1
|
Oliveira JP, Nascimento YA, Amorim KP, Gonçalves LR, Freitas LB, Silva AF, Ferreira OP, Ramos MV, Souza PF, Oliveira JS, Neto NA, Mendonça LG, Zambelli RA, Freitas CD. Use of Calotropis procera cysteine peptidases (CpCPs) immobilized on glyoxyl-agarose for cheesemaking. Food Chem 2023; 403:134319. [DOI: 10.1016/j.foodchem.2022.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
|
2
|
Caputo E, Meinardi CA, Mandrich L. Exogenous Enzymes in Cheese Making: An Overview. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220218111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The flavour in mature cheese results from a complex series of biochemical events that occur in the curd during ripening. More than 500 varieties of cheese are produced in the world, and each of them possesses its typical sensory characteristics. Flavour depends on milk variety, starter bacteria used in cheese-making and ripening.
Amino acids and free fatty acids (FFA) act mainly as precursors of a series of catabolic reactions, still not well understood. These reactions lead to the production of aroma compounds such as esters, fatty acids, aldehydes, alcohols, ketones, hydrocarbons, lactones, and sulphur.
Enzymes involved in all these processes are derived from milk, Lactic Acid Bacteria (LAB), Non-Starter Lactic Acid Bacteria (NSLAB), rennet, or fungi. In cheese industrial production, the milk pasteurization process leads to the removal of endogenous bacteria, therefore it is necessary to add exogenous enzymes to enrich and standardize cheeses flavour.
Here, we reviewed some exogenous enzymes used in industrial cheeses production, or which have interesting potential in cheese making and ripening.
Collapse
Affiliation(s)
- Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino, 111, 80131 Naples, Italy
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Carlos Alberto Meinardi
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET) Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET) Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems IRET-CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
3
|
Wang X, Zhao Q, He L, Shi Y, Fan J, Chen Y, Huang A. Milk-clotting properties on bovine caseins of a novel cysteine peptidase from germinated Moringa oleifera seeds. J Dairy Sci 2022; 105:3770-3781. [PMID: 35181141 DOI: 10.3168/jds.2021-21415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/01/2022] [Indexed: 11/19/2022]
Abstract
A cysteine peptidase was previously identified from germinated Moringa oleifera seeds, but its milk-clotting properties on bovine caseins was still unclear. In this study, this novel cysteine peptidase (MoCP) showed preferential activity on κ-casein (κ-CN), with greater hydrolytic activity compared with calf rennet, whereas weak hydrolysis of α-casein and β-casein made MoCP suitable for application in cheesemaking and may yield various functional peptides. All 3 evaluated caseins were hydrolyzed to form relatively stable peptide bands within 3 h of proteolysis with MoCP. Cleavage sites were determined by gel electrophoresis, liquid chromatography mass spectrometry/mass spectrometry, and peptide sequencing, which revealed that cleavage of κ-CN by MoCP occurred at residue Ile129-Pro130 and generated a 14,895.37-Da peptide. The flocculation reaction between MoCP and κ-CN determined by 3-dimensional microscopy with super-depth of field revealed that the initial 30 min of reaction were key for milk coagulation, which may affect curd yield. Overall, the findings presented herein suggest that the cysteine peptidase from germinated M. oleifera seeds can be considered a promising plant-derived rennet alternative for use in cheese manufacture.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yue Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
4
|
Wang X, He L, Zhao Q, Shi Y, Chen Y, Huang A. Structural Analysis of a Novel Aspartic-Type Endopeptidase from Moringa oleifera Seeds and Its Milk-Clotting Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7377-7387. [PMID: 34180221 DOI: 10.1021/acs.jafc.1c02591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel aspartic-type endopeptidase was previously obtained from Moringa oleifera seeds; however, its specific milk-clotting properties have remained unclear. Here, we used various biophysical and molecular simulation approaches for characterizing the structure and function of the aspartic-type endopeptidase. The endopeptidase was preferentially active toward κ-casein (CN) and hydrolyzed it more than calf rennet; however, its ability to hydrolyze α-CN and β-CN was weaker than that of calf rennet. The endopeptidase cleaved κ-CN at Gln135-Asp136 and generated a 15 588.18 Da peptide with 135 amino acids. We further simulated the docking complex of the endopeptidase and κ-CN and found out that they possibly combined with each other via hydrogen bonds. The flocculation reaction between the endopeptidase and κ-CN indicated that milk coagulation occurred within 60 min. Overall, our observations suggest that the aspartic-type endopeptidase can be a potential rennet alternative for cheese making.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yue Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
5
|
Ali Hanoğlu S, Ektiren D, Karaaslan M. Recombinant expression and characterization of Oryctolagus cuniculus chymosin in Komagataella phaffii (Pichia pastoris). Protein Expr Purif 2021; 183:105874. [PMID: 33744413 DOI: 10.1016/j.pep.2021.105874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted for investigating expression and enzymatic characteristics of recombinant Oryctolagus cuniculus chymosin (ROCC) expressed in Pichia pastoris. SDS-PAGE of partially purified supernatant displayed two distinct molecular bands approximately at the sizes of 40 kDa and 45 kDa corresponding to chymosin and partially glycosylated chymosin, respectively. Proteolysis assay demonstrated that rabbit chymosin was more specific compared to bovine and camel chymosins when it comes to hydrolyzing α, β, and κ-casein. Rabbit chymosin kept its stability in a wide pH range (3.0-6.0) at 37 °C for 8 h. Active chymosin exhibited maximum enzymatic activity at 40 °C and pH 4.0 with the addition of 75 mM CaCl2. The ROCC clotting activity on donkey, cow, goat, lamb, camel milk was determined as 40, 10, 5.7, 3.07, and 2.66 IMCU/mL, respectively. These results revealed that ROCC might possess a potential for incorporation into cheese manufacture technology as a milk-clotting enzyme.
Collapse
Affiliation(s)
- Selin Ali Hanoğlu
- Harran University, Engineering Faculty, Food Engineering Department, Sanliurfa, Turkey
| | - Demet Ektiren
- Harran University, Engineering Faculty, Food Engineering Department, Sanliurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Sanliurfa, Turkey.
| |
Collapse
|
6
|
|
7
|
Zhang Y, Xia Y, Liu X, Xiong Z, Wang S, Zhang N, Ai L. High-Level Expression and Substrate-Binding Region Modification of a Novel BL312 Milk-Clotting Enzyme To Enhance the Ratio of Milk-Clotting Activity to Proteolytic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13684-13693. [PMID: 31742396 DOI: 10.1021/acs.jafc.9b06114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel BL312 milk-clotting enzyme (MCE) exhibited high-level expression and remarkable milk-clotting activity (MCA) (865 ± 20 SU/mL) that was 3.3-fold higher than the control by optimizing induction conditions in recombinant Escherichia. coli harboring pET24a-proMCE. Through substrate-binding region analyses and modification, MCE-G165A was identified from nine mutants and showed a proteolytic activity of 49.4 ± 2.4 U/mL and an MCA/PA ratio of 18.2, which were respectively 1.9-fold lower and 2.0-fold higher than those of the control. The purified MCE-G165A (28 kDa) exhibited weak αs-casein, β-casein, and strong κ-casein (κ-CN) hydrolysis levels as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase high-performance liquid chromatography. The milk-clotting mechanism for MCE-G165A was the primary hydrolysis of Met106-Ala107 and Asn123-Thr124 bonds in κ-CN, as determined by mass spectrometry. MCE-G165A showed different hydrolysis sites in casein, leading to various functional peptides. Feasible methods for obtaining MCEs suitable as calf rennet substitutes are presented.
Collapse
Affiliation(s)
- Yao Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Shijie Wang
- Shijiazhuang Junlebao Dairy Co., Ltd. , Shijiazhuang , Hebei 050221 , China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province , Harbin University of Commerce , Harbin 150076 , China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| |
Collapse
|