1
|
Tang J, Luo M, Fei X, Qiu R, Wang M, Gan Y, Qian X, Zhang D, Gu W. Electronic senses and UPLC-Q-TOF/MS combined with chemometrics analyses of Cynanchum species (Baishouwu). PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39343429 DOI: 10.1002/pca.3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Baishouwu, derived from Cynanchum auriculatum (CA) Royle ex Wight, Cynanchum bungei (CB) Decne., and Cynanchum wilfordii (CW) (Maxim.) Hemsl., is a valuable traditional Chinese medicine. CA is also recognized as a new food resource by China's National Health Commission. Given the considerable variations in flavor and chemical composition among these species and lack of their qualitative assessments, accurately differentiating between the species constituting Baishouwu is essential. OBJECTIVE To develop a method combining electronic tongue (E-tongue), electronic nose (E-nose), and ultra-performance liquid chromatography-quadrupole-time of flight/mass spectrometry (UPLC-Q-TOF/MS) to differentiate between Baishouwu samples. MATERIAL AND METHODS Fifteen batches of Baishouwu samples were analyzed using E-tongue, E-nose, and UPLC-Q-TOF/MS. Flavor differences and key differential metabolites were determined through principal component analysis and orthogonal partial least squares discriminant analysis. RESULTS E-tongue results revealed umami, sweetness, and richness as the predominant flavors of Baishouwu, with CA having the highest umami response, CW exhibiting the highest bitterness, and CB the highest sweetness. E-nose sensors showed consistent responses across species, with variations in signal strength; W1W and W2W sensors showed the highest response values. A total of 158 and 41 characteristic variables in the positive and negative ion modes, respectively, were selected as candidate differential metabolites, of which 29 and 14 were confirmed through database comparison. Eight critical differential metabolites, including C21 steroids and acetophenone compounds, were identified. CONCLUSION This study presents a strategy for differentiating among the species constituting Baishouwu, providing a basis for broader application and establishing quality standards for these medicinal compounds.
Collapse
Affiliation(s)
- Junjie Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomeng Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifu Gan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Qian
- Binhai Agricultural Tourism Group Co., Ltd., Yancheng, China
| | - Daoguo Zhang
- Binhai Agricultural Tourism Group Co., Ltd., Yancheng, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
2
|
Fan YM, Jin J, Jian JY, Gu W, Yuan CM, Hu ZX, Hao XJ, Huang LJ. Three New Pregnanes Isolated from the Cynanchum auriculatum. Chem Biodivers 2022; 19:e202200243. [PMID: 35560497 DOI: 10.1002/cbdv.202200243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
Three new compounds named cynansteroid A (1), cynansteroid B (2) and cynansteroid C (3), together with nine known C21 -steroidal pregnane sapogenins (4-12) were isolated from the hydrolytic extract of the roots of Cynanchum auriculatum. The structures of cynansteroid A-C (1-3) were ascertained via the detailed analysis of the HR-ESI-MS, 1D and 2D NMR, and the calculated and experimental ECD data of cynansteroid B (2). Compound 11 displayed moderate inhibitory activity toward Verticillium dahliae Kleb (IC50 =37.15 μM), furthermore, compounds 11 and 12 showed significant inhibitory activity against Phomopsis sp. (IC50 =16.49 μM and 17.62 μM, respectively).
Collapse
Affiliation(s)
- Yi-Min Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Jun Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Jun-You Jian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| |
Collapse
|
3
|
Wang L, Cai F, Zhao W, Tian J, Kong D, Sun X, Liu Q, Chen Y, An Y, Wang F, Liu X, Wu Y, Zhou H. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current Research and Prospects. Molecules 2021; 26:7065. [PMID: 34885647 PMCID: PMC8658831 DOI: 10.3390/molecules26237065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
Cynanchum auriculatum Royle ex Wight. (CA), Cynanchum bungei Decne. (CB) and Cynanchum wilfordii (Maxim.) Hemsl. (CW) are three close species belonging to the Asclepiadaceous family, and their dry roots as the bioactive part have been revealed to exhibit anti-tumor, neuroprotection, organ protection, reducing liver lipid and blood lipid, immunomodulatory, anti-inflammatory, and other activities. Until 2021, phytochemistry investigations have uncovered 232 compounds isolated from three species, which could be classified into C21-steroids, acetophenones, terpenoids, and alkaloids. In this review, the morphology characteristics, species identification, and the relationship of botany, extraction, and the separation of chemical constituents, along with the molecular mechanism and pharmacokinetics of bioactive constituents of three species, are summarized for the first time, and their phytochemistry, pharmacology, and clinical safety are also updated. Moreover, the direction and limitation of current research on three species is also discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Fujie Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Xiaohui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Qing Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| |
Collapse
|
4
|
Su C, Li H, Chen B, Li C, Zhang C, Xu L, Lan M, Shen Y. Pharmacological effects of Pugionium cornutum (L.) Gaertn. extracts on gastrointestinal motility are partially mediated by quercetin. BMC Complement Med Ther 2021; 21:223. [PMID: 34479558 PMCID: PMC8417984 DOI: 10.1186/s12906-021-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of global population suffer from various functional gastrointestinal disorders. Pugionium cornutum (L.) Gaertn. (PCG) is used to relieve indigestive symptoms in traditional Chinese medicine. However, little is known about the effects of bioactive components from PCG extracts on gastrointestinal motility. METHODS Crude ethanol extract of PCG (EEP) was prepared from Pugionium cornutum (L.) Gaertn. Different solvents were used to prepare fine extracts from EEP, including water extract of PCG (WEP), petroleum ether extract of PCG (PEEP), dichloromethane extract of PCG (DEP) and ethyl acetate extract of PCG (EAEP). Smooth muscle cell model and colonic smooth muscle stripe model were used to test the bioactive effects and mechanisms of different PCG extracts on contraction and relaxation. Diverse chromatographic methods were used to identify bioactive substances from PCG extracts. RESULTS EEP was found to promote the relaxation of gastric smooth muscle cell and inhibit the contraction of colonic smooth muscle strip. Among the fractions of EEP, EAEP mainly mediated the relaxation effect by stimulating intracellular calcium influx. Further evidences revealed that EAEP was antagonistic to acetylcholine. In addition, COX and NO-GC-PKC pathways may be also involved in EAEP-mediated relaxation effect. Quercetin was identified as a bioactive compound from PCG extract for the relaxation effect. CONCLUSION Our research supports the notion that PCG extracts promote relaxation and inhibits contraction of gastrointestinal smooth muscle at least partially through the effect from quercetin.
Collapse
Affiliation(s)
- Chencan Su
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Haoyu Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.
| | - Chunxiao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Long Xu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, 710061, Shaanxi, China
| | - Mei Lan
- Digestive Internal Medicine Department, Shaoxing Paojiang Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
5
|
Bailly C. Anticancer properties of caudatin and related C-21 steroidal glycosides from Cynanchum plants. Steroids 2021; 172:108855. [PMID: 33945800 DOI: 10.1016/j.steroids.2021.108855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Numerous C-21 steroidal glycosides have been isolated from Cynanchum plants. Many of them derive from the aglycone caudatin (CDT) which includes a tetracyclic deacylmetaplexigenin unit and an ikemaoyl ester side chain. CDT can be found in diverse traditional medicines, such as Baishouwu radix used to treat gastro-intestinal disorders. The compound has revealed marked anticancer properties, reviewed here. CDT and its mono-glycoside analogue CDMC display antiproliferative activities against different cancer cell lines in vitro and have revealed significant anticancer effects in tumor xenograft models in vivo. Their mechanism of action is multifactorial, implicating several signaling pathways (Wnt/GSK3/β-catenin, TRAIL/DR5/ER and TNFAIP1/NFκB) which contribute to the antiproliferative, antiangiogenic, antimetastatic and proapoptotic effects of the natural products. CDT also modulates DNA replication, is antioxidant and targets some cancer stem cells. CDT and CDMC are interesting anticancer products, while other CDT glycoside derivatives display antiviral and antifungal activities. Altogether, the present review provides a survey of the pharmacological profiles of CDT and derivatives. The lack of knowledge about the molecular targets of CDT currently limits drug development but the natural product, orally active, warrants further pharmacology and toxicology studies.
Collapse
|
6
|
Nabih S, Hassn SS. Nonchemical integration of Au/Ag-based reduced graphene nanohybrid combined with 5-Fluorouracil drug to treat cancer cells. Life Sci 2021; 272:119262. [PMID: 33639151 DOI: 10.1016/j.lfs.2021.119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The perpetual lack of advanced strategies to prevent aggressive breast cancer with multiple categories represents challenging scientific society problems. Reduced graphene oxide- can treat disease, which was recently investigated due to its ability to induce apoptosis-based death. This research tested the chemotherapeutics in vitro efficacy of reduced graphene oxide embedded with gold and silver nanoparticles toward drug-sensitive breast cancer cells (MCF-7) and their cytotoxicity. Synthesis of the Au-Ag/rGO-5FU nanocomposites has been conducted using a wet chemical approach with chitosan aid as a pore directing and capping agent. The particle structure and morphology well characterized using different systems. HR-TEM shows a narrow-sized distribution of less than 100 nm, which is proper for cell membranes and medical use. The physical combination of the nanocomposite and 5-FU drug has been conducted mechanically using wet chemistry. The Au/Ag/rGO-5FU material's high activity enables it to produce reactive oxygen radicals, which display a potential against MCF-7 cell lines. All the results, including those obtained via cytometry, use the combination of Au/Ag/rGO-5FU to show a more substantial anticancer influence and more drug stability than pure 5-FU.
Collapse
Affiliation(s)
- Shimaa Nabih
- Basic Science Departments, Modern Academy for Engineering and Technology, Maadi, Egypt.
| | - Shaymaa Sherif Hassn
- Basic Science Departments, Modern Academy for Engineering and Technology, Maadi, Egypt
| |
Collapse
|