significant shelf-life challenge. In this study, fresh-cut button mushrooms were treated with 0.25 g/L l-cysteine (l-Cys) and evaluated in terms of quality, physiology, and transcriptome sequencing. The results indicated that l-Cys application significantly delayed the browning degree of fresh-cut button mushrooms and reduced weight loss. l-Cys treatment reduced the malondialdehyde content, lipoxygenase activity, and reducing sugar levels while enhancing the soluble protein and total phenolic content. Furthermore, l-Cys treatment reduced the O2- generation rate and H2O2 accumulation while enhancing the catalase activity. Moreover, l-Cys improved the superoxide dismutase, glutathione reductase, and phenylalanine ammonia-lyase activities while reducing those of polyphenol oxidase and peroxidase. Additionally, l-Cys treatment increased endogenous H2S production and AbCBS enzyme activity while decreasing AbCSE enzyme activity. Notably, additional treatment with 1 mM propargylglycine significantly reduced the effect of l-Cys. Moreover, transcriptome sequencing analysis indicated that the differentially expressed genes in the l-Cys group were primarily related to the reactive oxygen species metabolism, oxidoreductase process, membrane integrality, and sulfur metabolism. These findings suggested that l-Cys treatment delayed the aging and extended the shelf life of fresh-cut button mushrooms by regulating the active oxygen species metabolism and water loss and stimulating endogenous H2S production.
Collapse
Affiliation(s)
- Wenwen Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan Zhu
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Longgang Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Muhammad Salman Farid
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yuyi Gu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Tianhao Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxiang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Fansheng Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao 266109, China
| |
Collapse
|
9
|
Kalsi BS, Singh S, Alam MS. Influence of ultrasound processing on the quality of guava juice. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Baldev Singh Kalsi
- Department of Processing & Food Engineering Punjab Agricultural University Ludhiana Punjab India
| | - Sandhya Singh
- Department of Processing & Food Engineering Punjab Agricultural University Ludhiana Punjab India
| | - Mohammed Shafiq Alam
- Department of Processing & Food Engineering Punjab Agricultural University Ludhiana Punjab India
| |
Collapse
|