1
|
Shi S, Wang R, Chen L, Li Y, Zhang Y, Xin X, Yang S, Wang Y, Xiao Y, Xu K. Long-term follow-up and successful treatment of pulmonary alveolar proteinosis without hypercholesterolemia with statin therapy: a case report. J Int Med Res 2021; 49:3000605211010046. [PMID: 33926277 PMCID: PMC8113942 DOI: 10.1177/03000605211010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by the
accumulation of excessive surfactant lipids and proteins in alveolar macrophages
and alveoli. Oral statin therapy is a novel treatment for PAP with
hypercholesterolemia. However, this treatment has never been described in a
patient without hypercholesterolemia. Here, we present a case of successful
treatment with atorvastatin for a patient with possibly unclassified PAP without
hypercholesterolemia who responded poorly to whole lung lavage therapy and
inhaled granulocyte-macrophage colony-stimulating factor. After 18 months of
atorvastatin treatment, the patient experienced improvements in dyspnea,
radiographic abnormalities and pulmonary function. The present case study
supports the feasibility of statin therapy for PAP regardless of the level of
cholesterol.
Collapse
Affiliation(s)
- Shenyun Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rujia Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yingwei Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shangwen Yang
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yihua Wang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.,Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Respiratory and Critical Care Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, China
| | - Kaifeng Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
2
|
Influence of CMTM8 polymorphisms on lung cancer susceptibility in the Chinese Han population. Pharmacogenet Genomics 2020; 31:89-95. [PMID: 33395025 DOI: 10.1097/fpc.0000000000000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality worldwide and CMTM8 is a potential tumor suppressor gene, which is down-regulated in lung cancer. The objective of this research was to assess the association of CMTM8 genetic polymorphisms with lung cancer risk. METHODS To evaluate the correlation between CMTM8 polymorphisms and lung cancer risk, Agena MassArray platform was used for genotype determination among 509 lung cancer patients and 506 controls. Multiple genetic models, stratification analysis and Haploview analysis were used by calculating odds ratio (OR) and 95% confidence intervals (CIs). RESULTS Significant associations were detected between CMTM8 rs6771238 and an increased lung cancer risk in codominant (adjusted OR = 1.57, 95% CI: 1.01-2.42, P = 0.044) and dominant (adjusted OR = 1.54, 95% CI: 1.01-2.36, P = 0.047) models. After sex stratification analysis, we observed that rs6771238 was related to an increased risk of lung squamous cell carcinoma, while rs6771238 was associated with an increased risk of lung adenocarcinoma. Rs9835916 was linked to increased risk of lymph node metastasis in lung cancer patients. CONCLUSION Our study first reported that CMTM8 polymorphisms were a risk factor for lung cancer, which suggested the potential roles of CMTM8 in the development of lung cancer.
Collapse
|
3
|
Mortezaei Z, Tavallaei M, Hosseini SM. Considering smoking status, coexpression network analysis of non-small cell lung cancer at different cancer stages, exhibits important genes and pathways. J Cell Biochem 2019; 120:19172-19185. [PMID: 31271232 DOI: 10.1002/jcb.29246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/23/2019] [Indexed: 02/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer among smokers, nonsmokers, women, and young individuals. Tobacco smoking and different stages of the NSCLC have important roles in cancer evolution and require different treatments. Existence of poorly effective therapeutic options for the NSCLC brings special attention to targeted therapies by considering genetic alterations. In this study, we used RNA-Seq data to compare expression levels of RefSeq genes and to find some genes with similar expression levels. We utilized the "Weighted Gene Co-expression Network Analysis" method for three different datasets to create coexpressed genetic modules having relations with the smoking status and different stages of the NSCLC. Our results indicate seven important genetic modules having important associations with the smoking status and cancer stages. Based on investigated genetic modules and their biological explanation, we then identified 13 newly candidate genes and 7 novel transcription factors in association with the NSCLC, the smoking status, and cancer stages. We then examined those results using other datasets and explained our results biologically to illustrate some important genes in relation with the smoking status and metastatic stage of the NSCLC that can bring some crucial information about cancer evolution. Our genetic findings also can be used as some therapeutic targets for different clinical conditions of the NSCLC.
Collapse
Affiliation(s)
- Zahra Mortezaei
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmood Tavallaei
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Role of ESCRT component HD-PTP/ PTPN23 in cancer. Biochem Soc Trans 2017; 45:845-854. [PMID: 28620046 DOI: 10.1042/bst20160332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Sustained cellular signalling originated from the receptors located at the plasma membrane is widely associated with cancer susceptibility. Endosomal sorting and degradation of the cell surface receptors is therefore crucial to preventing chronic downstream signalling and tumorigenesis. Since the Endosomal Sorting Complexes Required for Transport (ESCRT) controls these processes, ESCRT components were proposed to act as tumour suppressor genes. However, the bona fide role of ESCRT components in tumorigenesis has not been clearly demonstrated. The ESCRT member HD-PTP/PTPN23 was recently identified as a novel haplo-insufficient tumour suppressor in vitro and in vivo, in mice and humans. In this mini-review, we outline the role of the ESCRT components in cancer and summarize the functions of HD-PTP/PTPN23 in tumorigenesis.
Collapse
|
5
|
Zhang W, Qi H, Mo X, Sun Q, Li T, Song Q, Xu K, Hu H, Ma D, Wang Y. CMTM8 is Frequently Downregulated in Multiple Solid Tumors. Appl Immunohistochem Mol Morphol 2017; 25:122-128. [DOI: 10.1097/pai.0000000000000274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Guo Y, Shu L, Zhang C, Su ZY, Kong ANT. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem Pharmacol 2015; 94:69-78. [PMID: 25640947 DOI: 10.1016/j.bcp.2015.01.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 01/25/2023]
Abstract
Colorectal cancer remains the most prevalent malignancy in humans. The impact of epigenetic alterations on the development of this complex disease is now being recognized. The dynamic and reversible nature of epigenetic modifications makes them a promising target in colorectal cancer chemoprevention and treatment. Curcumin (CUR), the major component in Curcuma longa, has been shown as a potent chemopreventive phytochemical that modulates various signaling pathways. Deleted in lung and esophageal cancer 1 (DLEC1) is a tumor suppressor gene with reduced transcriptional activity and promoter hypermethylation in various cancers, including colorectal cancer. In the present study, we aimed to investigate the inhibitory role of DLEC1 in anchorage-independent growth of the human colorectal adenocarcinoma HT29 cells and epigenetic regulation by CUR. Specifically, we found that CUR treatment inhibited colony formation of HT29 cells, whereas stable knockdown of DLEC1 using lentiviral short hairpin RNA vector increased cell proliferation and colony formation. Knockdown of DLEC1 in HT29 cells attenuated the ability of CUR to inhibit anchorage-independent growth. Methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and methylated DNA immunoprecipitation revealed that CUR decreased CpG methylation of the DLEC1 promoter in HT29 cells after 5 days of treatment, corresponding to increased mRNA expression of DLEC1. Furthermore, CUR decreased the protein expression of DNA methyltransferases and subtypes of histone deacetylases (HDAC4, 5, 6, and 8). Taken together, our results suggest that the inhibitory effect of CUR on anchorage-independent growth of HT29 cells could, at least in part, involve the epigenetic demethylation and up-regulation of DLEC1.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Chengyue Zhang
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Yogurtcu B, Hatemi I, Aydin I, Buyru N. NPRL2 gene expression in the progression of colon tumors. GENETICS AND MOLECULAR RESEARCH 2012; 11:4810-6. [PMID: 23079973 DOI: 10.4238/2012.september.12.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic and epigenetic factors affecting DNA methylation and gene expression are known to be involved in the development of colon cancer, but the full range of genetic alterations and many key genes involved in the pathogenesis of colon cancer remain to be identified. NPRL2 is a candidate tumor suppressor gene identified in the human chromosome 3p21.3 region. We evaluated the role of this gene in the pathogenesis of colorectal cancer by investigating NPRL2 mRNA expression in 55 matched normal and tumor colon tissue samples using quantitative RT-PCR analysis. There was significantly decreased NPRL2 expression in 45% of the patients. Lower NPRL2 expression was observed significantly more frequently in poorly differentiated tumor samples than in highly or moderately differentiated tumors. We conclude that expression of NPRL2 contributes to progression of colon cancer.
Collapse
Affiliation(s)
- B Yogurtcu
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Kocamustafapasa, Istanbul, Turkey
| | | | | | | |
Collapse
|
8
|
Zimonjic DB, Popescu NC. Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma: potential prospects for combined targeted therapeutics (review). Int J Oncol 2012; 41:393-406. [PMID: 22580498 PMCID: PMC3583004 DOI: 10.3892/ijo.2012.1474] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/17/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death, and its incidence is increasing worldwide in an alarming manner. The development of curative therapy for advanced and metastatic HCC is a high clinical priority. The HCC genome is complex and heterogeneous; therefore, the identification of recurrent genomic and related gene alterations is critical for developing clinical applications for diagnosis, prognosis and targeted therapy of the disease. This article focuses on recent research progress and our contribution in identifying and deciphering the role of defined genetic alterations in the pathogenesis of HCC. A significant number of genes that promote or suppress HCC cell growth have been identified at the sites of genomic reorganization. Notwithstanding the accumulation of multiple genetic alterations, highly recurrent changes on a single chromosome can alter the expression of oncogenes and tumor suppressor genes (TSGs) whose deregulation may be sufficient to drive the progression of normal hepatocytes to malignancy. A distinct and highly recurrent pattern of genomic imbalances in HCC includes the loss of DNA copy number (associated with loss of heterozygosity) of TSG-containing chromosome 8p and gain of DNA copy number or regional amplification of protooncogenes on chromosome 8q. Even though 8p is relatively small, it carries an unusually large number of TSGs, while, on the other side, several oncogenes are dispersed along 8q. Compelling evidence demonstrates that DLC1, a potent TSG on 8p, and MYC oncogene on 8q play a critical role in the pathogenesis of human HCC. Direct evidence for their role in the genesis of HCC has been obtained in a mosaic mouse model. Knockdown of DLC1 helps MYC in the induction of hepatoblast transformation in vitro, and in the development of HCC in vivo. Therapeutic interventions, which would simultaneously target signaling pathways governing both DLC1 and MYC functions in hepatocarcinogenesis, could result in progress in the treatment of liver cancer.
Collapse
Affiliation(s)
- Drazen B Zimonjic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Haraldson K, Kashuba VI, Dmitriev AA, Senchenko VN, Kudryavtseva AV, Pavlova TV, Braga EA, Pronina IV, Kondratov AG, Rynditch AV, Lerman MI, Zabarovsky ER. LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibits cell growth and replication. Biochimie 2012; 94:1151-7. [PMID: 22321817 DOI: 10.1016/j.biochi.2012.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/26/2012] [Indexed: 12/11/2022]
Abstract
Chromosome 3 specific NotI microarrays containing 180 NotI linking clones associated with 188 genes were hybridized to NotI representation probes prepared using matched tumor/normal samples from major epithelial cancers: breast (47 pairs), lung (40 pairs) cervical (43 pairs), kidney (34 pairs of clear cell renal cell carcinoma), colon (24 pairs), ovarian (25 pairs) and prostate (18 pairs). In all tested primary tumors (compared to normal controls) methylation and/or deletions was found. For the first time we showed that the gene LRRC3B was frequently methylated and/or deleted in breast carcinoma - 32% of samples, cervical - 35%, lung - 40%, renal - 35%, ovarian - 28%, colon - 33% and prostate cancer - 44%. To check these results bisulfite sequencing using cloned PCR products with representative two breast, one cervical, two renal, two ovarian and two colon cancer samples was performed. In all cases methylation was confirmed. Expression analysis using RT-qPCR showed that LRRC3B is strongly down-regulated at the latest stages of RCC and ovarian cancers. In addition we showed that LRRC3B exhibit strong cell growth inhibiting activity (more than 95%) in colony formation experiments in vitro in KRC/Y renal cell carcinoma line. All these data suggest that LRRC3B gene could be involved in the process of carcinogenesis as a tumor suppressor gene.
Collapse
Affiliation(s)
- Klas Haraldson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Acquati F, Monti L, Lualdi M, Fabbri M, Sacco MG, Gribaldo L, Taramelli R. Molecular signature induced by RNASET2, a tumor antagonizing gene, in ovarian cancer cells. Oncotarget 2011; 2:477-84. [PMID: 21646684 PMCID: PMC3248199 DOI: 10.18632/oncotarget.274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using the Hey3Met2 human ovarian cancer cell line, we previously found the RNASET2 gene to possess a remarkable in vivo tumor suppressor activity, although no in vitro features such as inhibition of cell proliferation, clonogenic potential, impaired growth in soft agar and increase in apoptotic rate could be detected. This is reminiscent of the behavior of genes belonging to the class of tumor antagonizing genes (TAG) which act mainly within the context of the microenvironment. Here we present transcriptional profiles analysis which indicates that investigations of the mechanisms of TAG biological functions require a comparison between the in vitro and in vivo expression patterns. Indeed several genes displaying a biological function potentially related to tumor suppression could not be validated by subsequent in vivo expression analysis. On the other hand the fact that we could find congruency for three genes both in vivo and in vitro adds a warning to a too much stringent categorization of this class of genes which relies on the sensitivity of the methodological approaches.
Collapse
Affiliation(s)
- Francesco Acquati
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase. Proc Natl Acad Sci U S A 2010; 108:1104-9. [PMID: 21189302 DOI: 10.1073/pnas.1013746108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A recent body of evidence indicates an active role for stromal (mis)-regulation in the progression of neoplasias. Within this conceptual framework, genes belonging to the growing but still poorly characterized class of tumor antagonizing/malignancy suppressor genes (TAG/MSG) seem to play a crucial role in the regulation of the cross-talk between stromal and epithelial cells by controlling malignant growth in vivo without affecting any cancer-related phenotype in vitro. Here, we have functionally characterized the human RNASET2 gene, which encodes the first human member of the widespread Rh/T2/S family of extracellular RNases and was recently found to be down-regulated at the transcript level in several primary ovarian tumors or cell lines and in melanoma cell lines. Although we could not detect any activity for RNASET2 in several functional in vitro assays, a remarkable control of ovarian tumorigenesis could be detected in vivo. Moreover, the control of ovarian tumorigenesis mediated by this unique tumor suppressor gene occurs through modification of the cellular microenvironment and the induction of immunocompetent cells of the monocyte/macrophage lineage. Taken together, the data presented in this work strongly indicate RNASET2 as a previously unexplored member of the growing family of tumor-antagonizing genes.
Collapse
|
12
|
Transcriptional repression of DLEC1 associates with the depth of tumor invasion in oral squamous cell carcinoma. Oral Oncol 2010; 46:874-9. [PMID: 20952247 DOI: 10.1016/j.oraloncology.2010.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022]
Abstract
The objective of this study was to clarify the expression and epigenetic regulation of DLEC1, a candidate tumor suppressor gene (TSG) located at 3p21.3-p22, in oral squamous cell carcinoma (OSCC) and the clinical relevance of its down-expression. Quantitative RT-PCR was performed to exam the expression level of DLEC1 in matched OSCC and normal oral samples from 57 prospectively enrolled patients (with additional matched leukoplakia samples from 9 patients). We defined DLEC1 down-expression as a 2-fold decrease in expression of DLEC1 between normal tissues and tumors, and determined its correlation with clinical characteristics. Methylation-specific PCR (MSP) and bisulfite sequencing were used to evaluate the promoter methylation status of DLEC1 in 19 OSCC, 19 oral leukoplakia (OL), and 17 normal oral tissues. A statistically significant association between DLEC1 down-expression and invasive depth of OSCC was observed (P=0.026). Besides, expression of DLEC1 decreased sequentially from normal tissues to OL and then to OSCC (P<0.05), which was inversely correlated with methylation status of the DLEC1 promoter. Promoter methylation of DLEC1 increased progressively among normal tissues, OL, and OSCC, as revealed by MSP, and confirmed by sequencing. Treatment of OSCC cell lines with 5-aza-2'-deoxycytidine (5-Aza-dC) reversed the methylation and restored DLEC1 expression. Our results demonstrating that down-expression and promoter methylation of DLEC1 increased from normal tissues to premalignancies and then to malignancies. Furthermore, its transcriptional repression is associated with the depth of tumor invasion.
Collapse
|
13
|
Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J. Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 2010; 184:731-7. [PMID: 20639048 DOI: 10.1016/j.juro.2010.03.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 12/31/2022]
Abstract
PURPOSE Identifying tumor suppressor genes silenced by promoter CpG methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic biomarkers for early cancer detection. DLEC1 is located at 3p22.3, a critical tumor suppressor gene locus for renal cell carcinoma. We explored its epigenetic alteration in renal cell carcinoma and possible clinicopathological association. MATERIALS AND METHODS We examined DLEC1 expression and methylation by semiquantitative reverse transcriptase and methylation specific polymerase chain reaction in 9 renal cell carcinoma cell lines and 81 primary tumors. We also analyzed the relationship between DLEC1 methylation and clinicopathological features in patients with renal cell carcinoma. We assessed DLEC1 inhibition of renal cell carcinoma cell growth by colony formation assay. RESULTS DLEC1 methylation and down-regulation were detected in all renal cell carcinoma cell lines. Treatment with 5-aza-2'-deoxycytidine (Sigma) and/or trichostatin A (Cayman Chemical, Ann Arbor, Michigan) reversed methylation and restored DLEC1 expression, indicating that methylation directly mediates its silencing. Aberrant methylation was further detected in 25 of 81 primary tumors (31%) but only 1 of 53 nonmalignant renal tissues (2%) showed methylation. DLEC1 methylation status was significantly associated with TNM classification and grade in patients with renal cell carcinoma (chi-square test p = 0.01 and 0.04, respectively). DLEC1 ectopic expression in silenced renal cell carcinoma cells resulted in substantial tumor cell clonogenicity inhibition. CONCLUSIONS To our knowledge we report for the first time that DLEC1 is often down-regulated by CpG methylation and shows tumor inhibitory function in renal cell carcinoma cells, indicating its role as a tumor suppressor. DLEC1 tumor specific methylation may serve as a biomarker for early detection and prognosis prediction of this tumor.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abe S, Tanaka H, Notsu T, Horike SI, Fujisaki C, Qi DL, Ohhira T, Gilley D, Oshimura M, Kugoh H. Localization of an hTERT repressor region on human chromosome 3p21.3 using chromosome engineering. Genome Integr 2010; 1:6. [PMID: 20678252 PMCID: PMC2907559 DOI: 10.1186/2041-9414-1-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA. The reactivation of telomerase activity by aberrant upregulation/expression of its catalytic subunit hTERT is a major pathway in human tumorigenesis. However, regulatory mechanisms that control hTERT expression are largely unknown. Previously, we and others have demonstrated that the introduction of human chromosome 3, via microcell-mediated chromosome transfer (MMCT), repressed transcription of the hTERT gene. These results suggested that human chromosome 3 contains a regulatory factor(s) involved in the repression of hTERT. To further localize this putative hTERT repressor(s), we have developed a unique experimental approach by introducing various truncated chromosome 3 regions produced by a novel chromosomal engineering technology into the renal cell carcinoma cell line (RCC23 cells). These cells autonomously express ectopic hTERT (exohTERT) promoted by a retroviral LTR promoter in order to permit cellular division after repression of endogenous hTERT. We found a telomerase repressor region located within a 7-Mb interval on chromosome 3p21.3. These results provide important information regarding hTERT regulation and a unique method to identify hTERT repressor elements.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomedical Science, Graduate School of Medical Science, and Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tumour escape mechanisms and their therapeutic implications in combination tumour therapy. Cell Biol Int 2010; 34:553-63. [DOI: 10.1042/cbi20090206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Senchenko VN, Anedchenko EA, Kondratieva TT, Krasnov GS, Dmitriev AA, Zabarovska VI, Pavlova TV, Kashuba VI, Lerman MI, Zabarovsky ER. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 2010; 10:75. [PMID: 20193080 PMCID: PMC2841140 DOI: 10.1186/1471-2407-10-75] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 03/01/2010] [Indexed: 11/16/2022] Open
Abstract
Background The short arm of human chromosome 3 is involved in the development of many cancers including lung cancer. Three bona fide lung cancer tumor suppressor genes namely RBSP3 (AP20 region),NPRL2 and RASSF1A (LUCA region) were identified in the 3p21.3 region. We have shown previously that homozygous deletions in AP20 and LUCA sub-regions often occurred in the same tumor (P < 10-6). Methods We estimated the quantity of RBSP3, NPRL2, RASSF1A, GAPDH, RPN1 mRNA and RBSP3 DNA copy number in 59 primary non-small cell lung cancers, including 41 squamous cell and 18 adenocarcinomas by real-time reverse transcription-polymerase chain reaction based on TaqMan technology and relative quantification. Results We evaluated the relationship between mRNA level and clinicopathologic characteristics in non-small cell lung cancer. A significant expression decrease (≥2) was found for all three genes early in tumor development: in 85% of cases for RBSP3; 73% for NPRL2 and 67% for RASSF1A (P < 0.001), more strongly pronounced in squamous cell than in adenocarcinomas. Strong suppression of both, NPRL2 and RBSP3 was seen in 100% of cases already at Stage I of squamous cell carcinomas. Deregulation of RASSF1A correlated with tumor progression of squamous cell (P = 0.196) and adenocarcinomas (P < 0.05). Most likely, genetic and epigenetic mechanisms might be responsible for transcriptional inactivation of RBSP3 in non-small cell lung cancers as promoter methylation of RBSP3 according to NotI microarrays data was detected in 80% of squamous cell and in 38% of adenocarcinomas. With NotI microarrays we tested how often LUCA (NPRL2, RASSF1A) and AP20 (RBSP3) regions were deleted or methylated in the same tumor sample and found that this occured in 39% of all studied samples (P < 0.05). Conclusion Our data support the hypothesis that these TSG are involved in tumorigenesis of NSCLC. Both genetic and epigenetic mechanisms contribute to down-regulation of these three genes representing two tumor suppressor clusters in 3p21.3. Most importantly expression of RBSP3, NPRL2 and RASSF1A was simultaneously decreased in the same sample of primary NSCLC: in 39% of cases all these three genes showed reduced expression (P < 0.05).
Collapse
Affiliation(s)
- Vera N Senchenko
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cody NAL, Shen Z, Ripeau JS, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer. Mol Carcinog 2009; 48:1077-92. [PMID: 19347865 DOI: 10.1002/mc.20535] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.
Collapse
Affiliation(s)
- Neal A L Cody
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1A4
| | | | | | | | | | | | | |
Collapse
|
18
|
Savas S, Liu G. Genetic variations as cancer prognostic markers: review and update. Hum Mutat 2009; 30:1369-77. [PMID: 19639655 DOI: 10.1002/humu.21078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cancer molecular epidemiology traditionally studies the relationship between genetic variations and cancer risk. However, recent studies have also focused on disease outcomes. The application and design of disease outcome studies have been an extension of disease risk assessment. Yet there are a number of unique considerations important in outcome assessments. We review how genetic approaches used for disease susceptibility, such as candidate gene and genome-wide association study (GWAS) approaches, can be adapted carefully to systematically identify cancer prognostic and predictive alleles. We discuss the interrelatedness among the disease susceptibility, treatment response, and prognosis at the genetic level and focus on how the emerging technologies and approaches can uniquely benefit the genetic prognosis studies.
Collapse
Affiliation(s)
- Sevtap Savas
- Department of Medical Biophysics, Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
19
|
Zhao B, Schlesiger C, Masucci MG, Lindsten K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J Cell Mol Med 2009. [DOI: 10.1111/j.1582-4934.2008.00682.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Schlesiger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lindsten
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One 2009; 4:e5231. [PMID: 19478941 PMCID: PMC2684631 DOI: 10.1371/journal.pone.0005231] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/18/2009] [Indexed: 12/23/2022] Open
Abstract
Background Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas. Methodology/Principal Findings We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1–2), 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3–5 we found 146 mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines. Conclusions/Significance This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread.
Collapse
|
21
|
Zimonjic DB, Ullmannova-Benson V, Factor VM, Thorgeirsson SS, Popescu NC. Recurrent and nonrandom DNA copy number and chromosome alterations in Myc transgenic mouse model for hepatocellular carcinogenesis: implications for human disease. ACTA ACUST UNITED AC 2009; 191:17-26. [PMID: 19389504 DOI: 10.1016/j.cancergencyto.2008.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/30/2008] [Indexed: 12/11/2022]
Abstract
Mouse models for hepatocellular carcinoma (HCC) provide an experimental ground for dissecting the genetic and biological complexities of human liver cancer and contribute to our ability to gain insights into the relevance of candidate cancer genes. We examined, using spectral karyotyping (SKY) and array-based CGH (aCGH), seven cell lines derived from HCC spontaneously developed in transgenic Myc mice (Myc), and four cell lines established from tumors induced in nude mice by inoculation with the original Myc cells (nuMyc). All the cell lines exhibited gain of material from chromosomes 5, 6, 8, 10, 11, 15, and 19 and DNA copy-number loss from chromosomes 2, 4, 7, 9, 12, 14, and X. In addition, several recurrent chromosome reorganizations were found, including del(3), t(3;8), del(4), t(4;11), t(6;5), del(7), del(8), del(9), t(10;14), del(11), and del(16). Chromosome breakpoints underlying rearrangements clustered in the regions previously identified as important for the early stages of Myc-induced hepatocarcinogenesis. The results strongly suggest the importance of recurrent breakage and loss of chromosomes 4, 9, and 14 and gain of chromosomes 15 and 19 in mouse liver neoplasia. Genomic changes observed in Myc HCC cell lines are also recurrent in HCC developed in other transgenic mouse models, in mouse spontaneous HCC and derivative cell lines, and in preneoplastic liver lesions induced with chemical carcinogens. Overall, the present results document selective, nonrandom genomic changes involving chromosomal regions homologous to those implicated in human HCC.
Collapse
Affiliation(s)
- Drazen B Zimonjic
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4262, Building 37, Room 4128B, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Manderson EN, Birch AH, Shen Z, Mes-Masson AM, Provencher D, Tonin PN. Molecular Genetic Analysis of a Cell Adhesion Molecule With Homology to L1CAM, Contactin 6, and Contactin 4 Candidate Chromosome 3p26pter Tumor Suppressor Genes in Ovarian Cancer. Int J Gynecol Cancer 2009; 19:513-25. [DOI: 10.1111/igc.0b013e3181a3cd38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Gingras MC, Zhang YL, Kharitidi D, Barr AJ, Knapp S, Tremblay ML, Pause A. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 2009; 4:e5105. [PMID: 19340315 PMCID: PMC2661844 DOI: 10.1371/journal.pone.0005105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/04/2009] [Indexed: 02/04/2023] Open
Abstract
Background The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP). To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported. Methodology and Results Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status. Conclusion In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.
Collapse
Affiliation(s)
- Marie-Claude Gingras
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Yu Ling Zhang
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Alastair J. Barr
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michel L. Tremblay
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Arnim Pause
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
24
|
Abstract
We have established a systematic high-throughput screen for genes that cause cell death specifically in transformed tumor cells. In a first round of screening cDNAs are detected that induce apoptosis in a transformed human cell line. Positive genes are subsequently tested in a synthetic lethal screen in normal cells versus their isogenic counterparts that have been transformed by a particular oncogene. In this way, ORCTL3 was found to be inactive in normal rat kidney cells (NRK), but to induce apoptosis in NRK cells transformed by oncogenic H-ras. ORCTL3 also causes cell death in v-src-transformed cells and in various human tumor cell lines but not in normal cells or untransformed cell lines. While ORCTL3 is a member of the organic-cation transporter gene family, our data indicate that this gene induces apoptosis independently of its putative transporter activity. Rather, various lines of evidence suggest that ORCTL3 brings about apoptosis via an ER stress mediated mechanism. Finally, we detected ORCTL3 to be down-regulated in human kidney tumors.
Collapse
|
25
|
Ying J, Poon FF, Yu J, Geng H, Wong AHY, Qiu GH, Goh HK, Rha SY, Tian L, Chan ATC, Sung JJY, Tao Q. DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers. Br J Cancer 2009; 100:663-9. [PMID: 19156137 PMCID: PMC2653732 DOI: 10.1038/sj.bjc.6604888] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Promoter CpG methylation of tumour suppressor genes (TSGs) is an epigenetic biomarker for TSG identification and molecular diagnosis. We screened genome wide for novel methylated genes through methylation subtraction of a genetic demethylation model of colon cancer (double knockout of DNMT1 and DNMT3B in HCT116) and identified DLEC1 (Deleted in lung and oesophageal cancer 1), a major 3p22.3 TSG, as one of the methylated targets. We further found that DLEC1 was downregulated or silenced in most colorectal and gastric cell lines due to promoter methylation, whereas broadly expressed in normal tissues including colon and stomach, and unmethylated in expressing cell lines and immortalised normal colon epithelial cells. DLEC1 expression was reactivated through pharmacologic or genetic demethylation, indicating a DNMT1/DNMT3B-mediated methylation silencing. Aberrant methylation was further detected in primary colorectal (10 out of 34, 29%) and gastric tumours (30 out of 89, 34%), but seldom in paired normal colon (0 out of 17) and gastric (1 out of 20, 5%) samples. No correlation between DLEC1 methylation and clinical parameters of gastric cancers was found. Ectopic expression of DLEC1 in silenced HCT116 and MKN45 cells strongly inhibited their clonogenicity. Thus, DLEC1 is a functional tumour suppressor, being frequently silenced by epigenetic mechanism in gastrointestinal tumours.
Collapse
Affiliation(s)
- J Ying
- Department of Clinical Oncology, State Key Laboratory in Oncology in South China, Sir YK Pao Center for Cancer, Hong Kong Cancer Institute, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in human lung cancer development. Proc Natl Acad Sci U S A 2008; 105:19932-7. [PMID: 19060205 DOI: 10.1073/pnas.0805003105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Loss of heterozygosity (LOH) and homozygous deletions at chromosome 3p21.3 are common in both small and nonsmall cell lung cancers, indicating the likely presence of tumor suppressor genes (TSGs). Although genetic and epigenetic changes within this region have been identified, the functional significance of these changes has not been explored. Concurrent protein expression and genetic analyses of human lung tumors coupled with functional studies have not been done. Here, we show that expression of the 3p21.3 gene, LIMD1, is frequently down-regulated in human lung tumors. Loss of LIMD1 expression occurs through a combination of gene deletion, LOH, and epigenetic silencing of transcription without evidence for coding region mutations. Experimentally, LIMD1 is a bona fide TSG. Limd1(-/-) mice are predisposed to chemical-induced lung adenocarcinoma and genetic inactivation of Limd1 in mice heterozygous for oncogenic K-Ras(G12D) markedly increased tumor initiation, promotion, and mortality. Thus, we conclude that LIMD1 is a validated chromosome 3p21.3 tumor-suppressor gene involved in human lung cancer development. LIMD1 is a LIM domain containing adapter protein that localizes to E-cadherin cell-cell adhesive junctions, yet also translocates to the nucleus where it has been shown to function as an RB corepressor. As such, LIMD1 has the potential to communicate cell extrinsic or environmental cues with nuclear responses.
Collapse
|
27
|
Ruiz-Herrera A, Robinson TJ. Evolutionary plasticity and cancer breakpoints in human chromosome 3. Bioessays 2008; 30:1126-37. [DOI: 10.1002/bies.20829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Ghosh S, Ghosh A, Maiti GP, Alam N, Roy A, Roy B, Roychoudhury S, Panda CK. Alterations of 3p21.31 tumor suppressor genes in head and neck squamous cell carcinoma: Correlation with progression and prognosis. Int J Cancer 2008; 123:2594-604. [PMID: 18792900 DOI: 10.1002/ijc.23834] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The aim of our study was to analyze the alterations of some candidate tumor suppressor genes (TSGs) viz. LIMD1, LTF, CDC25A, SCOTIN, RASSF1A and CACNA2D2 located in the chromosomal region 3p21.31 associated with the development of early dysplastic lesions of head and neck. In analysis of 72 dysplastic lesions and 116 squamous cell carcinoma of head and neck, both deletion and promoter methylation have been seen in these genes except for CDC25A and SCOTIN where no methylation has been detected. The alteration of LIMD1 was highest (50%) in the mild dysplastic lesions and did not change significantly during progression of tumor indicating its association with this stage of the disease. It was evident that alterations of LTF, CDC25A and CACNA2D2 were associated with development of moderate dysplastic lesions, while alterations in RASSF1A and CACNA2D2 were needed for progression. Novel somatic mutations were seen in exon 1 of LIMD1 (7%), intron 3/exon4 splice junction of LTF (2%) and exon 7 of cdc25A (10%). Quantitative RT-PCR analysis revealed mean reduced expression of the genes in the following order: LTF (67.6 +/- 16.8) > LIMD1 (53.2 +/- 20.1) > CACNA2D2 (23.7 +/- 7.1) > RASSF1A (15.1 +/- 5.6) > CDC25A (5.3 +/- 2.3) > SCOTIN (0.58 +/- 0.54). Immunohistochemical analysis of CDC25A showed its localization both in cytoplasm and nucleus in primary lesions and oral cancer cell lines. In absence of HPV infection, LTF and RASSF1A alterations jointly have adverse impact on survival of tobacco addicted patients. Thus, our data suggested that multiple candidate TSGs in the chromosomal 3p21.31 region were differentially associated with the early dysplastic lesions of head and neck.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Saldanha RG, Xu N, Molloy MP, Veal DA, Baker MS. Differential proteome expression associated with urokinase plasminogen activator receptor (uPAR) suppression in malignant epithelial cancer. J Proteome Res 2008; 7:4792-806. [PMID: 18808175 DOI: 10.1021/pr800357h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulation of the plasminogen activation cascade is a prototypic feature in many malignant epithelial cancers. Principally, this is thought to occur through activation of overexpressed urokinase plasminogen activator (uPA) concomitant with binding to its high specificity cell surface receptor urokinase plasminogen activator receptor (uPAR). Up-regulation of uPA and uPAR in cancer appears to potentiate the malignant phenotype, either (i) directly by triggering plasmin-mediated degradation or activation of uPA's or plasmin's proteolytic targets (e.g., extracellular matrix zymogen proteases or nascent growth factors) or indirectly by simultaneously altering a range of downstream functions including signal transduction pathways ( Romer, J. ; Nielsen, B. S. ; Ploug, M. The urokinase receptor as a potential target in cancer therapy Curr. Pharm. Des. 2004, 10 ( 19), 235976 ). Because many malignant epithelial cancers express high levels of uPAR, uPA or other components of the plasminogen activation cascade and because these are often associated with poor prognosis, characterizing how uPAR changes the downstream cellular "proteome" is fundamental to understanding any role in cancer. This study describes a carefully designed proteomic study of the effects of antisense uPAR suppression in a previously studied colon cancer cell line (HCT116). The study utilized replicate 2DE gels and two independent gel image analysis software packages to confidently identify 64 proteins whose expression levels changed (by > or =2 fold) coincident with a moderate ( approximately 40%) suppression of cell-surface uPAR. Not surprisingly, many of the altered proteins have previously been implicated in the regulation of tumor progression (e.g., p53 tumor suppressor protein and c-myc oncogene protein among many others). In addition, through a combination of proteomics and immunological methods, this study demonstrates that stathmin 1alpha, a cytoskeletal protein implicated in tumor progression, undergoes a basic isoelectric point shift (p I) following uPAR suppression, suggesting that post-translational modification of stathmin occur secondary to uPAR suppression. Overall, these results shed new light on the molecular mechanisms involved in uPAR signaling and how it may promulgate the malignant phenotype.
Collapse
Affiliation(s)
- Rohit G Saldanha
- Department of Chemistry and Biomolecular Sciences and Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
30
|
Wang F, Grigorieva EV, Li J, Senchenko VN, Pavlova TV, Anedchenko EA, Kudryavtseva AV, Tsimanis A, Angeloni D, Lerman MI, Kashuba VI, Klein G, Zabarovsky ER. HYAL1 and HYAL2 inhibit tumour growth in vivo but not in vitro. PLoS One 2008; 3:e3031. [PMID: 18725949 PMCID: PMC2516603 DOI: 10.1371/journal.pone.0003031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/02/2008] [Indexed: 12/11/2022] Open
Abstract
Background We identified two 3p21.3 regions (LUCA and AP20) as most frequently affected in lung, breast and other carcinomas and reported their fine physical and gene maps. It is becoming increasingly clear that each of these two regions contains several TSGs. Until now TSGs which were isolated from AP20 and LUCA regions (e.g.G21/NPRL2, RASSF1A, RASSF1C, SEMA3B, SEMA3F, RBSP3) were shown to inhibit tumour cell growth both in vitro and in vivo. Methodology/Principal Findings The effect of expression HYAL1 and HYAL2 was studied by colony formation inhibition, growth curve and cell proliferation tests in vitro and tumour growth assay in vivo. Very modest growth inhibition was detected in vitro in U2020 lung and KRC/Y renal carcinoma cell lines. In the in vivo experiment stably transfected KRC/Y cells expressing HYAL1 or HYAL2 were inoculated into SCID mice (10 and 12 mice respectively). Tumours grew in eight mice inoculated with HYAL1. Ectopic HYAL1 was deleted in all of them. HYAL2 was inoculated into 12 mice and only four tumours were obtained. In 3 of them the gene was deleted. In one tumour it was present but not expressed. As expected for tumour suppressor genes HYAL1 and HYAL2 were down-expressed in 15 fresh lung squamous cell carcinomas (100%) and clear cell RCC tumours (60–67%). Conclusions/Significance The results suggest that the expression of either gene has led to inhibition of tumour growth in vivo without noticeable effect on growth in vitro. HYAL1 and HYAL2 thus differ in this aspect from other tumour suppressors like P53 or RASSF1A that inhibit growth both in vitro and in vivo. Targeting the microenvironment of cancer cells is one of the most promising venues of cancer therapeutics. As major hyaluronidases in human cells, HYAL1 and HYAL2 may control intercellular interactions and microenvironment of tumour cells providing excellent targets for cancer treatment.
Collapse
Affiliation(s)
- Fuli Wang
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
| | - Elvira V. Grigorieva
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
- Institute of Molecular Biology and Biophysics, SD RAMS, Novosibirsk, Russia
| | - Jingfeng Li
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
| | - Vera N. Senchenko
- Engelhardt Institute of Molecular Biology, Russian Acad. Sciences, Moscow, Russia
| | - Tatiana V. Pavlova
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Acad. Sciences, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Acad. Sciences, Moscow, Russia
| | | | - Debora Angeloni
- Cancer-Causing Genes Section, Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- Scuola Superiore Sant'Anna and Institute of Clinical Physiology – CNR, Pisa, Italy
| | - Michael I. Lerman
- Cancer-Causing Genes Section, Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vladimir I. Kashuba
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
- Institute of Molecular Biology and Genetics, Ukrainian Academy of Sciences, Kiev, Ukraine
| | - George Klein
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
| | - Eugene R. Zabarovsky
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
31
|
Cleton-Jansen AM, van Eijk R, Lombaerts M, Schmidt MK, Van't Veer LJ, Philippo K, Zimmerman RME, Peterse JL, Smit VTBHM, van Wezel T, Cornelisse CJ. ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism. BMC Cancer 2008; 8:105. [PMID: 18416817 PMCID: PMC2377272 DOI: 10.1186/1471-2407-8-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 04/16/2008] [Indexed: 12/15/2022] Open
Abstract
Background Loss of heterozygosity (LOH) at chromosome arm 16q is frequently observed in human breast cancer, suggesting that one or more target tumor suppressor genes (TSGs) are located there. However, detailed mapping of the smallest region of LOH has not yet resulted in the identification of a TSG at 16q. Therefore, the present study attempted to identify TSGs using an approach based on mRNA expression. Methods A cDNA microarray for the 16q region was constructed and analyzed using RNA samples from 39 breast tumors with known LOH status at 16q. Results Five genes were identified to show lower expression in tumors with LOH at 16q compared to tumors without LOH. The genes for NAD(P)H dehydrogenase quinone (NQO1) and AT-binding transcription factor 1 (ATBF1) were further investigated given their functions as potential TSGs. NQO1 has been implicated in carcinogenesis due to its role in quinone detoxification and in stabilization of p53. One inactive polymorphic variant of NQO1 encodes a product showing reduced enzymatic activity. However, we did not find preferential targeting of the active NQO1 allele in tumors with LOH at 16q. Immunohistochemical analysis of 354 invasive breast tumors revealed that NQO1 protein expression in a subset of breast tumors is higher than in normal epithelium, which contradicts its proposed role as a tumor suppressor gene. ATBF1 has been suggested as a target for LOH at 16q in prostate cancer. We analyzed the entire coding sequence in 48 breast tumors, but did not identify somatic sequence changes. We did find several in-frame insertions and deletions, two variants of which were reported to be somatic pathogenic mutations in prostate cancer. Here, we show that these variants are also present in the germline in 2.5% of 550 breast cancer patients and 2.9% of 175 healthy controls. This indicates that the frequency of these variants is not increased in breast cancer patients. Moreover, there is no preferential LOH of the wildtype allele in breast tumors. Conclusion Two likely candidate TSGs at 16q in breast cancer, NQO1 and ATBF1, were identified here as showing reduced expression in tumors with 16q LOH, but further analysis indicated that they are not target genes of LOH. Furthermore, our results call into question the validity of the previously reported pathogenic variants of the ATBF1 gene.
Collapse
|
32
|
Qiu GH, Salto-Tellez M, Ross JA, Yeo W, Cui Y, Wheelhouse N, Chen GG, Harrison D, Lai P, Tao Q, Hooi SC. The tumor suppressor gene DLEC1 is frequently silenced by DNA methylation in hepatocellular carcinoma and induces G1 arrest in cell cycle. J Hepatol 2008; 48:433-41. [PMID: 18191269 DOI: 10.1016/j.jhep.2007.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/03/2007] [Accepted: 11/13/2007] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIMS The chromosome locus 3p21.3 is a "hot-spot" for chromosomal aberrations and loss of heterozygosity in cancers. The 35 genes mapped to the AP20 subregion of this locus were screened for their expression to identify candidate tumor suppressor genes. DLEC1 was selected for further characterization in primary hepatocellular carcinomas and cell lines. METHODS RT-PCR and methylation-specific PCR were performed to examine the expression and methylation. Stable clones with DLEC1 overexpression were established to analyze cell proliferation and cell cycle. RESULTS DLEC1 was silenced and hypermethylated in 9 of 11 cell lines examined. Treatment with 5-aza-2'-deoxycytidine reversed the methylation and restored DLEC1 expression. The correlation between hypermethylation and expression was also demonstrated in 10 pairs of hepatocellular carcinoma and adjacent normal tissues (t-test, p<0.05). Hypermethylation of DLEC1 was detected in 70.6% of tumors, compared to 10.3% in normal tissues (n=68, p<0.001, chi(2)). Of interest, DLEC1 methylation was associated with the AJCC staging of the tumors (p=0.036, chi(2)). DLEC1 over-expression in cell lines decreased colony formation, cell growth and cell size, and induced a G1 arrest in cell cycle. CONCLUSIONS Our data indicate that DLEC1 is a candidate tumor suppressor gene that plays an important role in the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Darai-Ramqvist E, Sandlund A, Müller S, Klein G, Imreh S, Kost-Alimova M. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions. Genome Res 2008; 18:370-9. [PMID: 18230801 DOI: 10.1101/gr.7010208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.
Collapse
Affiliation(s)
- Eva Darai-Ramqvist
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Birch AH, Quinn MCJ, Filali-Mouhim A, Provencher DM, Mes-Masson AM, Tonin PN. Transcriptome analysis of serous ovarian cancers identifies differentially expressed chromosome 3 genes. Mol Carcinog 2008; 47:56-65. [PMID: 17620309 DOI: 10.1002/mc.20361] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytogenetic, molecular genetic and functional analyses have implicated chromosome 3 genes in epithelial ovarian cancers (EOC). To further characterize their contribution to EOC, the Affymetrix U133A GeneChip(R) was used to perform transcriptome analyses of chromosome 3 genes in primary cultures of normal ovarian surface epithelial (NOSE) cells (n = 14), malignant serous epithelial ovarian tumors (TOV) (n = 17), and four EOC cell lines (TOV-81D, TOV-112D, TOV-21G, and OV-90). A two-way comparative analysis of 735 known genes and expressed sequences identified 278 differentially expressed genes, where 43 genes were differentially expressed in at least 50% of the TOV samples. Three genes, RIS1 (at 3p21.31), GBE1 (at 3p12.2), and HEG1 (at 3q21.2), were similarly underexpressed in all TOV samples. Deregulation of the expression of these genes was not associated with loss of heterozygosity (LOH) of the genetic loci harboring them. LOH analysis of the RIS1, GBE1, and HEG1 loci was observed at frequencies of 14.3%, 13.7%, and 9.2%, respectively, in a series of 66 malignant TOV samples of the serous subtype. Reduced expression levels of RIS1, GBE1, and HEG1 were observed only in the tumorigenic EOC cell lines (TOV-21G, TOV-112D, and OV-90) and did not correlate with LOH. These results combined suggest that RIS1, GBE1, and HEG1, unlike classical tumor suppressor genes, are not likely to be primary targets of inactivation. This study provides a comprehensive analysis of chromosome 3 gene expression in NOSE and in EOC samples and identifies chromosome 3 gene candidates for further study.
Collapse
Affiliation(s)
- Ashley H Birch
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Kwong J, Chow LSN, Wong AYH, Hung WK, Chung GTY, To KF, Chan FL, Daigo Y, Nakamura Y, Huang DP, Lo KW. Epigenetic inactivation of the deleted in lung and esophageal cancer 1 gene in nasopharyngeal carcinoma. Genes Chromosomes Cancer 2007; 46:171-80. [PMID: 17099870 DOI: 10.1002/gcc.20398] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Deletion of the short arm of chromosome 3 is a common event in nasopharyngeal carcinoma (NPC), suggesting that one or more tumor suppressor genes at 3p are involved in this cancer. DLEC1, Deleted in Lung and Esophageal Cancer 1, located at 3p22.2, was recently identified as a candidate tumor suppressor gene in lung, esophageal, and renal cancers. In this study, we investigated the involvement of DLEC1 in the development of NPC. Down-regulation of DLEC1 and promoter hypermethylation were observed in all NPC cell lines and xenografts but not in normal nasopharyngeal epithelial cells. Promoter hypermethylation of DLEC1 was also detected in 30 of 42 (71%) NPC primary tumors. Treatment of NPC cell lines with demethylating agent or histone deacetylase inhibitor resulted in restoration of DLEC1 expression. Overexpression of DLEC suppressed growth and reduced invasiveness of NPC cells. Furthermore, the tumorigenic potential of DLEC1 expressing NPC cells was highly reduced in nude mice. Taken together, our results strongly suggest that silencing of DLEC1 expression by promoter hypermethylation and histone deacetylation may be important in NPC tumorigenesis.
Collapse
Affiliation(s)
- Joseph Kwong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou X, Popescu NC, Klein G, Imreh S. The interferon-alpha responsive gene TMEM7 suppresses cell proliferation and is downregulated in human hepatocellular carcinoma. ACTA ACUST UNITED AC 2007; 177:6-15. [PMID: 17693185 PMCID: PMC2034301 DOI: 10.1016/j.cancergencyto.2007.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/20/2007] [Indexed: 12/31/2022]
Abstract
Multiple regions on the chromosome arm 3p are frequently affected by loss of heterozygosity in human cancers. A candidate tumor suppressor gene is TMEM7, at 3p21.3, which encodes a transmembrane protein. TMEM7 is expressed specifically in the liver, and the encoded protein shares substantial sequence homology with human and mouse 28-kDa interferon-alpha (IFN-alpha) responsive protein. In investigation of the possible role of TMEM7 in development of hepatocellular carcinoma (HCC), we examined TMEM7 expression in 20 primary HCC and 18 HCC cell lines and found recurrent functional alterations. Although TMEM7 mRNA was expressed in normal hepatic cells, downregulation or inactivation of the gene was detected in 85% of primary HCC and 33% of HCC cell lines. To identify the mechanisms responsible, we examined genomic deletion and mutation, and also the effect of inhibitors of DNA methyltransferase and histone deacetylase on cells with low or no endogenous TMEM7 expression. Homozygous deletion of TMEM7 was not detected in 17 pairs of human HCC and corresponding noncancerous liver tissues, nor in any of the 18 HCC cell lines. TMEM7 mutation was not detected in the 18 HCC cell lines (low or normal TMEM7 expression). Treatment of two of six cell lines exhibiting downregulation or loss of TMEM7 with 5-aza-2'-deoxycytidine and trichostatin A yielded additive increase in TMEM7 expression, implicating aberrant DNA methylation and histone deacetylation in transcriptional silencing of this gene. Ectopic expression of TMEM7 in two TMEM7-deficient HCC lines suppressed cell proliferation, colony formation, and cell migration in vitro and reduced tumor formation in nude mice. Treatment of two highly invasive HCC cell lines with IFN-alpha for 7 days significantly increased TMEM7 expression and inhibited cell migration. These findings implicate loss of TMEM7 expression in hepatocarcinogenesis and suggest that modification of TMEM7 expression by IFN-alpha may have therapeutic relevance in a subset of HCC.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Nicholas C. Popescu
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- *To whom correspondence and reprint requests should be addressed at: Building 37, Room 4128, 37 Convent Drive, MSC 4264, Bethesda, MD 20892-4255. Tel.: 301-496-5688, ext. 240. Fax: 301-496-0734. E-mail:
| | - George Klein
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Stephan Imreh
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| |
Collapse
|
37
|
Miyamoto CT, Sant'Anna JR, Franco CCS, Castro-Prado MAA. Genotoxicity (mitotic recombination) of the cancer chemotherapeutic agents cisplatin and cytosine arabinoside in Aspergillus nidulans. Food Chem Toxicol 2007; 45:1091-5. [PMID: 17306432 DOI: 10.1016/j.fct.2006.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/11/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Cisplatin (cis-diamminedichloroplatinum, cis-DDP) and cytosine arabinoside (ara-C) are anticancer drugs used in the treatment of human cancer. The two chemotherapeutic drugs were tested in current research for their recombinogenic potential in diploid cells of Aspergillus nidulans. Non-cytotoxic concentrations of ara-C (0.4 and 0.8 microM) and cis-DDP (1.5, 3.0 and 6.0 microM) were strong recombinagens in A. nidulans UT448//A757 diploid strain, which induced homozygosis of recessive genetic markers, previously present in heterozygous condition. Drugs significantly increased homozygosity index (HI) values for five nutritional genetic markers when compared with those determined in the absence of anticancer drugs. Since mitotic recombination is a mechanism leading to malignant growth through loss of heterozygosity at tumor-suppressor loci, ara-C and cis-DDP may be characterized as secondary promoters of malignant neoplasia in diagnosed cancer patients, after chemotherapy treatment.
Collapse
Affiliation(s)
- C T Miyamoto
- Universidade Estadual de Maringá, Departamento de Biologia Celular e Genética, Avenida Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | | | | | | |
Collapse
|
38
|
Abstract
Traditionally, surveillance against cancer was thought of as mainly immunological. With the exception of tumors with a clear viral involvement, such as immunoblastomas (Epstein-Barr virus, EBV), cervical, anogenital, and skin carcinomas (HPV), and Kaposi's sarcoma (HHV-8) where the immune system is confronted with virally encoded, nonself targets, tumors with no viral involvement provide poor targets. Attempts to influence them by immunological means are akin to the breaking of tolerance. Robust nonimmunological surveillance mechanisms include DNA repair-based checkpoint functions, and the triggering of growth arrest and/or apoptosis pathways by DNA damage or by illegitimate oncogene activation (intracellular surveillance). There is emerging evidence for epigenetic surveillance, reflected in the stringency of imprinting. A fourth mechanism, intercellular surveillance, or microenvironmental control, is rapidly gaining momentum. It can be mediated by contactual controls or by differentiation-inducing signals. Somatic hybridization experiments have shown that tumorigenicity is usually suppressed in somatic hybrids between normal and malignant cells, as long as a fairly complete chromosome complement is maintained. Individual normal cell-derived chromosomes may have a similar suppressive effect. For example, genetic and molecular dissection of human 3p that shows frequent deletions in many human tumors has identified multiple tumor suppressor genes, which can inhibit both in vitro growth and in vivo tumorigenicity. In addition, five genes were found with an "asymmetric activity," capable of suppressing tumorigenicity, without affecting in vitro growth. These genes, LTF, L1MD1, HYAL1, HYAL2, and VHL, are of particular interest because they may be involved in microenvironmental control.
Collapse
Affiliation(s)
- George Klein
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
39
|
|
40
|
Abstract
Chromosome deletions do abound in cancer and are detected in certain regions in a non-random manner. Although their relevance remains elusive, it is a general agreement that segmental losses provide the cell with selective growth advantage. Consequently these may contain genes and/or regulatory sequences that control normal growth and inhibit malignancy. We have developed a monochromosomal hybrid based experimental model for the generation and functional analysis of deletions, that is called "elimination test" (Et). Focused on human chromosome 3 - that was known to carry multiple 3p deletions - the Et was expected to restrict a 3p tumor suppressor region to a sufficiently small segment that permits the selection of a critically important candidate gene. Surprisingly, we detected three regions that were lost in all or majority of tumors: CER1 (3p21.3, Mb: 43.32-45.74), CER2 (3p22, Mb: 37.83-39.06) and FER (3p14.3-p21.2, Mb: 50.12-58.03). In contrast a 3q26-qter region (CRR) was regularly retained. CER1 - our main focus - contains multiple genes that may inhibit tumor growth, but 3 genes, RIS1, LF (LTF) and LIMD1 have already the necessary experimental support to be considered bona fide tumor suppressors. Tumor suppressor region borders display instability features including: (1) they break in evolution and in tumors, (2) they evolve horizontally, and (3) they are enriched with pseudogene insertions. The most remarkable features at the breakpoint cluster regions were segmental duplications that drive horizontal evolution and contribute to cancer associated instability.
Collapse
Affiliation(s)
- Maria Kost-Alimova
- Karolinska Institutet, Microbiology Tumor and Cell Biology Center (MTC), Box 280, 171 77 Stockholm, Sweden
| | | |
Collapse
|
41
|
Kost-Alimova M, Darai-Ramqvist E, Yau WL, Sandlund A, Fedorova L, Yang Y, Kholodnyuk I, Cheng Y, Li Lung M, Stanbridge E, Klein G, Imreh S. Mandatory chromosomal segment balance in aneuploid tumor cells. BMC Cancer 2007; 7:21. [PMID: 17257397 PMCID: PMC1794251 DOI: 10.1186/1471-2407-7-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/26/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. METHODS Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. RESULTS In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. CONCLUSION The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the fact that the former is often deleted in human tumors, whereas the latter is frequently amplified. The findings emphasize the importance of even minor changes in copy number in seemingly unbalanced aneuploid tumors.
Collapse
Affiliation(s)
- Maria Kost-Alimova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Eva Darai-Ramqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Wing Lung Yau
- Department of Biology, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Special Administrative Region), China
| | - Agneta Sandlund
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Ludmila Fedorova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Ying Yang
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Irina Kholodnyuk
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Yue Cheng
- Department of Biology, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Special Administrative Region), China
| | - Maria Li Lung
- Department of Biology, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Special Administrative Region), China
| | - Eric Stanbridge
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Stefan Imreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| |
Collapse
|
42
|
Multipoint interphase FISH in childhood T-acute lymphoblastic leukemia detects subpopulations that carry different chromosome 3 aberrations. ACTA ACUST UNITED AC 2007; 172:54-60. [DOI: 10.1016/j.cancergencyto.2006.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/07/2006] [Accepted: 08/09/2006] [Indexed: 11/17/2022]
|
43
|
Darai-Ramqvist E, de Ståhl TD, Sandlund A, Mantripragada K, Klein G, Dumanski J, Imreh S, Kost-Alimova M. Array-CGH and multipoint FISH to decode complex chromosomal rearrangements. BMC Genomics 2006; 7:330. [PMID: 17196103 PMCID: PMC1769374 DOI: 10.1186/1471-2164-7-330] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/29/2006] [Indexed: 11/13/2022] Open
Abstract
Background Recently, several high-resolution methods of chromosome analysis have been developed. It is important to compare these methods and to select reliable combinations of techniques to analyze complex chromosomal rearrangements in tumours. In this study we have compared array-CGH (comparative genomic hybridization) and multipoint FISH (mpFISH) for their ability to characterize complex rearrangements on human chromosome 3 (chr3) in tumour cell lines. We have used 179 BAC/PAC clones covering chr3 with an approximately 1 Mb resolution to analyze nine carcinoma lines. Chr3 was chosen for analysis, because of its frequent rearrangements in human solid tumours. Results The ploidy of the tumour cell lines ranged from near-diploid to near-pentaploid. Chr3 locus copy number was assessed by interphase and metaphase mpFISH. Totally 53 chr3 fragments were identified having copy numbers from 0 to 14. MpFISH results from the BAC/PAC clones and array-CGH gave mainly corresponding results. Each copy number change on the array profile could be related to a specific chromosome aberration detected by metaphase mpFISH. The analysis of the correlation between real copy number from mpFISH and the average normalized inter-locus fluorescence ratio (ANILFR) value detected by array-CGH demonstrated that copy number is a linear function of parameters that include the variable, ANILFR, and two constants, ploidy and background normalized fluorescence ratio. Conclusion In most cases, the changes in copy number seen on array-CGH profiles reflected cumulative chromosome rearrangements. Most of them stemmed from unbalanced translocations. Although our chr3 BAC/PAC array could identify single copy number changes even in pentaploid cells, mpFISH provided a more accurate analysis in the dissection of complex karyotypes at high ploidy levels.
Collapse
Affiliation(s)
- Eva Darai-Ramqvist
- Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Teresita Diaz de Ståhl
- Department of Pathology, Rudbeck Laboratory, Uppsala University Hospital, S-75185, Uppsala, Sweden
| | - Agneta Sandlund
- Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Kiran Mantripragada
- Department of Pathology, Rudbeck Laboratory, Uppsala University Hospital, S-75185, Uppsala, Sweden
| | - George Klein
- Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Jan Dumanski
- Howell and Elizabeth Heflin Center for Human Genetics, University of Alabama at Birmingham (UAB), Medical School, Birmingham, AL 35294-0024, USA
| | - Stefan Imreh
- Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Maria Kost-Alimova
- Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, S-17177, Stockholm, Sweden
| |
Collapse
|
44
|
Nieto M, Barradas M, Criado LM, Flores JM, Serrano M, Llano E. Normal cellular senescence and cancer susceptibility in mice genetically deficient in Ras-induced senescence-1 (Ris1). Oncogene 2006; 26:1673-80. [PMID: 16964279 DOI: 10.1038/sj.onc.1209978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncogenic Ras triggers a permanent cell-cycle arrest known as oncogene-induced senescence (OIS) that constitutes a relevant tumor suppressor mechanism. Ris1 (Ras-induced senescence-1) is a novel gene that was identified in a screen as specifically upregulated during Ras-induced senescence, and that is located at a chromosomal region, 3p21.3, frequently lost in human cancer. Moreover, Ris1 is highly conserved in vertebrates, does not present paralogs, and its sequence does not reveal similarities with other proteins or domains. To analyse the physiological function of Ris1 and test its putative role as a tumor suppressor gene, we have generated mutant mice deficient for this gene. Ris1-null mice are viable, fertile, develop normally and do not display any obvious abnormalities. Of relevance, Ris1-deficient mice had a normal lifespan and did not exhibit predisposition to spontaneous tumors or to tumors induced by chemical carcinogens. Finally, Ris1-deficient embryonic fibroblasts were indistinguishable from wild-type cells regarding their proliferation properties, immortalization, senescence and oncogenic transformation. These findings do not support a role of Ris1 in tumor suppression or in OIS.
Collapse
Affiliation(s)
- M Nieto
- Tumor Suppression Group, Spanish National Cancer Center CNIO, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Tonon G, Brennan C, Protopopov A, Maulik G, Feng B, Zhang Y, Khatry DB, You MJ, Aguirre AJ, Martin ES, Yang Z, Ji H, Chin L, Wong KK, Depinho RA. Common and contrasting genomic profiles among the major human lung cancer subtypes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:11-24. [PMID: 16869734 DOI: 10.1101/sqb.2005.70.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. With the recent success of molecularly targeted therapies in this disease, a detailed knowledge of the spectrum of genetic lesions in lung cancer represents a critical step in the development of additional effective agents. An integrated high-resolution survey of regional amplifications and deletions and gene expression profiling of non-small-cell lung cancers (NSCLC) identified 93 focal high-confidence copy number alterations (CNAs), with 21 spanning less than 0.5 Mb with a median of five genes. Most CNAs were novel and included high-amplitude amplification and homozygous deletion events. Pathogenic relevance of these genomic alterations was further reinforced by their recurrence and overlap with focal alterations of other tumor types. Additionally, the comparison of the genomic profiles of the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC), showed an almost complete overlap with the exception of one amplified region on chromosome 3, specific for SCC. Among the few genes overexpressed within this amplicon was p63, a known regulator of squamous cell differentiation. These findings suggest that the AC and SCC subtypes may arise from a common cell of origin and they are driven to their distinct phenotypic end points by altered expression of a limited number of key genes such as p63.
Collapse
Affiliation(s)
- G Tonon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115 , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Haltrich I, Kost-Alimova M, Kovács G, Klein G, Fekete G, Imreh S. Multipoint interphase FISH analysis of chromosome 3 abnormalities in 28 childhood AML patients. Eur J Haematol 2006; 76:124-33. [PMID: 16405433 DOI: 10.1111/j.1600-0609.2005.00576.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We detected non-random 3p losses and 3q gains on well-determined regions in both murine and human tumors using a microcell hybrid-based model system called 'elimination test'. We suggest that these are general malignancy-associated aberrations not necessarily linked to a particular tissue of origin. To examine chromosome 3 abnormalities, in 28 childhood acute myeloid leukemia bone marrow samples, we performed interphase multipoint-fluorescence in situ hybridization using 84 chromosome 3-specific probes and detected clonal chromosome 3 aberrations in nine cases, which is of a higher frequency than the previously reported one. In 3/28 children, a chromosome 3 abnormality was detected which was not visible using conventional cytogenetic analysis. We did not detect any 3p deletion. Increased copy number of 3q was found in four cases with trisomy of whole chromosome 3 and one case with 3q tetrasomy (isodisomy). We identified rare structural rearrangements in childhood acute myeloblastic leukemia, involving 3q21 and 3q26 loci around RPN1 and MDS1/EVI1 respectively. The poor outcome in pediatric patients with 3q rearrangements appears to be quite uniform.
Collapse
Affiliation(s)
- Irén Haltrich
- Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
47
|
Kholodnyuk ID, Kozireva S, Kost-Alimova M, Kashuba V, Klein G, Imreh S. Down regulation of 3p genes,LTF, SLC38A3 andDRR1, upon growth of human chromosome 3–mouse fibrosarcoma hybrids in severe combined immunodeficiency mice. Int J Cancer 2006; 119:99-107. [PMID: 16432833 DOI: 10.1002/ijc.21794] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have applied a functional test for tumour antagonizing genes based on human chromosome 3 (chr3)-mouse fibrosarcoma A9 MCHs that were studied in vitro and after growth as tumours in severe combined immunodeficiency (SCID) mice. Previously, we reported that 9 out of the 36 SCID-tumours maintained the transferred chr3 ("chr3+" tumours), but lost the expression of the known human TSG fragile histidine triad gene (FHIT) in contrast to 14 other 3p-genes examined. Here we report the results of the duplex RT-PCR analysis of 9 "chr3+" tumours and 3 parental MCHs. We have examined the expression of 34 human 3p-genes from known cancer-related regions of instability, including 13 genes from CER1 defined by us previously at 3p21.33-p21.31 and 10 genes from the LUCA region at 3p21.31. We have found that in addition to FHIT, expression of the LTF gene from CER1 at 3p21.33-p21.31 was lost in all 9 tumours analyzed. The transcript of the solute carrier family 38 member 3 gene (SLC38A3) gene from LUCA region at 3p21.31 was not found in 8 and was greatly reduced in 1 out of these 9 tumours. Expression of the down-regulated in renal cell carcinoma gene (DRR1) gene at 3p14.2 was lost in 7 and down regulated in 2 "chr3+" tumours. In the SCID-tumour derived cell lines treatment with 5-aza-2'-deoxycytidine restored the mRNA expression of LTF, indicating the integrity of DNA sequences. Notably that transcription of the LTF and 2 flanking genes, LRRC2 and TMEM7, as well as transcription of the SLC38A3 gene, were also impaired in all 5 RCC cell lines analyzed. Our data indicate these genes as putative tumour suppressor genes.
Collapse
Affiliation(s)
- Irina D Kholodnyuk
- Microbiology and Tumour Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Meaburn KJ, Parris CN, Bridger JM. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 2005; 114:263-74. [PMID: 16133353 DOI: 10.1007/s00412-005-0014-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/29/2005] [Accepted: 06/21/2005] [Indexed: 12/20/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) was a technique originally developed in the 1970s to transfer exogenous chromosome material into host cells. Although, the methodology has not changed considerably since this time it is being used to great success in progressing several different fields in modern day biology. MMCT is being employed by groups all over the world to hunt for tumour suppressor genes associated with specific cancers, DNA repair genes, senescence-inducing genes and telomerase suppression genes. Some of these genomic discoveries are being investigated as potential treatments for cancer. Other fields have taken advantage of MMCT, and these include assessing genomic stability, genomic imprinting, chromatin modification and structure and spatial genome organisation. MMCT has also been a very useful method in construction and manipulation of artificial chromosomes for potential gene therapies. Indeed, MMCT is used to transfer mainly fragmented mini-chromosome between cell types and into embryonic stem cells for the construction of transgenic animals. This review briefly discusses these various uses and some of the consequences and advancements made by different fields utilising MMCT technology.
Collapse
Affiliation(s)
- Karen J Meaburn
- Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | |
Collapse
|
49
|
Jacob ST, Motiwala T. Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy. Cancer Gene Ther 2005; 12:665-72. [PMID: 15803146 PMCID: PMC3028596 DOI: 10.1038/sj.cgt.7700828] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Promoter methylation-mediated silencing is a hallmark of many established tumor suppressor genes. This review focuses on the methylation and suppression of a receptor-type tyrosine phosphatase gene, PTPRO, in a variety of solid and liquid tumors. In addition, PTPRO exhibits many other characteristics of a bona fide tumor suppressor. Reactivation of genes silenced by methylation using inhibitors of DNA methyltransferases and histone deacetylases, and the potential application of PTPRO as a molecular target for cancer therapy have been discussed.
Collapse
Affiliation(s)
- Samson T Jacob
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine, Columbus, OH 43210, USA.
| | | |
Collapse
|
50
|
Leris ACA, Roberts TR, Jiang WG, Newbold RF, Mokbel K. Evidence for a Tumour Suppressive Function of APRG1 in Breast Cancer. Breast Cancer Res Treat 2005; 93:97-100. [PMID: 16187228 DOI: 10.1007/s10549-005-4169-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Deletion mapping studies have shown that genes in the region 3p21.3 are often deleted in epithelial malignancies. Although the regions deleted differ between individual cancers there appears to be a specificity for the type of malignancy produced. As a result this area of chromosome 3 is thought to contain multiple tumour suppressor genes. The present study concentrates on one gene in that region, APRG1. This gene codes for a protein, which has been implicated in cell membrane interactions. The aim was to determine using quantitative PCR whether the levels of this gene were negatively correlated with clinical outcome in breast cancer. METHODS One hundred and twenty tumour tissues and 33 normal tissues were analyzed. Levels of transcription of APRG1 were determined using real-time quantitative PCR. APRG1 expression was normalized against CK19. Levels of expression were analyzed against staging, nodal involvement, grade, distant metastasis and survival over a 6 year follow up period. RESULTS Levels of APRG1 mRNA were lower in malignant tissues. They fell further with increasing stage using the TNM classification This became statistically significant when TNM stages 3 and 4 were compared to TNM 1 (p = 0.0046, p = 0.04, t-test). They were lower in those with positive nodes although this did not reach statistical significance. There was a statistically significant reduction in APRG1 in grade 3 tumours cf. grade 1 (p = 0.0081). APRG1 expression was highly negatively correlated with progressive disease: alive with metastasis (p = 0.0069), local recurrence (p = 0.0055), died of breast cancer (p = 0.11), all progressive disease (p = 0.035). CONCLUSION This study shows a compelling trend for APRG1 transcription levels to be lower in malignant tissues and lower still in those patients who develop progressive disease. There was also a statistically significant difference in APRG1 levels between grade 3 and grade 1 tumours. These results are highly suggestive of APRG1 acting as a tumour suppressor gene.
Collapse
|