1
|
Wang L, Qiu F, Shen Y, Chen S, Si P. Co-existence of KMT2A:: SEPTIN6 fusion and DIS3 variant in a pediatric case with acute myeloid leukemia: a case report and literature review. Front Oncol 2023; 13:1308786. [PMID: 38152368 PMCID: PMC10751303 DOI: 10.3389/fonc.2023.1308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The lysine(K)-specific methyltransferase 2A gene (KMT2A), previously known as mixed lineage leukemia (MLL), frequently rearranged in acute leukemia, belongs to one of the most promiscuous genes and has been found fused to more than 80 different partners. KMT2A::SEPTIN6 fusion is a relatively uncommon rearrangement observed in pediatric acute myeloid leukemia (AML) patients, some of which may harbor other mutations. We herein report a case of AML-M4-infant with KMT2A::SEPTIN6 fusion and DIS3 variant. The 8-month-old girl presented with leukocytosis, anemia and thrombocytopenia. A bone marrow smear disclosed that 64% of the total nucleated cells were blasts. Karyotype analysis showed 46,X,t(X;11)(q24;q23)[10]/46,XX[10]. Fluorescence in situ hybridization analysis suggested a possible break in the KMT2A gene. After whole transcriptome sequencing, Exon 9 of KMT2A was fused in-frame with Exon 2 of SEPTIN6. This is a typical type of chromosomal rearrangement leading to the KMT2A::SEPTIN6 fusion. Meanwhile, DIS3 variant [c.2065C>T, p.R689X, variant allele frequency (VAF): 39.8%] was identified. KMT2A::SEPTIN6 fusion has been associated with the pathogenesis of AML, whereas DIS3 variants are relatively rare genetic events in pediatric AML. Regrettably, the relatives disagreed with the combination chemotherapy, and the patient eventually died of progressive disease. In conclusion, our findings provide a foundation for a better understanding of the genotypic profile of KMT2A::SEPTIN6 associated AML, and the co-existence of KMT2A::SEPTIN6 and DIS3 variant might contribute to the disease progression and transformation of AML.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Fangzhou Qiu
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Sen Chen
- Department of Hematology, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Ping Si
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Fujita T, Fukushima H, Nanmoku T, Arakawa Y, Deguchi T, Suzuki R, Yamaki Y, Hosaka S, Takada H. Acute monocytic leukemia with KMT2A::LASP1 developed 9 months after diagnosis of acute megakaryoblastic leukemia in a 2-year-old boy. Int J Hematol 2023; 118:514-518. [PMID: 37314622 DOI: 10.1007/s12185-023-03622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Acute myeloid leukemia (AML) is known as one of the subsequent malignant neoplasms that can develop after cancer treatment, but it is difficult to distinguish from relapse when the preceding cancer is leukemia. We report a 2-year-old boy who developed acute megakaryoblastic leukemia (AMKL, French-American-British classification [FAB]: M7) at 18 months of age and achieved complete remission with multi-agent chemotherapy without hematopoietic stem cell transplantation. Nine months after diagnosis and 4 months after completing treatment for AMKL, he developed acute monocytic leukemia (AMoL) with the KMT2A::LASP1 chimeric gene (FAB: M5b). The second complete remission was achieved using multi-agent chemotherapy and he underwent cord blood transplantation 4 months after AMoL was diagnosed. He is currently alive and disease free at 39 and 48 months since his AMoL and AMKL diagnoses, respectively. Retrospective analysis revealed that the KMT2A::LASP1 chimeric gene was detected 4 months after diagnosis of AMKL. Common somatic mutations were not detected in AMKL or AMoL and no germline pathogenic variants were detected. Since the patient's AMoL was different from his primary leukemia of AMKL in terms of morphological, genomic, and molecular analysis, we concluded that he developed a subsequent leukemia rather than a relapse of his primary leukemia.
Collapse
MESH Headings
- Child, Preschool
- Humans
- Male
- Adaptor Proteins, Signal Transducing
- Cytoskeletal Proteins
- Leukemia, Megakaryoblastic, Acute/diagnosis
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/therapy
- Leukemia, Monocytic, Acute/diagnosis
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/therapy
- LIM Domain Proteins
- Recurrence
- Remission Induction
- Retrospective Studies
- Histone-Lysine N-Methyltransferase/genetics
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Takashi Fujita
- Department of, Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroko Fukushima
- Department of, Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan.
- Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Toru Nanmoku
- Department of Clinical Laboratory, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yuki Arakawa
- Department of Hematology and Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Takao Deguchi
- Division of Cancer Immunodiagnostics, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Ryoko Suzuki
- Department of, Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuni Yamaki
- Department of, Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Hosaka
- Department of, Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hidetoshi Takada
- Department of, Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
3
|
Chebly A, Djambas Khayat C, Yammine T, Korban R, Semaan W, Bou Zeid J, Farra C. Pediatric M5 acute myeloid leukemia with MLL-SEPT6 fusion and a favorable outcome. Leuk Res Rep 2021; 16:100277. [PMID: 34760618 PMCID: PMC8566899 DOI: 10.1016/j.lrr.2021.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with MLL-SEPT6 fusion represent a small subset of AML. The uncommon MLL-SEPT6 rearrangement results from t(X;11) or other variants like ins(X;11), and it is usually associated with complex cytogenetic abnormalities. We herein report a case of AML-M5-infant with ins(X;11)(q24;q23q13) and MLL-SEPT6. The one-year-old boy presented with leukocytosis, anemia and thrombocytopenia. He had a favorable response to chemotherapy according to ELAM02protocol and is currently in complete remission. We here, highlight the occurrence of MLL-SEPT6 as the sole abnormality in a pediatric-AML-M5 case, discuss the prognostic implication of this genetic variant, while reviewing previously reported AML-MLL-SEPT6 cases.
Collapse
Affiliation(s)
- Alain Chebly
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | | | - Tony Yammine
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rima Korban
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Warde Semaan
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jessica Bou Zeid
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Chantal Farra
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Genetics, Hotel Dieu de France Medical Center, Beirut, Lebanon
| |
Collapse
|
4
|
Wang F, Chen Y, Jiang N, Gong S, Cao T, Yuan J, Liu J, Xie L, Wu Y, Jia Y. Acquired persistently complete remission by decitabine-based treatment for acute myeloid leukemia with the MLL-SEPT9 fusion gene. Leuk Lymphoma 2019; 60:3304-3307. [PMID: 31256701 DOI: 10.1080/10428194.2019.1625044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fujue Wang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Chen
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Shuaige Gong
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Tingyong Cao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Yuan
- Department of Hematology, The People's Hospital of Longquanyi District, Chengdu, China
| | - Jiazhuo Liu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Liping Xie
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yongqian Jia
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wang X, Wang J, Zhang L. Characterization of atypical acute promyelocytic leukaemia: Three cases report and literature review. Medicine (Baltimore) 2019; 98:e15537. [PMID: 31083206 PMCID: PMC6531224 DOI: 10.1097/md.0000000000015537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023] Open
Abstract
RATIONALE The vast majority of acute promyelocytic leukemia (APL) is characterized with a specific chromosomal translocation t (15, 17) (q22, q21), which fuses PML-RARα leading to a good response to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, there are few cases of atypical APL, including PLZF-RARα, F1P1L1-RARα, STAT5b-RARα, et al. Neither PLZF-RARα nor STAT5b-RARα are sensitive to ATRA and ATO, and the prognosis is poor. PATIENT CONCERNS Here we have 3 cases (PLZF-RARα, n = 2; STAT5b-RARα, n = 1). Case A, A 53-year-old Chinese female had suffered ecchymosis in both legs for 3 days. Case B, A 44 years old male suffered pain from lower limbs and hip. Case C, 52-year-old male patient presented with fever for 3 weeks invalid to antibiotics and gingival bleeding for 1 week. DIAGNOSES With RT-PCR and karyotype, Case A is diagnosed with STAT5b-RARα-positive APL.Case B, C are diagnosed with PLZF-RARα-positive APL. INTERVENTIONS In case A, ATO, and ATRA were used for induction treatment. In Case B, ATO, and chemotherapy with DA were given in the first induction treatment. In Case C, ATRA, and ATO were used immediately, subsequently, chemotherapy was added with DA, ATRA, and CAG combination treatment, and medium-dose cytarabine with daunorubicin were given regularly. OUTCOMES In Case A, the patient refused the following treatment and discharged on day 25. In Case B, the patient got the disseminated intravascular coagulation (DIC).In Case C, the patient has survived for 7 months and remains CR. LESSONS Both STAT5b-RARα-positive APL and PLZF-RARα-positive APL appear to be resistant to both ATRA and ATO, so combined chemotherapy and allo-HSCT should be considered. Since the prognosis and long-term outcome are poor, more clinical trials, and researches should be taken.
Collapse
|
6
|
Forlenza CJ, Zhang Y, Yao J, Benayed R, Steinherz P, Ramaswamy K, Kessel R, Roshal M, Shukla N. A case of KMT2A-SEPT9 fusion-associated acute megakaryoblastic leukemia. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a003426. [PMID: 30455225 PMCID: PMC6318764 DOI: 10.1101/mcs.a003426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) constitutes ∼5%-15% of cases of non-Down syndrome AML in children, and in the majority of cases, chimeric oncogenes resulting from recurrent gene rearrangements are identified. Based on these rearrangements, several molecular subsets have been characterized providing important prognostic information. One such subset includes a group of patients with translocations involving the KMT2A gene, which has been associated with various fusion partners in patients with AMKL. Here we report the molecular findings of a 2-yr-old girl with AMKL and t(11;17)(q23;25) found to have a KMT2A-SEPT9 fusion identified through targeted RNA sequencing. A KMT2A-SEPT9 fusion in this subset of patients has not previously been reported.
Collapse
Affiliation(s)
- Christopher J Forlenza
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - JinJuan Yao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Peter Steinherz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Kavitha Ramaswamy
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rachel Kessel
- Division of Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center of New York, New Hyde Park, New York 11042, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
7
|
A new complex rearrangement in infant ALL: t(X;11;17)(p11.2;q23;q12). Cancer Genet 2018; 228-229:110-114. [DOI: 10.1016/j.cancergen.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022]
|
8
|
Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, Vollmer A, Markaki Y, Leonhardt H, Buske C, Lipka DB, Plass C, Zheng Y, Mulaw MA, Geiger H, Florian MC. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol 2018; 19:189. [PMID: 30404662 PMCID: PMC6223039 DOI: 10.1186/s13059-018-1557-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The decline of hematopoietic stem cell (HSC) function upon aging contributes to aging-associated immune remodeling and leukemia pathogenesis. Aged HSCs show changes to their epigenome, such as alterations in DNA methylation and histone methylation and acetylation landscapes. We previously showed a correlation between high Cdc42 activity in aged HSCs and the loss of intranuclear epigenetic polarity, or epipolarity, as indicated by the specific distribution of H4K16ac. RESULTS Here, we show that not all histone modifications display a polar localization and that a reduction in H4K16ac amount and loss of epipolarity are specific to aged HSCs. Increasing the levels of H4K16ac is not sufficient to restore polarity in aged HSCs and the restoration of HSC function. The changes in H4K16ac upon aging and rejuvenation of HSCs are correlated with a change in chromosome 11 architecture and alterations in nuclear volume and shape. Surprisingly, by taking advantage of knockout mouse models, we demonstrate that increased Cdc42 activity levels correlate with the repression of the nuclear envelope protein LaminA/C, which controls chromosome 11 distribution, H4K16ac polarity, and nuclear volume and shape in aged HSCs. CONCLUSIONS Collectively, our data show that chromatin architecture changes in aged stem cells are reversible by decreasing the levels of Cdc42 activity, revealing an unanticipated way to pharmacologically target LaminA/C expression and revert alterations of the epigenetic architecture in aged HSCs.
Collapse
Affiliation(s)
- Ani Grigoryan
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Novella Guidi
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Katharina Senger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, 07743, Jena, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Yolanda Markaki
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniel B Lipka
- Regulation of Cellular Differentiation Group, INF280, 69120, Heidelberg, Germany
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF280, 69120, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF280, 69120, Heidelberg, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany.
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
9
|
Ghasemian Sorbeni F, Montazersaheb S, Ansarin A, Esfahani A, Rezamand A, Sakhinia E. Molecular analysis of more than 140 gene fusion variants and aberrant activation of EVI1 and TLX1 in hematological malignancies. Ann Hematol 2017; 96:1605-1623. [PMID: 28779353 DOI: 10.1007/s00277-017-3075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/13/2017] [Indexed: 12/01/2022]
Abstract
Gene fusions are observed in abnormal chromosomal rearrangements such as translocations in hematopoietic malignancies, especially leukemia subtypes. Hence, it is critical to obtain correct information about these rearrangements in order to apply proper treatment techniques. To identify abnormal molecular changes in patients with leukemia, we developed a multiplex reverse transcriptase polymerase chain reaction (MRT-PCR) protocol and investigated more than 140 gene fusions resulting from variations of 29 prevalent chromosomal rearrangements along with EVI1 and TLX1 oncogenic expression in the presence of optimized primers. The potential of the MRT-PCR method was approved by evaluating the available cell lines as positive control and confirmed by sequencing. Samples from 53 patients afflicted with hematopoiesis malignancies were analyzed. Results revealed at least one chromosomal rearrangement in 69% of acute myeloid leukemia subjects, 64% of acute lymphoblastic leukemia subjects, and 81% of chronic myeloid leukemia subjects, as well as a subject with hypereosinophilic syndrome. Also, five novel fusion variants were detected. Results of this study also showed that chromosomal rearrangements, both alone and in conjunction with other rearrangements, are involved in leukemogenesis. Moreover, it was found that EVI1 is a suitable hallmark for hematopoietic malignancies.
Collapse
Affiliation(s)
| | | | - Atefeh Ansarin
- Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Esfahani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azim Rezamand
- Department of Pediatrics, Children Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Kim H, Lee JK, Lee JA, Hong YJ, Hong SI, Jo HS, Chang YH. A rare case of pediatric T lymphoblastic leukemia with t(11;17)(q23;q21) involving mixed-lineage leukemia gene rearrangement. Ann Lab Med 2015; 36:64-6. [PMID: 26522762 PMCID: PMC4697346 DOI: 10.3343/alm.2016.36.1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/17/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Heyjin Kim
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Jin Kyung Lee
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea.,Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon, Korea
| | - Jun Ah Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Young Jun Hong
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea.,Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon, Korea
| | - Seok Il Hong
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea.,Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon, Korea
| | - Heui Seung Jo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yoon Hwan Chang
- Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon, Korea.,Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea.
| |
Collapse
|
11
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
12
|
Fung KYY, Dai L, Trimble WS. Cell and molecular biology of septins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:289-339. [PMID: 24725429 DOI: 10.1016/b978-0-12-800180-6.00007-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Septins are a family of GTP-binding proteins that assemble into cytoskeletal filaments. Unlike other cytoskeletal components, septins form ordered arrays of defined stoichiometry that can polymerize into long filaments and bundle laterally. Septins associate directly with membranes and have been implicated in providing membrane stability and serving as diffusion barriers for membrane proteins. In addition, septins bind other proteins and have been shown to function as multimolecular scaffolds by recruiting components of signaling pathways. Remarkably, septins participate in a spectrum of cellular processes including cytokinesis, ciliogenesis, cell migration, polarity, and cell-pathogen interactions. Given their breadth of functions, it is not surprising that septin abnormalities have also been linked to human diseases. In this review, we discuss the current knowledge of septin structure, assembly and function, and discuss these in the context of human disease.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Lu Dai
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Jamshidi F, Pleasance E, Li Y, Shen Y, Kasaian K, Corbett R, Eirew P, Lum A, Pandoh P, Zhao Y, Schein JE, Moore RA, Rassekh R, Huntsman DG, Knowling M, Lim H, Renouf DJ, Jones SJM, Marra MA, Nielsen TO, Laskin J, Yip S. Diagnostic value of next-generation sequencing in an unusual sphenoid tumor. Oncologist 2014; 19:623-30. [PMID: 24807916 DOI: 10.1634/theoncologist.2013-0390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extraordinary advancements in sequencing technology have made what was once a decade-long multi-institutional endeavor into a methodology with the potential for practical use in a clinical setting. We therefore set out to examine the clinical value of next-generation sequencing by enrolling patients with incurable or ambiguous tumors into the Personalized OncoGenomics initiative at the British Columbia Cancer Agency whereby whole genome and transcriptome analyses of tumor/normal tissue pairs are completed with the ultimate goal of directing therapeutics. First, we established that the sequencing, analysis, and communication with oncologists could be completed in less than 5 weeks. Second, we found that cancer diagnostics is an area that can greatly benefit from the comprehensiveness of a whole genome analysis. Here, we present a scenario in which a metastasized sphenoid mass, which was initially thought of as an undifferentiated squamous cell carcinoma, was rediagnosed as an SMARCB1-negative rhabdoid tumor based on the newly acquired finding of homozygous SMARCB1 deletion. The new diagnosis led to a change in chemotherapy and a complete nodal response in the patient. This study also provides additional insight into the mutational landscape of an adult SMARCB1-negative tumor that has not been explored at a whole genome and transcriptome level.
Collapse
Affiliation(s)
- Farzad Jamshidi
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin Pleasance
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne Li
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yaoqing Shen
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katayoon Kasaian
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard Corbett
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Eirew
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Lum
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pawan Pandoh
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongjun Zhao
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline E Schein
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rod Rassekh
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meg Knowling
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Howard Lim
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janessa Laskin
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Division of Oncology/Hematology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Payne SR. From discovery to the clinic: the novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics 2012; 2:575-85. [PMID: 22121975 DOI: 10.2217/epi.10.35] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detection of colorectal cancer at an early stage has been shown to significantly decrease mortality from the disease, while the advent of effective therapies for late-stage colorectal cancer make the detection of colorectal cancer at any stage a critical step in further reducing colorectal cancer mortality. Availability of a blood-based test for colorectal cancer is expected to improve screening compliance in the general population. Through DNA methylation-sensitive, restriction enzyme-based biomarker discovery, we identified a region of the Septin 9 gene that is methylated in over 90% of colorectal cancer tissues with little or no methylation seen in normal colon tissue and other controls. Specific detection of colorectal cancer DNA using the Septin 9 methylation biomarker ((m)SEPT9) was demonstrated in multiple studies of plasma from colorectal cancer patients and colonoscopy-verified negative controls. A prospective, population-based trial to determine the clinical performance of (m)SEPT9 in colorectal cancer screening guideline-eligible individuals has recently been completed, with the results to be published in the near future. The potential pitfalls and lessons learned in the multiyear process of developing the (m)SEPT9 biomarker from initial discovery to commercialization are described in this article.
Collapse
Affiliation(s)
- Shannon R Payne
- Epigenomics Inc., 901 Fifth Avenue, Suite 3800, Seattle, WA 98164, USA.
| |
Collapse
|
15
|
Lee SG, Park TS, Oh SH, Park JC, Yang YJ, Marschalek R, Meyer C, Cho EH, Shin SY. De novo acute myeloid leukemia associated with t(11;17)(q23;q25) and MLL-SEPT9 rearrangement in an elderly patient: a case study and review of the literature. Acta Haematol 2011; 126:195-8. [PMID: 21846973 DOI: 10.1159/000329389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/17/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Sang-Guk Lee
- Department of Laboratory Medicine, Armed Forces Capital Hospital, Seongnam, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Connolly D, Abdesselam I, Verdier-Pinard P, Montagna C. Septin roles in tumorigenesis. Biol Chem 2011; 392:725-38. [PMID: 21740328 DOI: 10.1515/bc.2011.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Septins are a family of cytoskeleton related proteins consisting of 14 members that associate and interact with actin and tubulin. From yeast to humans, septins maintain a conserved role in cytokinesis and they are also involved in a variety of other cellular functions including chromosome segregation, DNA repair, migration and apoptosis. Tumorigenesis entails major alterations in these processes. A substantial body of literature reveals that septins are overexpressed, downregulated or generate chimeric proteins with MLL in a plethora of solid tumors and in hematological malignancies. Thus, members of this gene family are emerging as key players in tumorigenesis. The analysis of septins during cancer initiation and progression is challenged by the presence of many family members and by their potential to produce numerous isoforms. However, the development and application of advanced technologies is allowing for a more detailed analysis of septins during tumorigenesis. Specifically, such applications have led to the establishment and validation of SEPT9 as a biomarker for the early detection of colorectal cancer. This review summarizes the current knowledge on the role of septins in tumorigenesis, emphasizing their significance and supporting their use as potential biomarkers in various cancer types.
Collapse
Affiliation(s)
- Diana Connolly
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
17
|
Cerveira N, Bizarro S, Teixeira MR. MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem 2011; 392:713-24. [PMID: 21714766 DOI: 10.1515/bc.2011.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | |
Collapse
|
18
|
Saito H, Otsubo K, Kakimoto A, Komatsu N, Ohsaka A. Emergence of two unrelated clones in acute myeloid leukemia with MLL-SEPT9 fusion transcript. ACTA ACUST UNITED AC 2010; 201:111-5. [PMID: 20682395 DOI: 10.1016/j.cancergencyto.2010.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/12/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Hajime Saito
- Department of Internal Medicine, Mitochuo Hospital, Mito, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
19
|
Expression pattern of the septin gene family in acute myeloid leukemias with and without MLL-SEPT fusion genes. Leuk Res 2010; 34:615-21. [DOI: 10.1016/j.leukres.2009.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 02/05/2023]
|
20
|
Santos J, Cerveira N, Correia C, Lisboa S, Pinheiro M, Torres L, Bizarro S, Vieira J, Viterbo L, Mariz JM, Teixeira MR. Coexistence of alternative MLL-SEPT9 fusion transcripts in an acute myeloid leukemia with t(11;17)(q23;q25). ACTA ACUST UNITED AC 2010; 197:60-4. [PMID: 20113838 DOI: 10.1016/j.cancergencyto.2009.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/17/2009] [Accepted: 10/17/2009] [Indexed: 12/31/2022]
Abstract
We present the characterization at the RNA level of an acute myeloid leukemia with a t(11;17)(q23;q25) and a MLL rearrangement demonstrated by FISH. Molecular analysis led to the identification of two coexistent in-frame MLL-SEPT9 fusion transcripts (variants 1 and 2), presumably resulting from alternative splicing. Real-time quantitative RT-PCR analysis showed that the relative expression of the MLL-SEPT9 fusion variant 2 was 1.88 fold higher than the relative expression of MLL-SEPT9 fusion variant 1. This is the first description of a MLL-SEPT9 fusion resulting in coexistence of two alternative splicing variants, each of which previously found isolated in myeloid leukemias.
Collapse
Affiliation(s)
- Joana Santos
- Department of Genetics, Portuguese Oncology Institute, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kurosu T, Tsuji K, Ohki M, Miki T, Yamamoto M, Kakihana K, Koyama T, Taniguchi S, Miura O. A variant-type MLL/SEPT9 fusion transcript in adult de novo acute monocytic leukemia (M5b) with t(11;17)(q23;q25). Int J Hematol 2008; 88:192-196. [PMID: 18642054 DOI: 10.1007/s12185-008-0133-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 12/19/2022]
Abstract
As a result of recurrent chromosomal translocations in acute leukemias, the mixed-lineage-leukemia (MLL) gene fuses with a variety of partner genes, which include several members of the septin gene family. SEPT9 is a very rare but recurrent fusion partner of MLL, and has recently been implicated in the oncogenesis of various malignancies. Herein, we report a case of de novo acute monocytic leukemia (M5b) with t(11;17)(q23;q25). MLL involvement was revealed by fluorescent in situ hybridization (FISH) analysis, and an MLL/SEP9 fusion transcript was detected by RT-PCR. Sequencing analysis further showed that, in contrast to originally reported cases, MLL exon 8 was fused not with SEPT9 exon 3 but with exon 2, which codes for the unique N-terminal region of the SEPT9_v1 isoform, the region implicated in the regulation of gene expression and cell proliferation. We did not detect any mutation of FLT3, which was expressed at a relatively low level in the leukemic cells. Relapsing after a very short complete remission, the leukemia progressed rapidly and became fatal in spite of intensive therapies including hematopoietic stem cell transplantation. It is thus suggested that, in common with the original MLL/SEPT9 cases, monocytic differentiation and a poor prognosis may also be associated with acute myeloid leukemia with the variant MLL/SEPT9 fusion transcript.
Collapse
Affiliation(s)
- Tetsuya Kurosu
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan.
| | - Kana Tsuji
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan.,Laboratory Molecular Genetics of Hematology, Graduate School of Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| | - Manabu Ohki
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| | - Tohru Miki
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| | - Masahide Yamamoto
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| | - Kazuhiko Kakihana
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| | - Takatoshi Koyama
- Laboratory Molecular Genetics of Hematology, Graduate School of Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| | - Shuichi Taniguchi
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minatoku, Tokyo, 105-8470, Japan
| | - Osamu Miura
- Department of Hematology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8519, Japan
| |
Collapse
|
22
|
Grunewald TGP, Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol Cancer 2008; 7:31. [PMID: 18419822 PMCID: PMC2359764 DOI: 10.1186/1476-4598-7-31] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/17/2008] [Indexed: 12/24/2022] Open
Abstract
LIM and SH3 Protein 1 (LASP-1) was initially identified from a cDNA library of metastatic axillary lymph nodes (MLN) more than a decade ago. It was found to be overexpressed in human breast and ovarian cancer and became the first member of a newly defined LIM-protein subfamily of the nebulin group characterized by the combined presence of LIM and SH3 domains. LASP2, a novel LASP1-related gene was first identified and characterized in silico. Subsequently it proved to be a splice variant of the Nebulin gene and therefore was also termed LIM/nebulette. LASP-1 and -2 are highly conserved in their LIM, nebulin-like and SH3 domains but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. Here we present the first systematic review to summarize all relevant data concerning their domain organization, expression profiles, regulating factors and function. We compile evidence that both, LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The increased expression of LASP-1 in breast tumours correlates with high rates of nodal-metastasis and refers to a possible relevance as a prognostic marker.
Collapse
Affiliation(s)
- Thomas GP Grunewald
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Pediatric Oncology Center, Kölner Platz 1, D-80804 Munich, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstr. 12, D-97080 Wuerzburg, Germany
| |
Collapse
|
23
|
Miremadi A, Oestergaard MZ, Pharoah PDP, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet 2007; 16 Spec No 1:R28-49. [PMID: 17613546 DOI: 10.1093/hmg/ddm021] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cancer epigenome is characterised by specific DNA methylation and chromatin modification patterns. The proteins that mediate these changes are encoded by the epigenetics genes here defined as: DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins, histone acetyltransferases (HAT), histone deacetylases (HDAC), histone methyltransferases (HMT) and histone demethylases. We review the evidence that these genes can be targeted by mutations and expression changes in human cancers.
Collapse
Affiliation(s)
- Ahmad Miremadi
- Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
24
|
Kreuziger LMB, Porcher JC, Ketterling RP, Steensma DP. An MLL-SEPT9 fusion and t(11;17)(q23;q25) associated with de novo myelodysplastic syndrome. Leuk Res 2007; 31:1145-8. [PMID: 17250889 PMCID: PMC2768487 DOI: 10.1016/j.leukres.2006.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 01/01/2023]
Abstract
Rearrangements of the MLL gene at chromosome 11q23 are uncommon in de novo myelodysplastic syndrome (MDS). Here, we describe molecular findings in a patient with multilineage dysplasia and t(11;17)(q23;q25) who responded to decitabine therapy. Fluorescent in situ hybridization (FISH) demonstrated rearrangement of MLL, while RT-PCR analysis and sequencing identified the transcript fusion partner as SEPT9, a member of the septin family of GTPases. MLL-SEPT9 fusion appears to be rare, having been described to date in only seven cases of AML and not, to our knowledge, in MDS. Analysis of MLL-septin family member fusion products such as the one seen here may provide further insights into the etiology of myeloid neoplasia, and MLL-SEPT9 fusion may be worth seeking in other cases of MLL rearrangements with a translocation partner on chromosome 17q.
Collapse
Affiliation(s)
| | | | - Rhett P. Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|