1
|
Li M, Mei YX, Wen JH, Jiao YR, Pan QR, Kong XX, Li J. Hepatoid adenocarcinoma-Clinicopathological features and molecular characteristics. Cancer Lett 2023; 559:216104. [PMID: 36863507 DOI: 10.1016/j.canlet.2023.216104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Hepatoid adenocarcinoma (HAC) is a rare, malignant, extrahepatic tumor with histologic features similar to those of hepatocellular carcinoma. HAC is most often associated with elevated alpha-fetoprotein (AFP). HAC can occur in multiple organs, including the stomach, esophagus, colon, pancreas, lungs, and ovaries. HAC differs greatly from typical adenocarcinoma in terms of its biological aggression, poor prognosis, and clinicopathological characteristics. However, the mechanisms underlying its development and invasive metastasis remain unclear. The purpose of this review was to summarize the clinicopathological features, molecular traits, and molecular mechanisms driving the malignant phenotype of HAC, in order to support the clinical diagnosis and treatment of HAC.
Collapse
Affiliation(s)
- Ming Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Yan-Xia Mei
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Ji-Hang Wen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Yu-Rong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Qiang-Rong Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Xiang-Xing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China.
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China.
| |
Collapse
|
2
|
Gialeli C, Tuysuz EC, Staaf J, Guleed S, Paciorek V, Mörgelin M, Papadakos KS, Blom AM. Complement inhibitor CSMD1 modulates epidermal growth factor receptor oncogenic signaling and sensitizes breast cancer cells to chemotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:258. [PMID: 34404439 PMCID: PMC8371905 DOI: 10.1186/s13046-021-02042-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Human CUB and Sushi multiple domains 1 (CSMD1) is a large membrane-bound tumor suppressor in breast cancer. The current study aimed to elucidate the molecular mechanism underlying the effect of CSMD1 in highly invasive triple negative breast cancer (TNBC). METHODS We examined the antitumor action of CSMD1 in three TNBC cell lines overexpressing CSMD1, MDA-MB-231, BT-20 and MDA-MB-486, in vitro using scanning electron microscopy, proteome array, qRT-PCR, immunoblotting, proximity ligation assay, ELISA, co-immunoprecipitation, immunofluorescence, tumorsphere formation assays and flow cytometric analysis. The mRNA expression pattern and clinical relevance of CSMD1 were evaluated in 3520 breast cancers from a modern population-based cohort. RESULTS CSMD1-expressing cells had distinct morphology, with reduced deposition of extracellular matrix components. We found altered expression of several cancer-related molecules, as well as diminished expression of signaling receptors including Epidermal Growth Factor Receptor (EGFR), in CSMD1-expressing cells compared to control cells. A direct interaction of CSMD1 and EGFR was identified, with the EGF-EGFR induced signaling cascade impeded in the presence of CSMD1. Accordingly, we detected increased ubiquitination levels of EGFR upon activation in CSMD1-expressing cells, as well as increased degradation kinetics and chemosensitivity. Accordingly, CSMD1 expression rendered tumorspheres pretreated with gefitinib more sensitive to chemotherapy. In addition, higher mRNA levels of CSMD1 tend to be associated with better outcome of triple negative breast cancer patients treated with chemotherapy. CONCLUSIONS Our results indicate that CSMD1 cross-talks with the EGFR endosomal trafficking cascade in a way that renders highly invasive breast cancer cells sensitive to chemotherapy. Our study unravels one possible underlying molecular mechanism of CSMD1 tumor suppressor function and may provide novel avenues for design of better treatment.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Experimental Cardiovascular Research Group, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Emre Can Tuysuz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Safia Guleed
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Veronika Paciorek
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
3
|
Genomic and transcriptomic profiling of hepatoid adenocarcinoma of the stomach. Oncogene 2021; 40:5705-5717. [PMID: 34326469 DOI: 10.1038/s41388-021-01976-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Hepatoid adenocarcinoma of the stomach (HAS), a rare subtype of gastric cancer (GC), has a low incidence but a high mortality rate. Little is known about the molecular features of HAS. Here we applied whole-exome sequencing (WES) on 58 tumours and the matched normal controls from 54 HAS patients, transcriptome sequencing on 30 HAS tumours, and single-cell RNA sequencing (scRNA-seq) on one HAS tumour. Our results reveal that the adenocarcinomatous component and hepatocellular-like component of the same HAS tumour originate monoclonally, and HAS is likely to initiate from pluripotent precursor cells. HAS has high stemness and high methionine cycle activity compared to classical GC. Two genes in the methionine cycle, MAT2A, and AHCY are potential targets for HAS treatments. We provide the first integrative genomic profiles of HAS, which may facilitate its diagnosis, prognosis, and treatment.
Collapse
|
4
|
Buchanan VL, Wang Y, Blanco E, Graff M, Albala C, Burrows R, Santos JL, Angel B, Lozoff B, Voruganti VS, Guo X, Taylor KD, Chen YDI, Yao J, Tan J, Downie C, Highland HM, Justice AE, Gahagan S, North KE. Genome-wide association study identifying novel variant for fasting insulin and allelic heterogeneity in known glycemic loci in Chilean adolescents: The Santiago Longitudinal Study. Pediatr Obes 2021; 16:e12765. [PMID: 33381925 PMCID: PMC8711702 DOI: 10.1111/ijpo.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/25/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND The genetic underpinnings of glycemic traits have been understudied in adolescent and Hispanic/Latino (H/L) populations in comparison to adults and populations of European ancestry. OBJECTIVE To identify genetic factors underlying glycemic traits in an adolescent H/L population. METHODS We conducted a genome-wide association study (GWAS) of fasting glucose (FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study. RESULTS We identified one novel variant positioned in the CSMD1 gene on chromosome 8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (β = -0.299, SE = 0.054, p = 2.72×10-8 ) and was only slightly attenuated after adjusting for body mass index z-scores (β = -0.252, SE = 0.047, p = 1.03×10-7 ). We demonstrated directionally consistent, but not statistically significant results in African and Hispanic adults of the Population Architecture Using Genomics and Epidemiology Consortium. We also identified secondary signals for two FG loci after conditioning on known variants, which demonstrate allelic heterogeneity in well-known glucose loci. CONCLUSION Our results exemplify the importance of including populations with diverse ancestral origin and adolescent participants in GWAS of glycemic traits to uncover novel risk loci and expand our understanding of disease aetiology.
Collapse
Affiliation(s)
- Victoria L Buchanan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Estela Blanco
- Division of Academic General Pediatrics, Child Development and Community Health, University of California at San Diego, San Diego, California, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cecilia Albala
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Raquel Burrows
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkata Saroja Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Carolina Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, University of California at San Diego, San Diego, California, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
The Role of Csmd1 during Mammary Gland Development. Genes (Basel) 2021; 12:genes12020162. [PMID: 33530646 PMCID: PMC7912059 DOI: 10.3390/genes12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
The Cub Sushi Multiple Domains-1 (CSMD1) protein is a tumour suppressor which has been shown to play a role in regulating human mammary duct development in vitro. CSMD1 knockdown in vitro demonstrated increased cell proliferation, invasion and motility. However, the role of Csmd1 in vivo is poorly characterised when it comes to ductal development and is therefore an area which warrants further exploration. In this study a Csmd1 knockout (KO) mouse model was used to identify the role of Csmd1 in regulating mammary gland development during puberty. Changes in duct development and protein expression patterns were analysed by immunohistochemistry. This study identified increased ductal development during the early stages of puberty in the KO mice, characterised by increased ductal area and terminal end bud number at 6 weeks. Furthermore, increased expression of various proteins (Stat1, Fak, Akt, Slug/Snail and Progesterone receptor) was shown at 4 weeks in the KO mice, followed by lower expression levels from 6 weeks in the KO mice compared to the wild type mice. This study identifies a novel role for Csmd1 in mammary gland development, with Csmd1 KO causing significantly more rapid mammary gland development, suggesting an earlier adult mammary gland formation.
Collapse
|
6
|
Zhang X, Kang C, Li N, Liu X, Zhang J, Gao F, Dai L. Identification of special key genes for alcohol-related hepatocellular carcinoma through bioinformatic analysis. PeerJ 2019; 7:e6375. [PMID: 30755830 PMCID: PMC6368834 DOI: 10.7717/peerj.6375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Background Alcohol-related hepatocellular carcinoma (HCC) was reported to be diagnosed at a later stage, but the mechanism was unknown. This study aimed to identify special key genes (SKGs) during alcohol-related HCC development and progression. Methods The mRNA data of 369 HCC patients and the clinical information were downloaded from the Cancer Genome Atlas project (TCGA). The 310 patients with certain HCC-related risk factors were included for analysis and divided into seven groups according to the risk factors. Survival analyses were applied for the HCC patients of different groups. The patients with hepatitis B virus or hepatitis C virus infection only were combined into the HCC-V group for further analysis. The differentially expressed genes (DEGs) between the HCCs with alcohol consumption only (HCC-A) and HCC-V tumors were identified through limma package in R with cutoff criteria│log2 fold change (logFC)|>1.0 and p < 0.05. The DEGs between eight alcohol-related HCCs and their paired normal livers of GSE59259 from the Gene Expression Omnibus (GEO) were identified through GEO2R (a built-in tool in GEO database) with cutoff criteria |logFC|> 2.0 and adj.p < 0.05. The intersection of the two sets of DEGs was considered SKGs which were then investigated for their specificity through comparisons between HCC-A and other four HCC groups. The SKGs were analyzed for their correlations with HCC-A stage and grade and their prognostic power for HCC-A patients. The expressional differences of the SKGs in the HCCs in whole were also investigated through Gene Expression Profiling Interactive Analysis (GEPIA). The SKGs in HCC were validated through Oncomine database analysis. Results Pathological stage is an independent prognostic factor for HCC patients. HCC-A patients were diagnosed later than HCC patients with other risk factors. Ten SKGs were identified and nine of them were confirmed for their differences in paired samples of HCC-A patients. Three (SLC22A10, CD5L, and UROC1) and four (SLC22A10, UROC1, CSAG3, and CSMD1) confirmed genes were correlated with HCC-A stage and grade, respectively. SPP2 had a lower trend in HCC-A tumors and was negatively correlated with HCC-A stage and grade. The SKGs each was differentially expressed between HCC-A and at least one of other HCC groups. CD5L was identified to be favorable prognostic factor for overall survival while CSMD1 unfavorable prognostic factor for disease-free survival for HCC-A patients and HCC patients in whole. Through Oncomine database, the dysregulations of the SKGs in HCC and their clinical significance were confirmed. Conclusion The poor prognosis of HCC-A patients might be due to their later diagnosis. The SKGs, especially the four stage-correlated genes (CD5L, SLC22A10, UROC1, and SPP2) might play important roles in HCC development, especially alcohol-related HCC development and progression. CD5L might be useful for overall survival and CSMD1 for disease-free survival predication in HCC, especially alcohol-related HCC.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Liu
- Henan Province People's Hospital, Zhengzhou, China
| | | | | | - Liping Dai
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Kayser K, Degenhardt F, Holzapfel S, Horpaopan S, Peters S, Spier I, Morak M, Vangala D, Rahner N, von Knebel-Doeberitz M, Schackert HK, Engel C, Büttner R, Wijnen J, Doerks T, Bork P, Moebus S, Herms S, Fischer S, Hoffmann P, Aretz S, Steinke-Lange V. Copy number variation analysis and targeted NGS in 77 families with suspected Lynch syndrome reveals novel potential causative genes. Int J Cancer 2018; 143:2800-2813. [PMID: 29987844 DOI: 10.1002/ijc.31725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022]
Abstract
In many families with suspected Lynch syndrome (LS), no germline mutation in the causative mismatch repair (MMR) genes is detected during routine diagnostics. To identify novel causative genes for LS, the present study investigated 77 unrelated, mutation-negative patients with clinically suspected LS and a loss of MSH2 in tumor tissue. An analysis for genomic copy number variants (CNV) was performed, with subsequent next generation sequencing (NGS) of selected candidate genes in a subgroup of the cohort. Genomic DNA was genotyped using Illumina's HumanOmniExpress Bead Array. After quality control and filtering, 25 deletions and 16 duplications encompassing 73 genes were identified in 28 patients. No recurrent CNV was detected, and none of the CNVs affected the regulatory regions of MSH2. A total of 49 candidate genes from genomic regions implicated by the present CNV analysis and 30 known or assumed risk genes for colorectal cancer (CRC) were then sequenced in a subset of 38 patients using a customized NGS gene panel and Sanger sequencing. Single nucleotide variants were identified in 14 candidate genes from the CNV analysis. The most promising of these candidate genes were: (i) PRKCA, PRKDC, and MCM4, as a functional relation to MSH2 is predicted by network analysis, and (ii) CSMD1, as this is commonly mutated in CRC. Furthermore, six patients harbored POLE variants outside the exonuclease domain, suggesting that these might be implicated in hereditary CRC. Analyses in larger cohorts of suspected LS patients recruited via international collaborations are warranted to verify the present findings.
Collapse
Affiliation(s)
- Katrin Kayser
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Stefanie Holzapfel
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Sukanya Horpaopan
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany.,Medical Genetics Center (MGZ), Munich, Germany
| | - Deepak Vangala
- Department of Internal Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Nils Rahner
- Institute of Human Genetics, University of Düsseldorf, Düsseldorf, Germany
| | - Magnus von Knebel-Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans K Schackert
- Department of Surgical Research, Technische Universität Dresden, Dresden, Germany
| | - Christoph Engel
- Institute of Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | | | - Juul Wijnen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Doerks
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Susanne Moebus
- Centre for Urban Epidemiology, University Hospital of Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Insitute of Medical Genetics and Pathology, University Hospital of Basel, Basel, Switzerland
| | - Sascha Fischer
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Insitute of Medical Genetics and Pathology, University Hospital of Basel, Basel, Switzerland
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Verena Steinke-Lange
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany.,Medical Genetics Center (MGZ), Munich, Germany
| |
Collapse
|
8
|
Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol 2018; 102:73-83. [PMID: 30217334 DOI: 10.1016/j.molimm.2018.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
The complement system resembles a double-edged sword since its activation can either benefit or harm the host. Thus, regulation of this system is of utmost importance and performed by several circulating and membrane-bound complement inhibitors. The pool of well-established regulators has recently been enriched with proteins that either share structural homology to known complement inhibitors such as Sushi domain-containing (SUSD) protein family and Human CUB and Sushi multiple domains (CSMD) families or extracellular matrix (ECM) macromolecules that interact with and modulate complement activity. In this review, we summarize the current knowledge about newly discovered complement inhibitors and discuss their implications in complement regulation, as well as in processes beyond complement regulation such cancer development. Understanding the behavior of these proteins will introduce new mechanisms of complement regulation and may provide new avenues in the development of novel therapies.
Collapse
|
9
|
Escudero-Esparza A, Bartoschek M, Gialeli C, Okroj M, Owen S, Jirström K, Orimo A, Jiang WG, Pietras K, Blom AM. Complement inhibitor CSMD1 acts as tumor suppressor in human breast cancer. Oncotarget 2018; 7:76920-76933. [PMID: 27764775 PMCID: PMC5363559 DOI: 10.18632/oncotarget.12729] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/02/2022] Open
Abstract
Human CUB and Sushi multiple domains 1 (CSMD1) is a membrane-bound complement inhibitor suggested to act as a putative tumor suppressor gene, since allelic loss of this region encompassing 8p23 including CSMD1 characterizes various malignancies. Here, we assessed the role of CSMD1 as a tumor suppressor gene in the development of breast cancer in vitro and in vivo. We found that human breast tumor tissues expressed CSMD1 at lower levels compared to that in normal mammary tissues. The decreased expression of CSMD1 was linked to a shorter overall survival of breast cancer patients. We also revealed that expression of CSMD1 in human breast cancer cells BT-20 and MDA-MB-231 significantly inhibited their malignant phenotypes, including migration, adhesion and invasion. Conversely, stable silencing of CSMD1 expression in T47D cells enhanced cancer cell migratory, adherent and clonogenic abilities. Moreover, expression of CSMD1 in the highly invasive MDA-MB-231 cells diminished their signaling potential as well as their stem cell-like properties as assessed by measurement of aldehyde dehydrogenase activity. In a xenograft model, expression of CSMD1 blocked the ability of cancer cells to metastasize to secondary sites in vivo, likely via inhibiting local invasion but not the extravasation into distant tissues. Taken together, these findings demonstrate the role of CSMD1 as a tumor suppressor gene in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Marcin Okroj
- Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Karin Jirström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Kristian Pietras
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
11
|
Gao G, Johnson SH, Vasmatzis G, Pauley CE, Tombers NM, Kasperbauer JL, Smith DI. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer 2016; 56:59-74. [PMID: 27636103 DOI: 10.1002/gcc.22415] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Sarah H Johnson
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - George Vasmatzis
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - David I Smith
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens, HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated (HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example, HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1. Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly associated with smoking, have also been identified, and are less well understood mechanistically. Application of sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
13
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
14
|
Yang CT, French A, Goh PA, Pagnamenta A, Mettananda S, Taylor J, Knight S, Nathwani A, Roberts DJ, Watt SM, Carpenter L. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins. Br J Haematol 2014; 166:435-48. [PMID: 24837254 PMCID: PMC4375519 DOI: 10.1111/bjh.12910] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/09/2014] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs), like embryonic stem cells, are under intense investigation for novel approaches to model disease and for regenerative therapies. Here, we describe the derivation and characterization of hiPSCs from a variety of sources and show that, irrespective of origin or method of reprogramming, hiPSCs can be differentiated on OP9 stroma towards a multi-lineage haemo-endothelial progenitor that can contribute to CD144(+) endothelium, CD235a(+) erythrocytes (myeloid lineage) and CD19(+) B lymphocytes (lymphoid lineage). Within the erythroblast lineage, we were able to demonstrate by single cell analysis (flow cytometry), that hiPSC-derived erythroblasts express alpha globin as previously described, and that a sub-population of these erythroblasts also express haemoglobin F (HbF), indicative of fetal definitive erythropoiesis. More notably however, we were able to demonstrate that a small sub-fraction of HbF positive erythroblasts co-expressed HbA in a highly heterogeneous manner, but analogous to cord blood-derived erythroblasts when cultured using similar methods. Moreover, the HbA expressing erythroblast population could be greatly enhanced (44·0 ± 6·04%) when a defined serum-free approach was employed to isolate a CD31(+) CD45(+) erythro-myeloid progenitor. These findings demonstrate that hiPSCs may represent a useful alternative to standard sources of erythrocytes (RBCs) for future applications in transfusion medicine.
Collapse
Affiliation(s)
- Cheng-Tao Yang
- Blood Research Laboratory, Radcliffe Department of Medicine, NHS Blood and Transplant and Nuffield Division of Clinical Laboratory Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Stem Cell Research Laboratory, Radcliffe Department of Medicine, NHS Blood and Transplant and Nuffield Division of Clinical Laboratory Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Escudero-Esparza A, Kalchishkova N, Kurbasic E, Jiang WG, Blom AM. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J 2013; 27:5083-93. [PMID: 23964079 DOI: 10.1096/fj.13-230706] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CUB and Sushi multiple domains 1 (CSMD1) is a transmembrane protein containing 15 consecutive complement control protein (CCP) domains, which are characteristic for complement inhibitors. We expressed a membrane-bound fragment of human CSMD1 composed of the 15 C-terminal CCP domains and demonstrated that it inhibits deposition of C3b by the classical pathway on the surface of Chinese hamster ovary cells by 70% at 6% serum and of C9 (component of membrane attack complex) by 90% at 1.25% serum. Furthermore, this fragment of CSMD1 served as a cofactor to factor I-mediated degradation of C3b. In all functional assays performed, well-characterized complement inhibitors were used as positive controls, whereas Coxsackie adenovirus receptor, a protein with no effect on complement, was a negative control. Moreover, attenuation of expression in human T47 breast cancer cells that express endogenous CSMD1 significantly increased C3b deposition on these cells by 45% at 8% serum compared with that for the controls. Furthermore, by expressing a soluble 17-21 CCP fragment of CSMD1, we found that CSMD1 inhibits complement by promoting factor I-mediated C4b/C3b degradation and inhibition of MAC assembly at the level of C7. Our results revealed a novel complement inhibitor for the classical and lectin pathways.
Collapse
Affiliation(s)
- Astrid Escudero-Esparza
- 1Department of Laboratory Medicine Malmö, Section of Medical Protein Chemistry, Skåne University Hospital, The Wallenberg Laboratory, Inga Marie Nilssons gata 53, 20502 Malmö, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Shull AY, Clendenning ML, Ghoshal-Gupta S, Farrell CL, Vangapandu HV, Dudas L, Wilkerson BJ, Buckhaults PJ. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1) gene reveals association with early age of diagnosis in colorectal cancer patients. PLoS One 2013; 8:e58731. [PMID: 23505554 PMCID: PMC3591376 DOI: 10.1371/journal.pone.0058731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023] Open
Abstract
Background The Cub and Sushi Multiple Domains 1 (CSMD1) gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients. Methods We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A. Results Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%). The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15∶1, a ratio significantly higher than the expected 2∶1 ratio (p = 0.014). This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%). Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years) than those without somatic mutations (average age, 68 years). The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%), suggesting extensive cytosine methylation predisposing to somatic mutations. Conclusions Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical presentation in colorectal tumors, thus further implicating CSMD1 as a tumor suppressor gene.
Collapse
Affiliation(s)
- Austin Y. Shull
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- Department of Biochemistry and Cancer Biology, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Megan L. Clendenning
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Sampa Ghoshal-Gupta
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Christopher L. Farrell
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, United States of America
| | - Hima V. Vangapandu
- Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Larry Dudas
- Northeast Georgia Medical Center, Department of Internal Medicine, Gainesville, Georgia, United States of America
| | - Brent J. Wilkerson
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Phillip J. Buckhaults
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- Department of Biochemistry and Cancer Biology, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
GWAS reveals new recessive loci associated with non-syndromic facial clefting. Eur J Med Genet 2012; 55:510-4. [PMID: 22750566 DOI: 10.1016/j.ejmg.2012.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 06/09/2012] [Indexed: 01/31/2023]
Abstract
We have applied a GWAS to 40 consanguineous families segregating cases of non-syndromic cleft lip with or without cleft palate (NS CL/P) (a total of 160 affected and unaffected individuals) in order to trace potential recessive loci that confer susceptibility to this common facial malformation. Pedigree-based association test (PBAT) analyses reported nominal evidence of association and linkage over SNP markers located at 11q25 (rs4937877, P = 2.7 × 10(-6)), 19p12 (rs4324267, P = 1.6 × 10(-5)), 5q14.1 (rs4588572, P-value = 3.36 × 10(-5)), and 15q21.1 (rs4774497, P = 1.08 × 10(-4)). Using the Versatile Gene-Based Association Study to complement the PBAT results, we found clusters of markers located at chromosomes 19p12, 11q25, and 8p23.2 overcome the threshold for GWAS significance (P < 1 × 10(-7)). From this study, new recessive loci implicated in NS CL/P include: B3GAT1, GLB1L2, ZNF431, ZNF714, and CSMD1, even though the functional association with the genesis of NS CL/P remains to be elucidated. These results emphasize the importance of using homogeneous populations, phenotypes, and family structures for GWAS combined with gene-based association analyses, and should encourage. other researchers to evaluate these genes on independent patient samples affected by NS CL/P.
Collapse
|
18
|
Dreszer TR, Wall GD, Haussler D, Pollard KS. Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion. Genome Res 2007; 17:1420-30. [PMID: 17785536 PMCID: PMC1987345 DOI: 10.1101/gr.6395807] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined fixed substitutions in the human lineage since divergence from the common ancestor with the chimpanzee, and determined what fraction are AT to GC (weak-to-strong). Substitutions that are densely clustered on the chromosomes show a remarkable excess of weak-to-strong "biased" substitutions. These unexpected biased clustered substitutions (UBCS) are common near the telomeres of all autosomes but not the sex chromosomes. Regions of extreme bias are enriched for genes. Human and chimp orthologous regions show a striking similarity in the shape and magnitude of their respective UBCS maps, suggesting a relatively stable force leads to clustered bias. The strong and stable signal near telomeres may have participated in the evolution of isochores. One exception to the UBCS pattern found in all autosomes is chromosome 2, which shows a UBCS peak midchromosome, mapping to the fusion site of two ancestral chromosomes. This provides evidence that the fusion occurred as recently as 740,000 years ago and no more than approximately 3 million years ago. No biased clustering was found in SNPs, suggesting that clusters of biased substitutions are selected from mutations. UBCS is strongly correlated with male (and not female) recombination rates, which explains the lack of UBCS signal on chromosome X. These observations support the hypothesis that biased gene conversion (BGC), specifically in the male germline, played a significant role in the evolution of the human genome.
Collapse
MESH Headings
- Animals
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, X/genetics
- Chromosomes, Human, Y/genetics
- Evolution, Molecular
- Female
- Gene Conversion
- Gene Fusion
- Genome, Human
- Humans
- Male
- Models, Genetic
- Pan troglodytes/genetics
- Polymorphism, Single Nucleotide
- Recombination, Genetic
- Sex Characteristics
- Species Specificity
- Telomere/genetics
- Time Factors
Collapse
Affiliation(s)
- Timothy R. Dreszer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Gregory D. Wall
- Department of Statistics, University of California, Davis, California 95616, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
- Corresponding authors.E-mail ; fax (831) 459-1809.E-mail ; fax (530) 754-9658
| | - Katherine S. Pollard
- Department of Statistics, University of California, Davis, California 95616, USA
- UC Davis Genome Center, University of California, Davis, California 95616, USA
- Corresponding authors.E-mail ; fax (831) 459-1809.E-mail ; fax (530) 754-9658
| |
Collapse
|