1
|
Chandramohan R, Reuther J, Gandhi I, Voicu H, Alvarez KR, Plon SE, Lopez-Terrada DH, Fisher KE, Parsons DW, Roy A. A Validation Framework for Somatic Copy Number Detection in Targeted Sequencing Panels. J Mol Diagn 2022; 24:760-774. [PMID: 35487348 DOI: 10.1016/j.jmoldx.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Somatic copy number alterations (SCNAs) in tumors are clinically significant diagnostic, prognostic, and predictive biomarkers. SCNA detection from targeted next-generation sequencing panels is increasingly common in clinical practice; however, detailed descriptions of optimization and validation of SCNA pipelines for small targeted panels are limited. This study describes the validation and implementation of a tumor-only SCNA pipeline using CNVkit, augmented with custom modules and optimized for clinical implementation by testing reference materials and clinical tumor samples with different classes of copy number variation (CNV; amplification, single copy loss, and biallelic loss). Using wet-bench and in silico methods, various parameters impacting CNV calling, including assay-intrinsic variables (establishment of normal reference and sequencing coverage), sample-intrinsic variables (tumor purity and sample quality), and CNV algorithm-intrinsic variables (bin size), were optimized. The pipeline was trained and tested on an optimization cohort and validated using an independent cohort with a sensitivity and specificity of 100% and 93%, respectively. Using custom modules, intragenic CNVs with breakpoints within tumor suppressor genes were uncovered. Using the validated pipeline, re-analysis of 28 pediatric solid tumors that had been previously profiled for mutations identified SCNAs in 86% (24/28) samples, with 46% (13/28) samples harboring findings of potential clinical relevance. Our report highlights the importance of rigorous establishment of performance characteristics of SCNA pipelines and presents a detailed validation framework for optimal SCNA detection in targeted sequencing panels.
Collapse
Affiliation(s)
- Raghu Chandramohan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jacquelyn Reuther
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Ilavarasi Gandhi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Horatiu Voicu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Karla R Alvarez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sharon E Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Dolores H Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kevin E Fisher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - D Williams Parsons
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.
| | - Angshumoy Roy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
2
|
Park JS, Helble JD, Lazarus JE, Yang G, Blondel CJ, Doench JG, Starnbach MN, Waldor MK. A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion. iScience 2018; 11:71-84. [PMID: 30590252 PMCID: PMC6308251 DOI: 10.1016/j.isci.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
The invasion of Chlamydia trachomatis, an obligate intracellular bacterium, into epithelial cells is driven by a complex interplay of host and bacterial factors. To comprehensively define the host genes required for pathogen invasion, we undertook a fluorescence-activated cell sorting (FACS)-based CRISPR screen in human cells. A genome-wide loss-of-function library was infected with fluorescent C. trachomatis and then sorted to enrich for invasion-deficient mutants. The screen identified heparan sulfate, a known pathogen receptor, as well as coatomer complex I (COPI). We found that COPI, through a previously unappreciated role, promotes heparan sulfate cell surface presentation, thereby facilitating C. trachomatis attachment. The heparan sulfate defect does not fully account for the resistance of COPI mutants. COPI also promotes the activity of the pathogen's type III secretion system. Together, our findings establish the requirement for COPI in C. trachomatis invasion and the utility of FACS-based CRISPR screening for the elucidation of host factors required for pathogen invasion. FACS-based CRISPR screen to identify host factors required for C. trachomatis invasion Candidate genes comprise heparan sulfate biosynthesis, actin remodeling, and COPI COPI regulates heparan sulfate cell surface presentation and C. trachomatis attachment COPI is also required for efficient C. trachomatis T3SS translocation
Collapse
Affiliation(s)
- Joseph S Park
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Boston University School of Medicine, Boston, MA 02120, USA
| | - Jennifer D Helble
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Lazarus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guanhua Yang
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - Carlos J Blondel
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham & Women's Hospital, Boston 02115, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Stagni C, Zamuner C, Elefanti L, Zanin T, Bianco PD, Sommariva A, Fabozzi A, Pigozzo J, Mocellin S, Montesco MC, Chiarion-Sileni V, De Nicolo A, Menin C. BRAF Gene Copy Number and Mutant Allele Frequency Correlate with Time to Progression in Metastatic Melanoma Patients Treated with MAPK Inhibitors. Mol Cancer Ther 2018; 17:1332-1340. [PMID: 29626128 DOI: 10.1158/1535-7163.mct-17-1124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Metastatic melanoma is characterized by complex genomic alterations, including a high rate of mutations in driver genes and widespread deletions and amplifications encompassing various chromosome regions. Among them, chromosome 7 is frequently gained in BRAF-mutant melanoma, inducing a mutant allele-specific imbalance. Although BRAF amplification is a known mechanism of acquired resistance to therapy with MAPK inhibitors, it is still unclear if BRAF copy-number variation and BRAF mutant allele imbalance at baseline can be associated with response to treatment. In this study, we used a multimodal approach to assess BRAF copy number and mutant allele frequency in pretreatment melanoma samples from 46 patients who received MAPK inhibitor-based therapy, and we analyzed the association with progression-free survival. We found that 65% patients displayed BRAF gains, often supported by chromosome 7 polysomy. In addition, we observed that 64% patients had a balanced BRAF-mutant/wild-type allele ratio, whereas 14% and 23% patients had low and high BRAF mutant allele frequency, respectively. Notably, a significantly higher risk of progression was observed in patients with a diploid BRAF status versus those with BRAF gains [HR, 2.86; 95% confidence interval (CI), 1.29-6.35; P = 0.01] and in patients with low percentage versus those with a balanced BRAF mutant allele percentage (HR, 4.54; 95% CI, 1.33-15.53; P = 0.016). Our data suggest that quantitative analysis of the BRAF gene could be useful to select the melanoma patients who are most likely to benefit from therapy with MAPK inhibitors. Mol Cancer Ther; 17(6); 1332-40. ©2018 AACR.
Collapse
Affiliation(s)
- Camilla Stagni
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Carolina Zamuner
- Anatomy and Histology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lisa Elefanti
- Diagnostic Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Tiziana Zanin
- Anatomy and Histology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistics Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Antonio Sommariva
- Surgical Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Alessio Fabozzi
- Melanoma and Esophagus Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Jacopo Pigozzo
- Melanoma and Esophagus Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Simone Mocellin
- Surgical Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Vanna Chiarion-Sileni
- Melanoma and Esophagus Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Arcangela De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Chiara Menin
- Diagnostic Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
4
|
Terrin L, Agostini M, Ruvoletto M, Martini A, Pucciarelli S, Bedin C, Nitti D, Pontisso P. SerpinB3 upregulates the Cyclooxygenase-2 / β-Catenin positive loop in colorectal cancer. Oncotarget 2017; 8:15732-15743. [PMID: 28178650 PMCID: PMC5362519 DOI: 10.18632/oncotarget.14997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer is characterized by aberrant Cyclooxigenase-2 (COX-2) and β-Catenin pathways. Recently, the protease inhibitor SerpinB3 has been described overexpressed in more advanced stages of this tumor. Aim of the study was to explore the possible relationship between these molecules in this setting. We evaluated colorectal cancer specimens from 105 patients and a positive correlation between SerpinB3, COX-2 and β-Catenin expression was observed, with higher levels in tumor than in adjacent tissue. The highest levels were associated with pathologic parameters of poor prognosis, including vascular invasion, lymph node metastasis and perineural invasion. The molecular and protein profiles of COX-2 and β-Catenin were analyzed in cell lines with different expression of SerpinB3. In those with high expression of SerpinB3, COX-2 and β-Catenin were higher than in controls. Cells with high levels of SerpinB3 showed higher proliferation and invasion compared to controls. In conclusion, in colorectal cancer SerpinB3, COX-2 and β-Catenin are positively correlated and associated with more advanced tumor stage. The in vitro experimental results support a driving role of SerpinB3 in the upregulation of COX-2/ β-Catenin positive loop, associated with a more aggressive cellular phenotype.
Collapse
Affiliation(s)
| | - Marco Agostini
- Surgery Branch, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy.,Nano-Inspired Biomedicine Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | | | | | - Salvatore Pucciarelli
- Surgery Branch, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Chiara Bedin
- Nano-Inspired Biomedicine Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Donato Nitti
- Surgery Branch, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | | |
Collapse
|
5
|
Li C, Yu Z, Fu Y, Pang Y, Huang Y. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13958-13964. [PMID: 28337907 DOI: 10.1021/acsami.7b03146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.
Collapse
Affiliation(s)
- Chunmei Li
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Zhilong Yu
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Yusi Fu
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Yuhong Pang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
6
|
Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc Natl Acad Sci U S A 2015; 112:11923-8. [PMID: 26340991 DOI: 10.1073/pnas.1513988112] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Whole-genome amplification (WGA) for next-generation sequencing has seen wide applications in biology and medicine when characterization of the genome of a single cell is required. High uniformity and fidelity of WGA is needed to accurately determine genomic variations, such as copy number variations (CNVs) and single-nucleotide variations (SNVs). Prevailing WGA methods have been limited by fluctuation of the amplification yield along the genome, as well as false-positive and -negative errors for SNV identification. Here, we report emulsion WGA (eWGA) to overcome these problems. We divide single-cell genomic DNA into a large number (10(5)) of picoliter aqueous droplets in oil. Containing only a few DNA fragments, each droplet is led to reach saturation of DNA amplification before demulsification such that the differences in amplification gain among the fragments are minimized. We demonstrate the proof-of-principle of eWGA with multiple displacement amplification (MDA), a popular WGA method. This easy-to-operate approach enables simultaneous detection of CNVs and SNVs in an individual human cell, exhibiting significantly improved amplification evenness and accuracy.
Collapse
|
7
|
Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction. Neoplasia 2014; 15:1301-13. [PMID: 24339742 DOI: 10.1593/neo.131574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022] Open
Abstract
Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.
Collapse
|
8
|
Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 2014; 24:513-31. [PMID: 24662484 PMCID: PMC4011346 DOI: 10.1038/cr.2014.35] [Citation(s) in RCA: 549] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/06/2013] [Accepted: 01/27/2012] [Indexed: 12/12/2022] Open
Abstract
The human 8q24 gene desert contains multiple enhancers that form tissue-specific long-range chromatin loops with the MYC oncogene, but how chromatin looping at the MYC locus is regulated remains poorly understood. Here we demonstrate that a long noncoding RNA (lncRNA), CCAT1-L, is transcribed specifically in human colorectal cancers from a locus 515 kb upstream of MYC. This lncRNA plays a role in MYC transcriptional regulation and promotes long-range chromatin looping. Importantly, the CCAT1-L locus is located within a strong super-enhancer and is spatially close to MYC. Knockdown of CCAT1-L reduced long-range interactions between the MYC promoter and its enhancers. In addition, CCAT1-L interacts with CTCF and modulates chromatin conformation at these loop regions. These results reveal an important role of a previously unannotated lncRNA in gene regulation at the MYC locus.
Collapse
|
9
|
The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh] (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J Inorg Biochem 2013; 127:24-38. [PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022]
Abstract
The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
Collapse
|
10
|
Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, Benezeder T, Auer M, Pischler C, Mannweiler S, Pichler M, Eisner F, Haeusler M, Riethdorf S, Pantel K, Samonigg H, Hoefler G, Augustin H, Geigl JB, Speicher MR. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med 2013; 5:30. [PMID: 23561577 PMCID: PMC3707016 DOI: 10.1186/gm434] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with prostate cancer may present with metastatic or recurrent disease despite initial curative treatment. The propensity of metastatic prostate cancer to spread to the bone has limited repeated sampling of tumor deposits. Hence, considerably less is understood about this lethal metastatic disease, as it is not commonly studied. Here we explored whole-genome sequencing of plasma DNA to scan the tumor genomes of these patients non-invasively. METHODS We wanted to make whole-genome analysis from plasma DNA amenable to clinical routine applications and developed an approach based on a benchtop high-throughput platform, that is, Illuminas MiSeq instrument. We performed whole-genome sequencing from plasma at a shallow sequencing depth to establish a genome-wide copy number profile of the tumor at low costs within 2 days. In parallel, we sequenced a panel of 55 high-interest genes and 38 introns with frequent fusion breakpoints such as the TMPRSS2-ERG fusion with high coverage. After intensive testing of our approach with samples from 25 individuals without cancer we analyzed 13 plasma samples derived from five patients with castration resistant (CRPC) and four patients with castration sensitive prostate cancer (CSPC). RESULTS The genome-wide profiling in the plasma of our patients revealed multiple copy number aberrations including those previously reported in prostate tumors, such as losses in 8p and gains in 8q. High-level copy number gains in the AR locus were observed in patients with CRPC but not with CSPC disease. We identified the TMPRSS2-ERG rearrangement associated 3-Mbp deletion on chromosome 21 and found corresponding fusion plasma fragments in these cases. In an index case multiregional sequencing of the primary tumor identified different copy number changes in each sector, suggesting multifocal disease. Our plasma analyses of this index case, performed 13 years after resection of the primary tumor, revealed novel chromosomal rearrangements, which were stable in serial plasma analyses over a 9-month period, which is consistent with the presence of one metastatic clone. CONCLUSIONS The genomic landscape of prostate cancer can be established by non-invasive means from plasma DNA. Our approach provides specific genomic signatures within 2 days which may therefore serve as 'liquid biopsy'.
Collapse
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Peter Ulz
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Stefan Gutschi
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, Austria
| | - Katja Fischereder
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria
| | - Theresa Benezeder
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Carina Pischler
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Sebastian Mannweiler
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Florian Eisner
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Martin Haeusler
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Hellmut Samonigg
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Herbert Augustin
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria
| | - Jochen B Geigl
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| |
Collapse
|
11
|
Lubbe SJ, Pittman AM, Olver B, Lloyd A, Vijayakrishnan J, Naranjo S, Dobbins S, Broderick P, Gómez-Skarmeta JL, Houlston RS. The 14q22.2 colorectal cancer variant rs4444235 shows cis-acting regulation of BMP4. Oncogene 2011; 31:3777-84. [PMID: 22158048 DOI: 10.1038/onc.2011.564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Common genetic variation at human 14q22.2 tagged by rs4444235 is significantly associated with colorectal cancer (CRC) risk. Re-sequencing was used to comprehensively annotate the 17kb region of strong linkage disequilibrium encompassing rs4444235. Through bioinformatic analyses using H3K4Me1, H3K4Me3, and DNase-I hypersensitivity chromatin signatures and evolutionary conservation we identified seven candidate disease-causing single-nucleotide polymorphisms mapping to six regions within the 17-kb region predicted to have regulatory potential. Reporter gene studies of these regions demonstrated that the element to which rs4444235 maps acts as an allele-specific transcriptional enhancer. Allele-specific expression studies in CRC cell lines heterozygous for rs4444235 showed significantly increased expression of bone morphogenetic protein-4 (BMP4) associated with the risk allele (P<0.001). These data provide evidence for a functional basis for the non-coding risk variant rs4444235 at 14q22.2 and emphasizes the importance of genetic variation in the BMP pathway genes as determinants of CRC risk.
Collapse
Affiliation(s)
- S J Lubbe
- Section of Cancer Genetics, Institute of Cancer Research, Surrey, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kroneis T, Geigl JB, El-Heliebi A, Auer M, Ulz P, Schwarzbraun T, Dohr G, Sedlmayr P. Combined molecular genetic and cytogenetic analysis from single cells after isothermal whole-genome amplification. Clin Chem 2011; 57:1032-41. [PMID: 21558453 DOI: 10.1373/clinchem.2011.162131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Analysis of chromosomal aberrations or single-gene disorders from rare fetal cells circulating in the blood of pregnant women requires verification of the cells' genomic identity. We have developed a method enabling multiple analyses at the single-cell level that combines verification of the genomic identity of microchimeric cells with molecular genetic and cytogenetic diagnosis. METHODS We used a model system of peripheral blood mononuclear cells spiked with a colon adenocarcinoma cell line and immunofluorescence staining for cytokeratin in combination with DNA staining with the nuclear dye TO-PRO-3 in a preliminary study to define candidate microchimeric (tumor) cells in Cytospin preparations. After laser microdissection, we performed low-volume on-chip isothermal whole-genome amplification (iWGA) of single and pooled cells. RESULTS DNA fingerprint analysis of iWGA aliquots permitted successful identification of all analyzed candidate microchimeric cell preparations (6 samples of pooled cells, 7 samples of single cells). Sequencing of 3 single-nucleotide polymorphisms was successful at the single-cell level for 20 of 32 allelic loci. Metaphase comparative genomic hybridization (mCGH) with iWGA products of single cells showed the gains and losses known to be present in the genomic DNA of the target cells. CONCLUSIONS This method may be instrumental in cell-based noninvasive prenatal diagnosis. Furthermore, the possibility to perform mCGH with amplified DNA from single cells offers a perspective for the analysis of nonmicrochimeric rare cells exhibiting genomic alterations, such as circulating tumor cells.
Collapse
Affiliation(s)
- Thomas Kroneis
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Habermann N, Schön A, Lund EK, Glei M. Fish fatty acids alter markers of apoptosis in colorectal adenoma and adenocarcinoma cell lines but fish consumption has no impact on apoptosis-induction ex vivo. Apoptosis 2010; 15:621-30. [PMID: 20107900 DOI: 10.1007/s10495-010-0459-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies suggest that the n-3 polyunsaturated fatty acids (PUFAs) eicosapenteinoic acid (EPA) and docosahexaenoic acid (DHA), constituents of fish oil, exert chemopreventive activity in colon cancer. One of the mechanisms involved is the facilitation of apoptosis. While a pro-apoptotic potential of n-3 PUFAs has been suggested, it is still unclear whether additional consumption of fish will also lead to comparable results. The aim of this study was to assess EPA- and DHA-mediated effects on endpoints of apoptosis and to use a novel biomarker-approach to measure modulation of apoptosis by consumption of fish. LT97 human colon adenoma and HT29 human colon adenocarcinoma cells were used to investigate modulation of apoptosis by EPA, DHA or linoleic acid (LA) using a set of endpoints, namely phosphatidylserine staining with Annexin-V (flow cytometry), Bcl-2 expression (Real-time RT-PCR), and Bid, caspase 3, 8 and 9 expression as well as PARP cleavage (Western Blot). Furthermore, faecal water (FW) of volunteers (n = 89) from a human trial intervening with fish was used to investigate changes in apoptosis by flow cytometry. DHA was more effective at inducing apoptosis than EPA. LT97 cells were more prone to DHA and EPA induced apoptosis than HT29 cells. Treatment of LT97 cells with FW from volunteers consuming fish did not result in any changes in apoptosis. Taken together, our results show that adenoma cells are highly susceptible to n-3 PUFA-induced apoptosis. By using a biomarker-approach (FW) to measure apoptosis-induction ex vivo no change in apoptosis after additional fish consumption was detectable.
Collapse
Affiliation(s)
- Nina Habermann
- Department of Nutritional Toxicology, Institute for Nutrition, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
14
|
Knutsen T, Padilla-Nash HM, Wangsa D, Barenboim-Stapleton L, Camps J, McNeil N, Difilippantonio MJ, Ried T. Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes Chromosomes Cancer 2010; 49:204-23. [PMID: 19927377 DOI: 10.1002/gcc.20730] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In defining the genetic profiles in cancer, cytogenetically aberrant cell lines derived from primary tumors are important tools for the study of carcinogenesis. Here, we present the results of a comprehensive investigation of 15 established colorectal cancer cell lines using spectral karyotyping (SKY), fluorescence in situ hybridization, and comparative genomic hybridization (CGH). Detailed karyotypic analysis by SKY on five of the lines (P53HCT116, T84, NCI-H508, NCI-H716, and SK-CO-1) is described here for the first time. The five lines with karyotypes in the diploid range and that are characterized by defects in DNA mismatch repair had a mean of 4.8 chromosomal abnormalities per line, whereas the 10 aneuploid lines exhibited complex karyotypes and a mean of 30 chromosomal abnormalities. Of the 150 clonal translocations, only eight were balanced and none were recurrent among the lines. We also reviewed the karyotypes of 345 cases of adenocarcinoma of the large intestine listed in the Mitelman Database of Chromosome Aberrations in Cancer. The types of abnormalities observed in the cell lines reflected those seen in primary tumors: there were no recurrent translocations in either tumors or cell lines; isochromosomes were the most common recurrent abnormalities; and breakpoints occurred most frequently at the centromeric/pericentromeric and telomere regions. Of the genomic imbalances detected by array CGH, 87% correlated with chromosome aberrations observed in the SKY studies. The fact that chromosome abnormalities predominantly result in copy number changes rather than specific chromosome or gene fusions suggests that this may be the major mechanism leading to carcinogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Turid Knutsen
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-8010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Namiki K, Goodison S, Porvasnik S, Allan RW, Iczkowski KA, Urbanek C, Reyes L, Sakamoto N, Rosser CJ. Persistent exposure to Mycoplasma induces malignant transformation of human prostate cells. PLoS One 2009; 4:e6872. [PMID: 19721714 PMCID: PMC2730529 DOI: 10.1371/journal.pone.0006872] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022] Open
Abstract
Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including those of the prostate. The American Cancer Society, estimates that approximately 20% of all worldwide cancers are caused by infection. Mycoplasma, a genus of bacteria that lack a cell wall, are among the few prokaryotes that can grow in close relationship with mammalian cells, often without any apparent pathology, for extended periods of time. In this study, the capacity of Mycoplasma genitalium, a prevalent sexually transmitted infection, and Mycoplasma hyorhinis, a mycoplasma found at unusually high frequency among patients with AIDS, to induce a malignant phenotype in benign human prostate cells (BPH-1) was evaluated using a series of in vitro and in vivo assays. After 19 weeks of culture, infected BPH-1 cells achieved anchorage-independent growth and increased migration and invasion. Malignant transformation of infected BPH-1 cells was confirmed by the formation of xenograft tumors in athymic mice. Associated with these changes was an increase in karyotypic entropy, evident by the accumulation of chromosomal aberrations and polysomy. This is the first report describing the capacity of M. genitalium or M. hyorhinis infection to lead to the malignant transformation of benign human epithelial cells and may serve as a model to further study the relationship between prostatitis and prostatic carcinogenesis.
Collapse
Affiliation(s)
- Kazunori Namiki
- Department of Urology, The University of Florida, Gainesville, Florida, United States of America
| | - Steve Goodison
- Department of Surgery, The University of Florida, Jacksonville, Florida, United States of America
| | - Stacy Porvasnik
- Department of Urology, The University of Florida, Gainesville, Florida, United States of America
| | - Robert W. Allan
- Department of Pathology, The University of Florida, Gainesville, Florida, United States of America
| | - Kenneth A. Iczkowski
- Department of Pathology, The University of Colorado, Aurora, Colorado, United States of America
| | - Cydney Urbanek
- Department of Urology, The University of Florida, Gainesville, Florida, United States of America
| | - Leticia Reyes
- Department of Veterinary Pathology, The University of Florida, Gainesville, Florida, United States of America
| | - Noboru Sakamoto
- Department of Urology, The University of Florida, Gainesville, Florida, United States of America
| | - Charles J. Rosser
- Department of Urology, The University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Klenow S, Glei M. New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 2009; 23:1055-61. [DOI: 10.1016/j.tiv.2009.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 06/01/2009] [Accepted: 06/09/2009] [Indexed: 11/27/2022]
|
17
|
Habermann N, Christian B, Luckas B, Pool-Zobel BL, Lund EK, Glei M. Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. Biofactors 2009; 35:460-7. [PMID: 19798733 DOI: 10.1002/biof.60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies suggest that high fish intake is associated with a decreased risk of colorectal cancer which has been linked to the high content of the n - 3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in some fish. In this study, two different cell lines are compared in relation to their response to EPA and DHA versus the plant derived PUFAs, linoleic acid (LA), gamma-linolenic acid (GLA), and alpha-linolenic acid (ALA) and to the ubiquitous arachidonic acid (ARA). The uptake of 100 microM of each fatty acid (FA) was determined using GC. The 4',6-diamidino-2-phenylindole assay for DNA quantification and the Cell-Titer-Blue assay were used to determine cell survival and metabolic activity at 2-72 h after treatment. All FAs were utilized more efficiently by the human colon adenoma cell line LT97 than by the adenocarcinoma cell line HT29. LT97 were more susceptible than HT29 cells to the growth inhibitory activities of all FAs except for DHA where both were equally sensitive. Inhibition of survival and metabolic activity by EPA and DHA increased with treatment time in both cell lines. ALA or GLA were less growth inhibitory than EPA or DHA and ARA had intermediary activity. The data show that the tested FAs are incorporated into colon cells. Furthermore, adenoma cells are more susceptible than the adenocarcinoma cells.
Collapse
Affiliation(s)
- Nina Habermann
- Department for Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, Dornburger Strasse 24, D-07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Klenow S, Pool-Zobel BL, Glei M. Influence of inorganic and organic iron compounds on parameters of cell growth and survival in human colon cells. Toxicol In Vitro 2009; 23:400-7. [DOI: 10.1016/j.tiv.2009.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Single-cell c-myc gene expression in relationship to nuclear domains. Chromosome Res 2008; 16:325-43. [DOI: 10.1007/s10577-007-1196-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
|
20
|
Sabatino M, Zhao Y, Voiculescu S, Monaco A, Robbins P, Karai L, Nickoloff BJ, Maio M, Selleri S, Marincola FM, Wang E. Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Res 2008; 68:122-31. [PMID: 18172304 DOI: 10.1158/0008-5472.can-07-1939] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is generally accepted that human cancers derive from a mutated single cell. However, the genetic steps characterizing various stages of progression remain unclear. Studying a unique case of metastatic melanoma, we observed that cell lines derived from metachronous metastases arising over a decade retained a central core of genetic stability in spite of divergent phenotypes. In the present study, we expanded our previous observations comparing these autologous cell lines of clonal derivation with allogeneic ones and correlated array comparative genomic hybridization (aCGH) with gene expression profiling to determine their relative contribution to the dynamics of disease progression. aCGH and gene expression profiling were performed on autologous cell lines and allogeneic melanoma cell lines originating from other patients. A striking correlation existed between total extent of genetic imbalances, global transcriptional patterns, and cellular phenotypes. They did not follow a strict temporal progression but stemmed independently at various time points from a central core of genetic stability best explained according to the cancer stem cell hypothesis. Although their contribution was intertwined, genomic imbalances detectable by aCGH contributed only 25% of the transcriptional traits determining autologous tumor distinctiveness. Our study provides important insights about the dynamics of cancer progression and supports the development of targeted anticancer therapies aimed against stable genetic factors that are maintained throughout the end stage of disease.
Collapse
Affiliation(s)
- Marianna Sabatino
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Biometrics Research Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892-1184, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Urquidi V, Goodison S. Genomic signatures of breast cancer metastasis. Cytogenet Genome Res 2007; 118:116-29. [PMID: 18000362 DOI: 10.1159/000108292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 09/28/2006] [Indexed: 01/04/2023] Open
Abstract
Despite significant advances in the treatment of primary cancer, the ability to predict the metastatic behavior of a patient's cancer, as well as to detect and eradicate such recurrences, remain major clinical challenges in oncology. While many potential molecular biomarkers have been identified and tested previously, none have greatly improved the accuracy of specimen evaluation over routine histopathological criteria and they predict individual outcomes poorly. However, the recent introduction of high-throughput microarray technology has opened new avenues in genomic investigation of cancer, and through application in tissue-based studies and appropriate animal models, has facilitated the identification of gene expression signatures that are associated with the lethal progression of breast cancer. The use of these approaches has the potential to greatly impact our knowledge of tumor biology, to provide efficient biomarkers, and enable development towards customized prognostication and therapies for the individual.
Collapse
Affiliation(s)
- V Urquidi
- Department of Medicine, University of Florida, Jacksonville, FL, USA
| | | |
Collapse
|
22
|
Samuel MS, Lundgren-May T, Ernst M. Identification of putative targets of DNA (cytosine-5) methylation-mediated transcriptional silencing using a novel conditionally active form of DNA methyltransferase 3a. Growth Factors 2007; 25:426-36. [PMID: 18365873 DOI: 10.1080/08977190801931081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aberrant DNA methylation of gene promoters is a recurrent finding associated with diseases such as cancer and inflammation, and is thought to contribute to disease through its role in transcriptional repression. Indeed, recent evidence suggests that DNA (cytosine-5) methyltransferases (DNMTs) may mediate the activity of factors promoting cell growth. Here, we utilise a novel experimental system for the conditional and reversible activation of a de novo DNMT by constructing a steroid-hormone analogue activated version, Dnmt3a-mERtrade mark. Following treatment with the oestrogen analogue 4-hydroxy tamoxifen of murine embryonic stem cells expressing this protein, we have identified by microarray analysis, several potential targets of Dnmt3a mediated transcriptional repression including the cancer associated genes Ssx2ip, Hmga1 and Wrnip. These results were validated using quantitative reverse transcriptase PCR and we confirm the biological significance of these in vitro observations by demonstrating a reduction in mRNA transcripts of the same genes within the intestinal epithelium of cancer-prone transgenic knock-in mutant mice over-expressing Dnmt3a throughout the intestinal epithelium.
Collapse
Affiliation(s)
- Michael S Samuel
- Ludwig Institute for Cancer Research, P. O. Royal Melbourne Hospital, Parkville, Vic., Australia
| | | | | |
Collapse
|
23
|
Harnicarová A, Kozubek S, Pacherník J, Krejci J, Bártová E. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells. Exp Cell Res 2006; 312:4019-35. [PMID: 17046748 DOI: 10.1016/j.yexcr.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/05/2023]
Abstract
Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.
Collapse
Affiliation(s)
- Andrea Harnicarová
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
24
|
Stewénius Y, Tanke HJ, Wiegant J, Gisselsson D. Cryptic terminal chromosome rearrangements in colorectal carcinoma cell lines detected by subtelomeric FISH analysis. Cytogenet Genome Res 2006; 114:257-62. [PMID: 16954663 DOI: 10.1159/000094210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/22/2005] [Indexed: 11/19/2022] Open
Abstract
Epithelial tumour karyotypes are often difficult to study by standard cytogenetic methods because of poor chromosome preparation quality and the high complexity of their genomic rearrangements. Subtelomeric fluorescence in situ hybridisation (FISH) has proved to be a useful method for detecting cryptic constitutional chromosomal rearrangements but little is known about its usefulness for tumour cytogenetic analysis. Using a combination of chromosome banding, multicolour karyotyping and subtelomeric FISH, five colorectal cancer cell lines were characterised. The resulting data were compared to results from previous studies by comparative genomic hybridisation and spectral karyotyping or multicolour FISH. Subtelomeric FISH made it possible to resolve several highly complex chromosome rearrangements, many of which had not been detected or were incompletely characterised by the other methods. In particular, previously undetected terminal imbalances were found in the two cell lines not showing microsatellite instability.
Collapse
Affiliation(s)
- Y Stewénius
- Department of Clinical Genetics, University Hospital, Lund, Sweden.
| | | | | | | |
Collapse
|
25
|
Wang E, Voiculescu S, Le Poole IC, El-Gamil M, Li X, Sabatino M, Robbins PF, Nickoloff BJ, Marincola FM. Clonal Persistence and Evolution During a Decade of Recurrent Melanoma. J Invest Dermatol 2006; 126:1372-7. [PMID: 16470173 DOI: 10.1038/sj.jid.5700193] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A patient with metastatic cutaneous melanoma responsive to immunotherapy experienced several recurrences over a decade of observation. With each recurrence, biopsies were obtained and cell lines generated. A rare mutation of the beta-catenin gene and an unbalanced methylation of the androgen receptor were documented in all cell lines. Karyotyping and comparative genomic hybridization identified consistent genetic traits in spite of divergent phenotypes, suggesting that all the metastases were derived from the same primary tumor, although they were each probably not derived from the most recent previous metastasis in a sequential manner. Thus, metastatic melanoma recurs from a common progenitor cell and phenotypic changes occur around a central core of genetic stability. This observation may bear significance for the development of targeted anticancer therapies.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li R, Hehlman R, Sachs R, Duesberg P. Chromosomal alterations cause the high rates and wide ranges of drug resistance in cancer cells. ACTA ACUST UNITED AC 2006; 163:44-56. [PMID: 16271955 DOI: 10.1016/j.cancergencyto.2005.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/30/2005] [Accepted: 05/02/2005] [Indexed: 11/30/2022]
Abstract
Conventional mutation-selection theories have failed to explain (i) how cancer cells become spontaneously resistant against cytotoxic drugs at rates of up to 10(-3) per cell generation, orders higher than gene mutation, even in cancer cells; (ii) why resistance far exceeds a challenging drug-a state termed multidrug resistance; (iii) why resistance is associated with chromosomal alterations and proportional to their numbers; and (iv) why resistance is totally dependent on aneuploidy. We propose here that cancer-specific aneuploidy generates drug resistance via chromosomal alterations. According to this mechanism, aneuploidy varies the numbers and structures of chromosomes automatically, because it corrupts the many teams of proteins that segregate, synthesize, and repair chromosomes. Aneuploidy is thus a steady source of chromosomal variation from which, in classical Darwinian terms, resistance-specific aneusomies are selected in the presence of chemotherapeutic drugs. Some of the thousands of unselected genes that hitchhike with resistance-specific aneusomies can thus generate multidrug resistance. To test this hypothesis, we determined the rates of chromosomal alterations in clonal cultures of human breast and colon cancer lines by dividing the fraction of nonclonal karyotypes by the number of generations of the clone. These rates were about 10(-2) per cell generation, orders higher than mutation. Chromosome numbers and structures were determined in metaphases hybridized with color-coded chromosome-specific DNA probes. Further, we tested puromycin-resistant subclones of these lines for resistance-specific aneusomies. Resistant subclones differed from parental lines in four to seven specific aneusomies, of which different subclones shared some. The degree of resistance was roughly proportional to the number of these aneusomies. Thus, aneuploidy is the primary cause of the high rates and wide ranges of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Ruhong Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
27
|
Friedrich I, Eizenbach M, Sajman J, Ben-Bassat H, Levitzki A. A cellular screening assay to test the ability of PKR to induce cell death in mammalian cells. Mol Ther 2005; 12:969-75. [PMID: 16084774 DOI: 10.1016/j.ymthe.2005.06.442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 06/19/2005] [Accepted: 06/19/2005] [Indexed: 10/25/2022] Open
Abstract
Long double-stranded RNA (>30 bp), usually expressed in cells infected with RNA viruses, triggers antiviral responses that induce apoptosis of the infected cells. PKR can be selectively activated in glioblastoma cells by in situ generation of dsRNA following introduction of antisense RNA complementary to an RNA expressed specifically in these cells. Harnessing PKR for the selective killing of cancer cells is potentially a powerful strategy for treating cancer, but we were unable to induce apoptosis by this approach in a T cell lymphoma. We therefore established a cellular screening assay to test the ability of PKR to induce death in cell lines, especially those originating from human cancers. This "PKR killing screen" is based on the infection of cells with an adenoviral vector encoding GyrB-PKR, followed by coumermycin treatment. Cancers represented by cell lines in which PKR activation leads to cell death are good candidates for the dsRNA killing approach, using antisense to RNA molecules specifically expressed in these cells. The PKR killing screen may also serve as a tool for exploring PKR signaling and other related pathways, by identifying new cases in which PKR signaling is inhibited or impaired.
Collapse
Affiliation(s)
- Inbar Friedrich
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
28
|
Deng W, Tsao SW, Guan XY, Lucas JN, Si HX, Leung CS, Mak P, Wang LD, Cheung ALM. Distinct profiles of critically short telomeres are a key determinant of different chromosome aberrations in immortalized human cells: whole-genome evidence from multiple cell lines. Oncogene 2005; 23:9090-101. [PMID: 15489894 DOI: 10.1038/sj.onc.1208119] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromosomal aberrations are common in cancers. However, the search for chromosomal aberrations leading to development of specific solid tumors has been severely hindered because the majority of solid tumors have complex chromosomal aberrations that differ within the same tumor types. A similar phenomenon exists in immortalized cell lines. The underlying mechanisms driving these diverse aberrations are largely unknown. Telomeres play crucial roles in protecting the integrity of eucaryotic chromosomes and maintaining genomic stability of human cells. Telomere lengths on individual chromosomes in normal human somatic cells are heterogeneous and undergo progressive shortening with aging process. In this study, for the first time, a molecular cytogenetic method using sequential telomere quantitative fluorescence in situ hybridization and spectral karyotyping on the same human metaphases was applied successfully to examine the dynamic profiles of individual telomere shortening and their relationship to chromosome aberrations in multiple human cell lines undergoing immortalization. Human ovarian surface epithelial cells and esophageal epithelial cells were immortalized by the expression of HPV16 E6 and E7, which drive cells to proliferate by inactivating p53 and Rb genes. In these cell lines, we consistently detected large-scale differences in telomere signal intensities not only among nonhomologous chromosome arms but also between some homologous chromosome arms. The cell lines derived from different donors had different profiles of critically short telomeres (lacking telomere signals). Strikingly, the different profiles of chromosomal structural aberrations in multiple immortalized cell lines were highly significantly associated with the distinct distributions of critically short telomeres in whole-genome. Since cellular immortalization is one of the hallmarks of cancer, our findings suggest that distinct profiles of critically short telomeres in different human individuals might play an essential role in determining the complex and individual-specific chromosomal structural aberrations in human solid tumors.
Collapse
Affiliation(s)
- Wen Deng
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kleivi K, Teixeira MR, Eknaes M, Diep CB, Jakobsen KS, Hamelin R, Lothe RA. Genome signatures of colon carcinoma cell lines. ACTA ACUST UNITED AC 2005; 155:119-31. [PMID: 15571797 DOI: 10.1016/j.cancergencyto.2004.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/22/2004] [Accepted: 03/25/2004] [Indexed: 01/01/2023]
Abstract
In cancer biology, cell lines are often used instead of primary tumors because of their widespread availability and close reflection of the in vivo state. Cancer is a genetic disease, commonly caused by small- and large-scale DNA rearrangements. Therefore, it is essential to know the genomic profiles of tumor cell lines to enable their correct and efficient use as experimental tools. Here, we present a comprehensive study of the genomic profiles of 20 colon cancer cell lines combining conventional karyotyping (G-banding), comparative genomic hybridization (CGH), and multicolor fluorescence in situ hybridization (M-FISH). Major differences between the microsatellite instability (MSI) and chromosome instability (CIN) cell lines are shown; the CIN cell lines exhibited complex karyotypes involving many chromosomes (mean: 8.5 copy number changes), whereas the MSI cell lines showed considerably fewer aberrations (mean: 2.6). The 3 techniques complement each other to provide a detailed picture of the numerical and structural chromosomal changes that characterize cancer cells. Therefore, 7 of the cell lines (Colo320, EB, Fri, IS2, IS3, SW480, and V9P) are here completely karyotyped for the first time and, among these, 5 have not previously been cytogenetically described. By hierarchical cluster analysis, we show that the cell lines are representative models for primary carcinomas at the genome level. We also present the genomic profiles of an experimental model for tumor progression, including 3 cell lines (IS1, IS2, and IS3) established from a primary carcinoma, its corresponding liver- and peritoneal metastasis from the same patient. To address the question of clonality, we compared the genome of 3 common cell lines grown in 2 laboratories. Finally, we compared all our results with previously published CGH data and karyotypes of colorectal cell lines. In conclusion, the large variation in genetic complexity of the cell lines highlights the importance of a comprehensive reference of genomic profiles for investigators engaged in functional studies using these research tools.
Collapse
Affiliation(s)
- Kristine Kleivi
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Ullernschauseen 70, Oslo N-0310, Norway
| | | | | | | | | | | | | |
Collapse
|
30
|
Goodison S, Viars C, Urquidi V. Molecular cytogenetic analysis of a human breast metastasis model: identification of phenotype-specific chromosomal rearrangements. ACTA ACUST UNITED AC 2005; 156:37-48. [PMID: 15588854 DOI: 10.1016/j.cancergencyto.2004.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 04/02/2004] [Accepted: 04/07/2004] [Indexed: 01/09/2023]
Abstract
We have previously characterized an experimental system in which the role of candidate metastasis-related genes can be screened and tested. Monoclonal cell lines M4A4 and NM2C5 originated from the MDA-MB-435 breast tumor cell line but have opposite metastatic capabilities in vivo. To investigate gross genetic changes present in this model, we performed a detailed molecular cytogenetic evaluation of the parental cell line, the M4A4 and NM2C5 cell lines, and related clones of metastatic phenotype. Using a combination of spectral karyotyping (SKY), G-banding, and fluorescence in situ hybridization (FISH), we were able to resolve the identity of all common marker chromosomes present in MDA-MB-435 cells, and to define several chromosomal changes, which were specific to each monoclonal cell line. Twenty identical structural and numerical chromosomal aberrations, including trisomies of chromosomes 2 and 5 as well as t(1;7), t(1;10), t(8;11), t(8;15), and t(20;21), were present in all cell lines. The majority of translocations were relatively simple non-reciprocal rearrangements, most frequently involving chromosomes 19, 1, 6, and 20. Chromosomal gains of 1, 7q, 8q, and 20q are common alterations in breast cancer. The metastatic M4A4 cell line contained numerous unique chromosomal aberrations, of which an abnormal banding region on chromosome 22, abr(22), was the best clone-specific identifier. Conversely, the t(12;15)(q22;q26.1) was found exclusively in the non-metastatic NM2C5 cell line. The integration of these karyotypic data with other cytogenetic and genomic databases will enhance our ability to identify genes that play critical roles in cancer development and progression.
Collapse
Affiliation(s)
- Steve Goodison
- Department of Pathology, University of Florida, Shands Health Science Center, 655 West 8th Street, Jacksonville, FL 32209-6511, USA.
| | | | | |
Collapse
|
31
|
Putnam CD, Pennaneach V, Kolodner RD. Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:13262-7. [PMID: 15328403 PMCID: PMC516557 DOI: 10.1073/pnas.0405443101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Broken chromosomes healed by de novo addition of a telomere are a major class of genome rearrangements seen in Saccharomyces cerevisiae and similar to rearrangements seen in human tumors. We have analyzed the sequences of 534 independent de novo telomere additions within a 12-kb region of chromosome V. The distribution of events mirrored that of four-base sequences consisting of the GG, GT, and TG dinucleotides, suggesting that de novo telomere additions occur at short regions of homology to the telomerase guide RNA. These chromosomal sequences restrict potential registrations of the added telomere sequence. The first 11 nucleotides of the addition sequences fell into common families that included 91% of the breakpoints. The observed registrations suggest that the 3' end of the TLC1 guide RNA is involved in annealing but not as a template for synthesis. Some families of added sequences can be accounted for by one cycle of annealing and extension, whereas others require a minimum of two. The same pattern emerges for sequences added onto the most common addition sequence, indicating that de novo telomeres are added and extended by the same process. Together, these data indicate that annealing is central to telomerase registration, which limits telomere heterogeneity and resolves the problem of synthesizing Rap1 binding sites by a nonprocessive telomerase with a low-complexity guide RNA sequence.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine, Cancer Center, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | | | |
Collapse
|
32
|
Camps J, Morales C, Prat E, Ribas M, Capellà G, Egozcue J, Peinado MA, Miró R. Genetic evolution in colon cancer KM12 cells and metastatic derivates. Int J Cancer 2004; 110:869-74. [PMID: 15170669 DOI: 10.1002/ijc.20195] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
So far, CRC cell lines have contributed to descriptions of 2 patterns of genetic instability, affecting either microsatellite sequences or chromosome number and structure. Often, these patterns are mutually exclusive; while near-diploid karyotypes usually appear with MSI and chromosomal stability, near-triploid or tetraploid cells display a high degree of CIN and are stable at the microsatellite level. In the present study, we describe the genomic instability pattern of KM12 CRC cells. KM12C and derived cell lines with different metastatic properties were analyzed by conventional cytogenetics, CGH and M-FISH. Results were compared to 5 cell lines usually used as model of MSI and CIN. Concordance between our results and previously published SKY data are also reviewed. Interestingly, the poorly metastatic KM12C cell line displayed a near-diploid karyotype with high levels of structural chromosome instability and microsatellite instability. The highly metastatic KM12SM and KM12L4A cell lines showed polyploid karyotypes and maintained CIN and MSI. A comparison between karyotypes of poorly and highly metastatic KM12 cell lines allowed us to delineate a cytogenetic evolution pathway. Our results clearly demonstrated that endoreduplication was the origin of the polyploid dosages in the highly metastatic forms following the monosomic model postulated for CRC. Therefore, we demonstrate that KM12C cells and their metastatic derivates, KM12SM and KM12L4A, are a useful model of chromosomal evolution where MSI may coexist with CIN.
Collapse
Affiliation(s)
- Jordi Camps
- Laboratori de Citogenètica, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu S, Le Z, Krylov S, Dovichi NJ. Cell cycle-dependent protein fingerprint from a single cancer cell: image cytometry coupled with single-cell capillary sieving electrophoresis. Anal Chem 2004; 75:3495-501. [PMID: 14570202 DOI: 10.1021/ac034153r] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Study of cell cycle-dependent protein expression is important in oncology, stem cell research, and developmental biology. In this paper, we report the first protein fingerprint from a single cell with known phase in the cell cycle. To determine that phase, we treated HT-29 colon cancer cells with Hoescht 33342, a vital nuclear stain. A microscope was used to measure the fluorescence intensity from one treated cell; in this form of image cytometry, the fluorescence intensity is proportional to the cell's DNA content, which varies in a predictable fashion during the cell cycle. To generate the protein fingerprint, the cell was aspirated into the separation capillary and lysed. Proteins were fluorescently labeled with 3-(2-furoylquinoline-2-carboxaldehyde, separated by capillary sieving electrophoresis, and detected by laser-induced fluorescence. This form of electrophoresis is the capillary version of SDS-PAGE. The single-cell electropherogram partially resolved approximately 25 components in a 30-min separation, and the dynamic range of the detector exceeded 5000. There was a large cell-to-cell variation in protein expression, averaging 40% relative standard deviation across the electropherogram. The dominant source of variation was the phase of the cell in the cell cycle; on average, approximately 60% of the cell-to-cell variance in protein expression was associated with the cell cycle. Cells in the G1 and G2/M phases of the cell cycle had 27 and 21% relative standard deviations in protein expression, respectively. Cells in the G2/M phase generated signals that were twice the amplitude of the signals generated by G1 phase cells, as expected for cells that are soon to divide into two daughter cells. When electropherograms were normalized to total protein content, the expression of only one component was dependent on cell cycle at the 99% confidence limit. That protein is tentatively identified as cytokeratin 18 in a companion paper.
Collapse
Affiliation(s)
- Shen Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
34
|
Goodison S, Viars C, Grazzini M, Urquidi V. The interrelationship between DRIM gene expression and cytogenetic and phenotypic characteristics in human breast tumor cell lines. BMC Genomics 2003; 4:39. [PMID: 14503924 PMCID: PMC222913 DOI: 10.1186/1471-2164-4-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 09/22/2003] [Indexed: 11/17/2022] Open
Abstract
Background In order to facilitate the identification of genes involved in the metastatic phenotype we have previously developed a pair of cell lines from the human breast carcinoma cell line MDA-MB-435, which have diametrically opposite metastatic potential in athymic mice. Differential display analysis of this model previously identified a novel gene, DRIM (down regulated in metastasis), the decreased expression of which correlated with metastatic capability. DRIM encodes a protein comprising 2785 amino acids with significant homology to a protein in yeast and C. elegans, but little else is currently known about its function or pattern of expression. In a detailed analysis of the DRIM gene locus we quantitatively evaluated gene dosage and the expression of DRIM transcripts in a panel of breast cell lines of known metastatic phenotype. Results Fluorescent in situ hybridization (FISH) analyses mapped a single DRIM gene locus to human chromosome 12q23~24, a region of conserved synteny to mouse chromosome 10. We confirmed higher expression of DRIM mRNA in the non-metastatic MDA-MB-435 clone NM2C5, relative to its metastatic counterpart M4A4, but this appeared to be due to the presence of an extra copy of the DRIM gene in the cell line's genome. The other non-metastatic cell lines in the series (T47D MCF-7, SK-BR-3 and ZR-75-1) contained either 3 or 4 chromosomal copies of DRIM gene. However, the expression level of DRIM mRNA in M4A4 was found to be 2–4 fold higher than in unrelated breast cells of non-metastatic phenotype. Conclusions Whilst DRIM expression is decreased in metastatic M4A4 cells relative to its non-metastatic isogenic counterpart, neither DRIM gene dosage nor DRIM mRNA levels correlated with metastatic propensity in a series of human breast tumor cell lines examined. Collectively, these findings indicate that the expression pattern of the DRIM gene in relation to the pathogenesis of breast tumor metastasis is more complex than previously recognized.
Collapse
Affiliation(s)
- Steve Goodison
- UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Carrie Viars
- UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Maren Grazzini
- UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Virginia Urquidi
- UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
35
|
Corzo C, Petzold M, Mayol X, Espinet B, Salido M, Serrano S, Real FX, Solé F. RxFISH karyotype and MYC amplification in the HT-29 colon adenocarcinoma cell line. Genes Chromosomes Cancer 2003; 36:425-6. [PMID: 12619156 DOI: 10.1002/gcc.10164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Kuechler A, Weise A, Michel S, Schaeferhenrich A, Pool-Zobel BL, Claussen U, Liehr T. Precise breakpoint characterization of the colon adenocarcinoma cell line HT-29 clone 19A by means of 24-color fluorescence in situ hybridization and multicolor banding. Genes Chromosomes Cancer 2003; 36:207-10. [PMID: 12508250 DOI: 10.1002/gcc.10163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|