1
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
2
|
Chaum M, Vail E, Schreck R, Lorber J, Eno CC. KMT2A-CBL Fusion in Rapidly Progressive Myeloid Disorder. Cancer Genet 2022; 266-267:90-92. [DOI: 10.1016/j.cancergen.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/18/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
|
3
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
4
|
Sharma P, Rana S, Sreedharanunni S, Gautam A, Sachdeva MUS, Naseem S, Varma N, Jain R, Bansal D, Trehan A. An Evaluation of a Fluorescence In Situ Hybridization Strategy Using Air-dried Blood and Bone-marrow Smears in the Risk Stratification of Pediatric B-Lineage Acute Lymphoblastic Leukemia in Resource-limited Settings. J Pediatr Hematol Oncol 2021; 43:e481-e485. [PMID: 32769569 DOI: 10.1097/mph.0000000000001892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Cytogenetic abnormalities (CAs), one of the strongest influencers of therapeutic outcome in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), can be identified by different techniques. Despite several technological advances, many centers with resource-limited settings continue to use either reverse-transcriptase polymerase chain reaction (RT-PCR) and/or fluorescence in situ hybridization (FISH) to identify prognostically relevant CAs. We evaluated a simple and cost-effective triple-probe FISH strategy on air-dried blood and bone-marrow smears and compared its performance with a multiplex RT-PCR-based approach in the prognostication of pediatric BCP-ALL patients. Three hundred twenty BCP-ALL patients were tested prospectively and in parallel by FISH on air-dried blood or bone-marrow smears and RT-PCR. The FISH strategy correctly diagnosed all genetic abnormalities identified by RT-PCR. Prognostically relevant genetic abnormalities were missed by RT-PCR in 24 (8.1%) patients. In another 20 children (6%), with samples inadequate for RT-PCR testing (dry taps or due to poor sample quality), a successful FISH testing could be performed on bone-marrow aspirate or trephine-imprint smears. In addition, FISH detected ploidy changes, which could be confirmed by FxCycle Violet-based flow-cytometry. FISH testing on air-dried smears identified more prognostically relevant CAs, provided information on the ploidy status, and could be successfully performed in children with difficulty in bone-marrow sampling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richa Jain
- Unit of Paediatric Haemato-oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Unit of Paediatric Haemato-oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Unit of Paediatric Haemato-oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Cutrupi AN, Brewer MH, Nicholson GA, Kennerson M. Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genomic Med 2018; 6:422-433. [PMID: 29573232 PMCID: PMC6014456 DOI: 10.1002/mgg3.390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
Collapse
Affiliation(s)
- Anthony N. Cutrupi
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Megan H. Brewer
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Garth A. Nicholson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| | - Marina L. Kennerson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| |
Collapse
|
6
|
Vargas AC, Selinger CI, Satgunaseelan L, Cooper WA, Gupta R, Stalley P, Brown W, Soper J, Schatz J, Boyle R, Thomas DM, Tattersall MHN, Bhadri VA, Maclean F, Bonar SF, Scolyer RA, Karim RZ, McCarthy SW, Mahar A, O'Toole SA. Atypical Ewing sarcoma breakpoint region 1 fluorescencein-situhybridization signal patterns in bone and soft tissue tumours: diagnostic experience with 135 cases. Histopathology 2016; 69:1000-1011. [DOI: 10.1111/his.13031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022]
|
7
|
Lim JH, Jang S, Park CJ, Chi HS, Lee JO, Seo EJ. FISH analysis of MLL gene rearrangements: detection of the concurrent loss or gain of the 3' signal and its prognostic significance. Int J Lab Hematol 2014; 36:571-9. [PMID: 24612538 DOI: 10.1111/ijlh.12192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The rearrangement of the mixed-lineage leukemia (MLL) gene occurs through translocations and insertions involving a variety of partner chromosome genes. However, there are few studies on aberrant MLL signal patterns such as concurrent 3' MLL deletion. METHODS A total of 84 patients with acute leukemia (AL) who had MLL rearrangements detected by florescence in situ hybridization (FISH) were enrolled in the study. The distribution of MLL fusion partner genes was analyzed, and aberrant MLL signals were evaluated. RESULTS Seventy-seven (91.7%) patients had MLL rearrangements, involving previously described translocation partner genes (TPGs). Among these TPGs, the frequencies of MLLT3, AFF1, MLLT4, and ELL were 29.8%, 17.9%, 15.5%, and 13.1%, respectively. A high frequency of MLLT4 in our study was due to the high proportion of acute myeloid leukemia cases in pediatric and adult patients. Aberrant MLL signals were found in 18 patients: 11 (61.1%) with 3' MLL signal loss and 7 with 3' MLL signal gain. All cases with 3' MLL signal gain were due to an extra derivative partner chromosome. The median overall survival period of patients with 3' MLL gain was shorter than that in patients without aberrant MLL signal patterns. CONCLUSION Aberrant MLL signals were frequently detected by FISH analysis. The 3' MLL gain was associated with poor prognosis in patients with AL. Therefore, it is important to detect aberrant MLL signal patterns using FISH analysis.
Collapse
Affiliation(s)
- J-H Lim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
8
|
De Braekeleer E, Meyer C, Douet-Guilbert N, Basinko A, Le Bris MJ, Morel F, Berthou C, Marschalek R, Férec C, De Braekeleer M. Identification of MLL partner genes in 27 patients with acute leukemia from a single cytogenetic laboratory. Mol Oncol 2011; 5:555-63. [PMID: 21900057 DOI: 10.1016/j.molonc.2011.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022] Open
Abstract
Chromosomal rearrangements involving the MLL gene have been associated with many different types of hematological malignancies. Fluorescent in situ hybridization with a panel of probes coupled with long distance inverse-PCR was used to identify chromosomal rearrangements involving the MLL gene. Between 1995 and 2010, 27 patients with an acute leukemia were found to have a fusion gene involving MLL. All seven ALL patients with B cell acute lymphoblastic leukemia were characterized by the MLL/AFF1 fusion gene resulting from a translocation (5 patients) or an insertion (2 patients). In the 19 AML patients with acute myeloblastic leukemia, 31.6% of all characterized MLL fusion genes were MLL/MLLT3, 21.1% MLL/ELL, 10.5% MLL/MLLT6 and 10.5% MLL/EPS15. Two patients had rare or undescribed fusion genes, MLL/KIAA0284 and MLL/FLNA. Seven patients (26%) had a complex chromosomal rearrangement (three-way translocations, insertions, deletions) involving the MLL gene. Splicing fusion genes were found in three patients, leading to a MLL/EPS15 fusion in two and a MLL/ELL fusion in a third patient. This study showed that fusion involving the MLL gene can be generated through various chromosomal rearrangements such as translocations, insertions and deletions, some being complex or cryptic. A systematic approach should be used in all cases of acute leukemia starting with FISH analyses using a commercially available MLL split signal probe. Then, the analysis has to be completed, if necessary, by further molecular cytogenetic and genomic PCR methods.
Collapse
|
9
|
HWANG Y, LEE JY, MUN YC, SEONG CM, CHUNG WS, HUH J. Various patterns of IgH deletion identified by FISH using combined IgH and IgH/CCND1 probes in multiple myeloma and chronic lymphocytic leukemia. Int J Lab Hematol 2011; 33:299-304. [DOI: 10.1111/j.1751-553x.2010.01290.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
Cytogenetics plays an important role in the diagnosis of acute lymphoblastic leukaemia (ALL), particularly in relation to the association of specific chromosomal abnormalities with outcome. The karyotype at diagnosis is used in the risk stratification of patients for treatment within trial-based protocols. Chromosomal analysis of the leukaemic cells of patients with ALL is challenging as the mitotic index may be low and the chromosomal morphology is often poor. Therefore, the use of fluorescence in situ hybridisation (FISH) in parallel with cytogenetic analysis is important for the detection of those chromosomal abnormalities of prognostic significance. This chapter is dedicated to the preparation of ALL samples for cytogenetic and FISH analysis, with emphasis on the modifications to standard protocols which may be used to improve their quality. The specific difficulties encountered in the analysis of ALL metaphases and suggestions for overcoming them are provided. The chapter also includes an overview of the abnormalities that are expected to be found in this disease and how the results from both cytogenetics and FISH should be interpreted.
Collapse
Affiliation(s)
- Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| | | |
Collapse
|
11
|
De Braekeleer E, Meyer C, Le Bris MJ, Douet-Guilbert N, Basinko A, Morel F, Berthou C, Marschalek R, Férec C, De Braekeleer M. Identification of a MLL-MLLT4 fusion gene resulting from a t(6;11)(q27;q23) presenting as a del(11q) in a child with T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2010; 51:1570-3. [PMID: 20545580 DOI: 10.3109/10428194.2010.494261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J, Izraeli S. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfürt-Münster study group. Br J Haematol 2010; 151:132-42. [DOI: 10.1111/j.1365-2141.2010.08314.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
De Braekeleer E, Meyer C, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, Arnaud B, Marschalek R, Férec C, De Braekeleer M. Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: A study of 7 patients and review of the literature. Blood Cells Mol Dis 2010; 44:268-74. [DOI: 10.1016/j.bcmd.2010.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
|
14
|
Gulten T, Yakut T, Gunes AM, Demirkaya M. 5′ MLL Gene Deletion in a Case with Childhood Acute Lymphoblastic Leukemia. Lab Med 2010. [DOI: 10.1309/lmc5lw0imkng5lcn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
15
|
Affiliation(s)
- Patrick A Zweidler-McKay
- The Children's Cancer Hospital at the University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
16
|
Quigley DI, Wolff DJ. Pediatric T-cell acute lymphoblastic leukemia with aberrations of both MLL loci. ACTA ACUST UNITED AC 2006; 168:77-9. [PMID: 16772125 DOI: 10.1016/j.cancergencyto.2006.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/30/2006] [Accepted: 02/08/2006] [Indexed: 11/16/2022]
Abstract
Translocations involving the MLL gene at 11q23 have been implicated in acute lymphoblastic leukemia (ALL), as well as acute myeloid leukemia (AML). Such translocations result in gain of function fusion proteins that drive cell proliferation. Except in cases of T-cell ALL, MLL rearrangement is typically associated with a poor prognosis. We report a case of T-cell ALL with a t(11;19)(q23;p13.3) and deletion of the other chromosome 11 homolog at band q23. Fluorescence in situ hybridization (FISH) analyses confirmed involvement of the MLL loci in both the translocation and deletion. This case is unique in that deletions of 11q23 reported in ALL generally do not involve MLL. We are unaware of a previous report showing rearrangement of the MLL loci on both chromosome 11 homologues.
Collapse
Affiliation(s)
- Denise I Quigley
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
17
|
Attarbaschi A, Mann G, König M, Steiner M, Strehl S, Schreiberhuber A, Schneider B, Meyer C, Marschalek R, Borkhardt A, Pickl WF, Lion T, Gadner H, Haas OA, Dworzak MN. Mixed lineage leukemia-rearranged childhood pro-B and CD10-negative pre-B acute lymphoblastic leukemia constitute a distinct clinical entity. Clin Cancer Res 2006; 12:2988-94. [PMID: 16707593 DOI: 10.1158/1078-0432.ccr-05-2861] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mixed lineage leukemia (MLL) abnormalities occur in approximately 50% of childhood pro-B acute lymphoblastic leukemia (ALL). However, the incidence and type of MLL rearrangements have not been determined in common ALL (cALL) and CD10+ or CD10- pre-B ALL. EXPERIMENTAL DESIGN To address this question, we analyzed 29 patients with pro-B ALL, 11 patients with CD10- pre-B ALL, 23 pre-B, and 26 cALL patients with CD10 on 20% to 80%, as well as 136 pre-B and 143 cALL patients with CD10 > or = 80% of blasts. They were all enrolled in four Austrian ALL multicenter trials. Conventional cytogenetics were done to detect 11q23 abnormalities and in parallel the potential involvement of the MLL gene was evaluated with a split apart fluorescence in situ hybridization probe set. RESULTS We found that 15 of 29 pro-B ALL, 7 of 11 CD10- pre-B ALL, and 1 of 2 French-American-British classification L1 mature B-cell leukemia cases had a MLL rearrangement. However, no 11q23/MLL translocation was identified among the CD10+ pre-B and cALL patients. MLL-rearranged pro-B and CD10- pre-B ALL cases had similar clinical and immunophenotypic (coexpression of CDw65 and CD15) features at initial diagnosis. CONCLUSIONS The striking similarities between the two CD10- ALL subsets imply that CD10- pre-B ALL variants may represent pro-B ALL cases that maintained the propensity to rearrange and express their immunoglobulin heavy chain rather than actual pre-B ALL forms transformed at this later stage of B-cell differentiation. However, direct experimental data are needed to confirm this observation.
Collapse
Affiliation(s)
- Andishe Attarbaschi
- Department of Hematology and Oncology, St. Anna Children's Hospital, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Harrison CJ, Moorman AV, Barber KE, Broadfield ZJ, Cheung KL, Harris RL, Jalali GR, Robinson HM, Strefford JC, Stewart A, Wright S, Griffiths M, Ross FM, Harewood L, Martineau M. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 2005; 129:520-30. [PMID: 15877734 DOI: 10.1111/j.1365-2141.2005.05497.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Summary Interphase fluorescence in situ hybridization (iFISH) was used independently to reveal chromosomal abnormalities of prognostic importance in a large, consecutive series of children (n = 2367) with acute lymphoblastic leukaemia (ALL). The fusions, TEL/AML1 and BCR/ABL, and rearrangements of the MLL gene occurred at frequencies of 22% (n = 447/2027) (25% in B-lineage ALL), 2% (n = 43/2027) and 2% (n = 47/2016) respectively. There was considerable variation in iFISH signal patterns both between and within patient samples. The TEL/AML1 probe showed the highest incidence of variation (59%, n = 524/884), which included 38 (2%) patients with clustered, multiple copies of AML1. We were thus able to define amplification of AML1 as a new recurrent abnormality in ALL, associated with a poor prognosis. Amplification involving the ABL gene, a rare recurrent abnormality confined to T ALL patients, was identified for the first time. The use of centromeric probes revealed significant hidden high hyperdiploidy of 33% and 59%, respectively, in patients with normal (n = 21/64) or failed (n = 32/54) cytogenetic results. The iFISH contributed significantly to the high success rate of 91% (n = 2114/2323) and the remarkable abnormality detection rate of 89% (n = 1879/2114). This study highlights the importance of iFISH as a complementary tool to cytogenetics in routine screening for significant chromosomal abnormalities in ALL.
Collapse
Affiliation(s)
- Christine J Harrison
- Leukaemia Research Fund Cytogenetics Group, Cancer Sciences Division, University of Southampton, General Hospital, Southampton SO16 6YD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|