1
|
Jaszczak RG, Zussman JW, Wagner DE, Laird DJ. Comprehensive profiling of migratory primordial germ cells reveals niche-specific differences in non-canonical Wnt and Nodal-Lefty signaling in anterior vs posterior migrants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610420. [PMID: 39257761 PMCID: PMC11383659 DOI: 10.1101/2024.08.29.610420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.5, E10.5, E11.5) and in anterior versus posterior locations to enrich for leading and lagging migrants. Analysis of PGCs by position revealed dynamic gene expression changes between faster or earlier migrants in the anterior and slower or later migrants in the posterior at E9.5; these differences include migration-associated actin polymerization machinery and epigenetic reprogramming-associated genes. We furthermore identified changes in signaling with various somatic niches, notably strengthened interactions with hindgut epithelium via non-canonical WNT (ncWNT) in posterior PGCs compared to anterior. Reanalysis of a previously published dataset suggests that ncWNT signaling from the hindgut epithelium to early migratory PGCs is conserved in humans. Trajectory inference methods identified putative differentiation trajectories linking cell states across timepoints and from posterior to anterior in our mouse dataset. At E9.5, we mainly observed differences in cell adhesion and actin cytoskeletal dynamics between E9.5 posterior and anterior migrants. At E10.5, we observed divergent gene expression patterns between putative differentiation trajectories from posterior to anterior including Nodal signaling response genes Lefty1, Lefty2, and Pycr2 and reprogramming factors Dnmt1, Prc1, and Tet1. At E10.5, we experimentally validated anterior migrant-specific Lefty1/2 upregulation via whole-mount immunofluorescence staining for LEFTY1/2 proteins, suggesting that elevated autocrine Nodal signaling accompanies the late stages of PGC migration. Together, this positional and temporal atlas of mouse PGCs supports the idea that niche interactions along the migratory route elicit changes in proliferation, actin dynamics, pluripotency, and epigenetic reprogramming.
Collapse
Affiliation(s)
- Rebecca G Jaszczak
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Jay W Zussman
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Daniel E Wagner
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Diana J Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
2
|
Yang Y, Gong Y, Ding Y, Sun S, Bai R, Zhuo S, Zhang Z. LINC01133 promotes pancreatic ductal adenocarcinoma epithelial-mesenchymal transition mediated by SPP1 through binding to Arp3. Cell Death Dis 2024; 15:492. [PMID: 38987572 PMCID: PMC11237081 DOI: 10.1038/s41419-024-06876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment methods. Long non-coding RNAs (lncRNAs) have been found involved in tumorigenic and progression. The present study revealed that LINC01133, a fewly reported lncRNA, was one of 16 hub genes that could predict PDAC patients' prognosis. LINC01133 was over-expressed in PDAC tumors compared to adjacent pancreas and could promote PDAC proliferation and metastasis in vitro and in vivo, as well as inhibit PDAC apoptosis. LINC01133 expression positively correlated to secreted phosphoprotein 1 (SPP1) expression, leading to an enhanced epithelial-mesenchymal transition (EMT) process. LINC01133 bound with actin-related protein 3 (Arp3), the complex reduced SPP1 mRNA degradation which increased SPP1 mRNA level, ultimately leading to PDAC proliferation. This research revealed a novel mechanism of PDAC development and provided a potential prognosis indicator that may benefit PDAC patients.
Collapse
Affiliation(s)
- Yefan Yang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuxi Gong
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuning Sun
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
3
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
4
|
Nojszewska N, Idilli O, Sarkar D, Ahouiyek Z, Arroyo-Berdugo Y, Sandoval C, Amin-Anjum MS, Bowers S, Greaves D, Saeed L, Khan M, Salti S, Al-Shami S, Topoglu H, Punzalan JK, Farias JG, Calle Y. Bone marrow mesenchymal/fibroblastic stromal cells induce a distinctive EMT-like phenotype in AML cells. Eur J Cell Biol 2023; 102:151334. [PMID: 37354622 DOI: 10.1016/j.ejcb.2023.151334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
The development of epithelial-to-mesenchymal transition (EMT) like features is emerging as a critical factor involved in the pathogenesis of acute myeloid leukaemia (AML). However, the extracellular signals and the signalling pathways in AML that may regulate EMT remain largely unstudied. We found that the bone marrow (BM) mesenchymal/fibroblastic cell line HS5 induces an EMT-like migratory phenotype in AML cells. AML cells underwent a strong increase of vimentin (VIM) levels that was not mirrored to the same extent by changes of expression of the other EMT core proteins SNAI1 and SNAI2. We validated these particular pattern of co-expression of core-EMT markers in AML cells by performing an in silico analysis using datasets of human tumours. Our data showed that in AML the expression levels of VIM does not completely correlate with the co-expression of core EMT markers observed in epithelial tumours. We also found that vs epithelial tumours, AML cells display a distinct patterns of co-expression of VIM and the actin binding and adhesion regulatory proteins that regulate F-actin dynamics and integrin-mediated adhesions involved in the invasive migration in cells undergoing EMT. We conclude that the BM stroma induces an EMT related pattern of migration in AML cells in a process involving a distinctive regulation of EMT markers and of regulators of cell adhesion and actin dynamics that should be further investigated. Understanding the tumour specific signalling pathways associated with the EMT process may contribute to the development of new tailored therapies for AML as well as in different types of cancers.
Collapse
Affiliation(s)
- N Nojszewska
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - O Idilli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Sarkar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Z Ahouiyek
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Y Arroyo-Berdugo
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - C Sandoval
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - M S Amin-Anjum
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Bowers
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Greaves
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - L Saeed
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - M Khan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Salti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Al-Shami
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - H Topoglu
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J K Punzalan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Y Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
5
|
Huang S, Sun L, Hou P, Liu K, Wu J. A comprehensively prognostic and immunological analysis of actin-related protein 2/3 complex subunit 5 in pan-cancer and identification in hepatocellular carcinoma. Front Immunol 2022; 13:944898. [PMID: 36148220 PMCID: PMC9485570 DOI: 10.3389/fimmu.2022.944898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Actin-related protein 2/3 complex subunit 5 (ARPC5) is one of the members of actin-related protein 2/3 complex and plays an important role in cell migration and invasion. However, little is known about the expression pattern, prognosis value, and biological function of ARPC5 in pan-cancer. Thus, we focus on ARPC5 as cut point to explore a novel prognostic and immunological biomarker for cancers. Methods The public databases, including TCGA, GTEx, and UCEC, were used to analyze ARPC5 expression in pan-cancer. The Human Protein Atlas website was applied to obtain the expression of ARPC5 in different tissues, cell lines, and single-cell types. Univariate Cox regression analysis and Kaplan–Meier analysis were used to explore the prognosis value of ARPC5 in various cancers. Spearman’s correlation analysis was performed to investigate the association between ARPC5 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, RNA modification genes, DNA methyltransferases, and tumor stemness. Moreover, qPCR, Western blot, and immunohistochemistry were carried out to examine the differential expression of ARPC5 in HCC tissues and cell lines. CCK8, EdU, flow cytometry, wound-healing assays, and transwell assays were conducted to explore its role in tumor proliferation, apoptosis, migration, and invasion among HCC cells. Results ARPC5 expression was upregulated in most cancer types and significantly associated with worse prognosis in KIRC, KIRP, LGG, and LIHC. mRNA expression of ARPC5 showed low tissue and cell specificity in normal tissues, cell lines, and single-cell types. ARPC5 expression was positively correlated with the tumor microenvironment scores, immune infiltrating cells, immune checkpoint–related genes in most cancers. ARPC5 in STAD and BRCA was positively associated with TMB, MSI, and neoantigens. We also discovered that ARPC5 was correlated with the expression of m1A-related genes, m5C-related genes, m6A-related genes, and DNA methyltransferases. In experiment analyses, we found that ARPC5 was significantly highly expressed in HCC tissues and HCC cells. Functionally, silencing ARPC5 dramatically decreased proliferation, migration, and invasion ability of HCC cells. Conclusions ARPC5 expression affects the prognosis of multiple tumors and is closely correlated to tumor immune infiltration and immunotherapy. Furthermore, ARPC5 may function as an oncogene and promote tumor progression in HCC.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Hou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
6
|
ARPC1A is regulated by STAT3 to inhibit ferroptosis and promote prostate cancer progression. Hum Cell 2022; 35:1591-1601. [DOI: 10.1007/s13577-022-00754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
7
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
8
|
Huang S, Li D, Zhuang L, Sun L, Wu J. Identification of Arp2/3 Complex Subunits as Prognostic Biomarkers for Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690151. [PMID: 34307456 PMCID: PMC8299467 DOI: 10.3389/fmolb.2021.690151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
The actin-related protein 2/3 complex (Arp2/3) is a major actin nucleator that has been widely reported and plays an important role in promoting the migration and invasion of various cancers. However, the expression patterns and prognostic values of Arp2/3 subunits in hepatocellular carcinoma (HCC) remain unclear. In this study, The Cancer Genome Atlas (TCGA) and UCSC Xena databases were used to obtain mRNA expression and the corresponding clinical information, respectively. The differential expression and Arp2/3 subunits in HCC were analyzed using the “limma” package of R 4.0.4 software. The prognostic value of each subunit was evaluated using Kaplan–Meier survival analysis and Cox proportional hazards regression analyses. The results revealed that mRNA expression of Arp2/3 members (ACTR2, ACTR3, ARPC1A, APRC1B, ARPC2, ARPC3, ARPC4, ARPC5, and ARPC5L) was upregulated in HCC. Higher expression of Arp2/3 members was significantly correlated with worse overall survival (OS) and shorter progression-free survival (PFS) in HCC patients. Cox proportional hazards regression analyses demonstrated that ACTR3, ARPC2, and ARPC5 were independent prognostic biomarkers of survival in patients with HCC. The relation between tumor immunocyte infiltration and the prognostic subunits was determined using the TIMER 2.0 platform and the GEPIA database. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanisms of prognostic subunits in the carcinogenesis of HCC. The results revealed that ACTR3, ARPC2, and ARPC5 were significantly positively correlated with the infiltration of immune cells in HCC. The GSEA results indicated that ACTR3, ARPC2, and ARPC5 are involved in multiple cancer-related pathways that promote the development of HCC. In brief, various analyses indicated that Arp2/3 complex subunits were significantly upregulated and predicted worse survival in HCC, and they found that ACTR3, ARPC2, and ARPC5 could be used as independent predictors of survival and might be applied as promising molecular targets for diagnosis and therapy of HCC in the future.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - LingLing Zhuang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China.,Department of Gynaecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
9
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
10
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
11
|
Characterization of the Importin-β binding domain in nuclear import receptor KPNA7. Biochem J 2020; 476:3413-3434. [PMID: 31642884 DOI: 10.1042/bcj20190717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The KPNA family of mammalian nuclear import receptors are encoded by seven genes that generate isoforms with 42-86% identity. KPNA isoforms have the same protein architecture and share the functional property of nuclear localization signal (NLS) recognition, however, the tissue and developmental expression patterns of these receptors raise the question of whether subtle differences in KPNA isoforms might be important in specific biological contexts. Here, we show that KPNA7, an isoform with expression mostly limited to early development, can bind Importin-β (Imp-β) in the absence of NLS cargo. This result contrasts with Imp-β interactions with other KPNA family members, where affinity is regulated by NLS cargo as part of a cooperative binding mechanism. The Imp-β binding (IBB) domain, which is highly conserved in all KPNA family members, generally serves to occlude the NLS binding groove and maintain the receptor in an auto-inhibited 'closed' state prior to NLS contact. Cooperative binding of NLS cargo and Imp-β to KPNA results in an 'open'state. Characterization of KPNA2-KPNA7 chimeric proteins suggests that features of both the IBB domain and the core structure of the receptor contribute to the extent of IBB domain accessibility for Imp-β binding, which likely reflects an 'open' state. We also provide evidence that KPNA7 maintains an open-state in the nucleus. We speculate that KPNA7 could function within the nucleus by interacting with NLS-containing proteins.
Collapse
|
12
|
Gong L, Xiao M, He D, Hu Y, Zhu Y, Xiang L, Bao Y, Liu X, Zeng Q, Liu J, Zhou M, Zhou Y, Cheng Y, Zhang Y, Deng L, Zhu R, Lan H, Cao K. WDHD1 Leads to Cisplatin Resistance by Promoting MAPRE2 Ubiquitination in Lung Adenocarcinoma. Front Oncol 2020; 10:461. [PMID: 32426268 PMCID: PMC7212426 DOI: 10.3389/fonc.2020.00461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin ligases have been shown to regulate drug sensitivity. This study aimed to explore the role of the ubiquitin ligase WD repeat and HMG-box DNA binding protein 1 (WDHD1) in regulating cisplatin sensitivity in lung adenocarcinoma (LUAD). A quantitative analysis of the global proteome identified differential protein expression between LUAD A549 cells and the cisplatin-resistant strain A549/DDP. Public databases revealed the relationship between ubiquitin ligase expression and the prognosis of patients with LUAD. Quantitative real-time polymerase chain reaction and Western blotting were used to estimate the WDHD1 expression levels. Analysis of public databases predicted the substrate of WDHD1. Western blotting detected the effect of WDHD1 on microtubule-associated protein RP/EB family member 2 (MAPRE2) and DSTN. Functional analysis of MAPRE2 verified the interaction between WDHD1 and MAPRE2, as well as the interacting sites by methyl-thiazolyl-tetrazolium assay and flow cytometry, immunoprecipitation, protein stability, and immunofluorescence. Cell and animal experiments confirmed the effect of WDHD1 and MAPRE2 on cisplatin sensitivity in LUAD. Clinical data evaluated the impact of WDHD1 expression level on cisplatin sensitivity. Quantitative analysis of the global proteome revealed ubiquitin-dependent protein catabolism to be more active in A549/DDP cells than in A549 cells. WDHD1 expression was higher in A549/DDP cells than in A549 cells, and knocking out WDHD1 increased the sensitivity of A549/DDP cells to cisplatin. WDHD1 overexpression negatively correlated with the overall survival of LUAD patients. We observed that MAPRE2 was upregulated when WDHD1 was knocked out. A MAPRE2 knockout in A549 cells resulted in increased cell viability while decreasing apoptosis when the A549 cells exposed to cisplatin. WDHD1 and MAPRE2 were found to interact in the nucleus, and WDHD1 promoted the ubiquitination of MAPRE2. Following cisplatin exposure, the WDHD1 and MAPRE2 knockout groups facilitated cell proliferation and migration, inhibited apoptosis in A549/DDP cells, decreased apoptosis, and increased tumor size and growth rate in animal experiments. Immunohistochemistry showed that Ki67 levels increased, and levels of apoptotic indicators significantly decreased in the WDHD1 and MAPRE2 knockout groups. Clinical data confirmed that WDHD1 overexpression negatively correlated with cisplatin sensitivity. Thus, the ubiquitin ligase WDHD1 induces cisplatin resistance in LUAD by promoting MAPRE2 ubiquitination.
Collapse
Affiliation(s)
- Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yi Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ying Bao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yeyu Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Rongrong Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hua Lan
- Department of Gynaecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Park KM, Lee HJ, Koo KT, Ben Amara H, Leesungbok R, Noh K, Lee SC, Lee SW. Oral Soft Tissue Regeneration Using Nano Controlled System Inducing Sequential Release of Trichloroacetic Acid and Epidermal Growth Factor. Tissue Eng Regen Med 2020; 17:91-103. [PMID: 31970697 DOI: 10.1007/s13770-019-00232-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effect of nano controlled sequential release of trichloroacetic acid (TCA) and epidermal growth factor (EGF) on the oral soft tissue regeneration was determined. METHODS Hydrophobically modified glycol chitosan (HGC) nano controlled system was developed for the sequential release of TCA and EGF, and the release pattern was identified. The HGC-based nano controlled release system was injected into the critical-sized defects created in beagles' palatal soft tissues. The palatal impression and its scanned body was obtained on various time points post-injection, and the volumetric amount of soft tissue regeneration was compared among the three groups: CON (natural regeneration control group), EXP1 (TCA-loaded nano controlled release system group), EXP2 (TCA and EGF individually loaded nano controlled release system). DNA microarray analysis was performed and various soft tissue regeneration parameters in histopathological specimens were measured. RESULTS TCA release was highest at Day 1 whereas EGF release was highest at Day 2 and remained high until Day 3. In the volumetric measurements of impression body scans, no significant difference in soft tissue regeneration between the three groups was shown in two-way ANOVA. However, in the one-way ANOVA at Day 14, EXP2 showed a significant increase in soft tissue regeneration compared to CON. High correlation was determined between the histopathological results of each group. DNA microarray showed up-regulation of various genes and related cell signaling pathways in EXP2 compared to CON. CONCLUSION HGC-based nano controlled release system for sequential release of TCA and EGF can promote regeneration of oral soft tissue defects.
Collapse
Affiliation(s)
- Kwang Man Park
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Heithem Ben Amara
- Department of Periodontology and Dental Research Institute Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Richard Leesungbok
- Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea
| | - Kwantae Noh
- Department of Prosthodontics, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Suk Won Lee
- Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea.
| |
Collapse
|
14
|
Megquier K, Turner-Maier J, Swofford R, Kim JH, Sarver AL, Wang C, Sakthikumar S, Johnson J, Koltookian M, Lewellen M, Scott MC, Schulte AJ, Borst L, Tonomura N, Alfoldi J, Painter C, Thomas R, Karlsson EK, Breen M, Modiano JF, Elvers I, Lindblad-Toh K. Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma. Mol Cancer Res 2019; 17:2410-2421. [PMID: 31570656 PMCID: PMC7067513 DOI: 10.1158/1541-7786.mcr-19-0221] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/12/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Angiosarcoma is a highly aggressive cancer of blood vessel-forming cells with few effective treatment options and high patient mortality. It is both rare and heterogenous, making large, well-powered genomic studies nearly impossible. Dogs commonly suffer from a similar cancer, called hemangiosarcoma, with breeds like the golden retriever carrying heritable genetic factors that put them at high risk. If the clinical similarity of canine hemangiosarcoma and human angiosarcoma reflects shared genomic etiology, dogs could be a critically needed model for advancing angiosarcoma research. We assessed the genomic landscape of canine hemangiosarcoma via whole-exome sequencing (47 golden retriever hemangiosarcomas) and RNA sequencing (74 hemangiosarcomas from multiple breeds). Somatic coding mutations occurred most frequently in the tumor suppressor TP53 (59.6% of cases) as well as two genes in the PI3K pathway: the oncogene PIK3CA (29.8%) and its regulatory subunit PIK3R1 (8.5%). The predominant mutational signature was the age-associated deamination of cytosine to thymine. As reported in human angiosarcoma, CDKN2A/B was recurrently deleted and VEGFA, KDR, and KIT recurrently gained. We compared the canine data to human data recently released by The Angiosarcoma Project, and found many of the same genes and pathways significantly enriched for somatic mutations, particularly in breast and visceral angiosarcomas. Canine hemangiosarcoma closely models the genomic landscape of human angiosarcoma of the breast and viscera, and is a powerful tool for investigating the pathogenesis of this devastating disease. IMPLICATIONS: We characterize the genomic landscape of canine hemangiosarcoma and demonstrate its similarity to human angiosarcoma.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Ross Swofford
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jong-Hyuk Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sharadha Sakthikumar
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jeremy Johnson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Mitzi Lewellen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Milcah C Scott
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ashley J Schulte
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Luke Borst
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Noriko Tonomura
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Jessica Alfoldi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Corrie Painter
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Count Me In, Cambridge, Massachusetts
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, and Comparative Medicine Institute, Raleigh, North Carolina
| | - Elinor K Karlsson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, and Comparative Medicine Institute, Raleigh, North Carolina
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minneapolis
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ingegerd Elvers
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
16
|
Vuorinen EM, Rajala NK, Ihalainen TO, Kallioniemi A. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells. BMC Cancer 2018; 18:325. [PMID: 29580221 PMCID: PMC5870926 DOI: 10.1186/s12885-018-4261-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. Methods We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. Results In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Conclusions Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4261-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Nina K Rajala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Teemu O Ihalainen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland.,BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, University of Tampere, PL 100, 33014, Tampere, Finland.,Tampere Imaging Facility, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland. .,Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland.
| |
Collapse
|
17
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
18
|
Liu C, Wang X, Genchev GZ, Lu H. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Methods 2017. [DOI: 10.1016/j.ymeth.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
19
|
Kahr WHA, Pluthero FG, Elkadri A, Warner N, Drobac M, Chen CH, Lo RW, Li L, Li R, Li Q, Thoeni C, Pan J, Leung G, Lara-Corrales I, Murchie R, Cutz E, Laxer RM, Upton J, Roifman CM, Yeung RSM, Brumell JH, Muise AM. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun 2017; 8:14816. [PMID: 28368018 PMCID: PMC5382316 DOI: 10.1038/ncomms14816] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Human actin-related protein 2/3 complex (Arp2/3), required for actin filament branching, has two ARPC1 component isoforms, with ARPC1B prominently expressed in blood cells. Here we show in a child with microthrombocytopenia, eosinophilia and inflammatory disease, a homozygous frameshift mutation in ARPC1B (p.Val91Trpfs*30). Platelet lysates reveal no ARPC1B protein and greatly reduced Arp2/3 complex. Missense ARPC1B mutations are identified in an unrelated patient with similar symptoms and ARPC1B deficiency. ARPC1B-deficient platelets are microthrombocytes similar to those seen in Wiskott–Aldrich syndrome that show aberrant spreading consistent with loss of Arp2/3 function. Knockout of ARPC1B in megakaryocytic cells results in decreased proplatelet formation, and as observed in platelets from patients, increased ARPC1A expression. Thus loss of ARPC1B produces a unique set of platelet abnormalities, and is associated with haematopoietic/immune symptoms affecting cell lineages where this isoform predominates. In agreement with recent experimental studies, our findings suggest that ARPC1 isoforms are not functionally interchangeable. ARPC1B is a component of the actin-related protein 2/3 complex (Arp2/3), which is required for actin filament branching. Kahr et al. show that ARPC1B deficiency in humans is associated with severe multisystem disease that includes platelet abnormalities, eosinophilia, eczema and other indicators of immune disease.
Collapse
Affiliation(s)
- Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Abdul Elkadri
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Neil Warner
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Marko Drobac
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Chang Hua Chen
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Richard W Lo
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Ren Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Qi Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Cornelia Thoeni
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Jie Pan
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Gabriella Leung
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Irene Lara-Corrales
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ryan Murchie
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ernest Cutz
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ronald M Laxer
- Division of Rheumatology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Julia Upton
- Division of Immunology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Chaim M Roifman
- Division of Immunology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Rae S M Yeung
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Division of Rheumatology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - John H Brumell
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Aleixo M Muise
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
20
|
Vuorinen EM, Rajala NK, Rauhala HE, Nurminen AT, Hytönen VP, Kallioniemi A. Search for KPNA7 cargo proteins in human cells reveals MVP and ZNF414 as novel regulators of cancer cell growth. Biochim Biophys Acta Mol Basis Dis 2016; 1863:211-219. [PMID: 27664836 DOI: 10.1016/j.bbadis.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Nina K Rajala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Hanna E Rauhala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland.
| | - Anssi T Nurminen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Vesa P Hytönen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Anne Kallioniemi
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| |
Collapse
|
21
|
Pizarro-Cerdá J, Chorev DS, Geiger B, Cossart P. The Diverse Family of Arp2/3 Complexes. Trends Cell Biol 2016; 27:93-100. [PMID: 27595492 DOI: 10.1016/j.tcb.2016.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022]
Abstract
The Arp2/3 complex has so far been considered to be a single seven-subunit protein complex required for actin nucleation and actin filament polymerization in diverse critical cellular functions including phagocytosis, vesicular trafficking and lamellipodia extension. The Arp2/3 complex is also exploited by bacterial pathogens and viruses during cellular infectious processes. Recent studies suggest that some subunits of the complex are dispensable in specific cellular contexts, pointing to the existence of alternative 'hybrid Arp2/3 complexes' containing other components such as vinculin or α-actinin, as well as different isoforms or phosphorylation variants of canonical Arp2/3 subunits. Therefore, this diversity should be now considered when assigning specific Arp2/3 assemblies to different actin-dependent cellular processes.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France; INSERM, U604, Paris F-75015, France; INRA, USC2020, Paris F-75015, France.
| | - Dror Shlomo Chorev
- The Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 761001, Israel; Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, UK
| | - Benjamin Geiger
- The Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 761001, Israel
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France; INSERM, U604, Paris F-75015, France; INRA, USC2020, Paris F-75015, France.
| |
Collapse
|
22
|
Arpin downregulation in breast cancer is associated with poor prognosis. Br J Cancer 2016; 114:545-53. [PMID: 26867158 PMCID: PMC4782208 DOI: 10.1038/bjc.2016.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 01/06/2016] [Indexed: 01/28/2023] Open
Abstract
Background: The Arp2/3 complex is required for cell migration and invasion. The Arp2/3 complex and its activators, such as the WAVE complex, are deregulated in diverse cancers. Here we investigate the expression of Arpin, the Arp2/3 inhibitory protein that antagonises the WAVE complex. Methods: We used qRT–PCR and reverse phase protein arrays in a patient cohort with known clinical parameters and outcome, immunofluorescence in breast biopsy cryosections and breast cancer cell lines. Results: Arpin was downregulated at the mRNA and protein levels in mammary carcinoma cells. Arpin mRNA downregulation was associated with poor metastasis-free survival (MFS) on univariate analysis (P=0.022). High expression of the NCKAP1 gene that encodes a WAVE complex subunit was also associated with poor MFS on univariate analysis (P=0.0037) and was mutually exclusive with Arpin low. Arpin low or NCKAP1 high was an independent prognosis factor on multivariate analysis (P=0.0012) and was strongly associated with poor MFS (P=0.000064). Conclusions: Loss of the Arp2/3 inhibitory protein Arpin produces a similar poor outcome in breast cancer as high expression of the NCKAP1 subunit of the Arp2/3 activatory WAVE complex.
Collapse
|
23
|
Regulators of Actin Dynamics in Gastrointestinal Tract Tumors. Gastroenterol Res Pract 2015; 2015:930157. [PMID: 26345720 PMCID: PMC4539459 DOI: 10.1155/2015/930157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023] Open
Abstract
Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells.
Collapse
|
24
|
Sinha A, Cherba D, Bartlam H, Lenkiewicz E, Evers L, Barrett MT, Haab BB. Mesenchymal-like pancreatic cancer cells harbor specific genomic alterations more frequently than their epithelial-like counterparts. Mol Oncol 2014; 8:1253-65. [PMID: 24837184 PMCID: PMC4198499 DOI: 10.1016/j.molonc.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023] Open
Abstract
The aggressiveness of pancreatic cancer is associated with the acquisition of mesenchymal characteristics by a subset of pancreatic cancer cells. The factors driving the development of this subset are not well understood. In this study, we tested the hypothesis that acquisition of a mesenchymal phenotype occurs selectively in tumor cells that harbor specific enabling genetic alterations. We obtained whole-genome comparative genomic hybridization (CGH) measurements on pancreatic cancer cell lines that have either an epithelial-like (17 cell lines) or a mesenchymal-like (9 cell lines) phenotype in vitro. The total amounts of amplifications and deletions were equivalent between the epithelial and mesenchymal groups, but 20 genes showed a major difference between the groups in prevalence of alterations. All 20 alterations (18 deletions and 2 amplifications) were more prevalent in the mesenchymal group, confirming the advanced nature of this cellular subtype. CDKN2A was altered in more than 50% of both groups, but co-deletions in neighboring genes, and concomitant loss of gene expression, were more prevalent in the mesenchymal group, suggesting that the size of the loss around CDKN2A affects cell phenotype. Whole-genome CGH on 11 primary cancer tissues revealed that the 20 genes were altered at a higher prevalence (up to 55% of the cases for certain genes) than randomly selected sets of 20 genes, with the same direction of alteration as in the cell lines. These findings support the concept that specific genetic alterations enable phenotype plasticity and provide promising candidate genes for further research.
Collapse
Affiliation(s)
- Arkadeep Sinha
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA; Genetics Program, Michigan State University, East Lansing, MI, USA
| | - David Cherba
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Heather Bartlam
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Elizabeth Lenkiewicz
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ, USA
| | - Lisa Evers
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ, USA
| | - Michael T Barrett
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ, USA
| | - Brian B Haab
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA; Genetics Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
25
|
Gutiérrez ML, Muñoz-Bellvis L, Sarasquete ME, Hernández-Mejía DG, Abad MDM, Bengoechea O, Corchete L, González-González M, García-García J, Gonzalez M, Mota I, Orfao A, Sayagues JM. Altered interphase fluorescence in situ hybridization profiles of chromosomes 4, 8q24, and 9q34 in pancreatic ductal adenocarcinoma are associated with a poorer patient outcome. J Mol Diagn 2014; 16:648-59. [PMID: 25157969 DOI: 10.1016/j.jmoldx.2014.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/21/2014] [Accepted: 06/24/2014] [Indexed: 02/09/2023] Open
Abstract
Most patients with pancreatic ductal adenocarcinoma (PDAC) die within 6 months of diagnosis. However, 20% to 25% patients undergoing total tumor resection remain alive and disease-free 5 years after diagnostic surgery. Few studies on tumor markers have predicted patient prognosis and/or survival. We evaluated the effect of tumor cytogenetic copy number changes detected by interphase fluorescence in situ hybridization on overall survival (OS) of 55 PDAC patients. The prognostic value of copy number changes showing an effect on OS was validated in an external cohort of 44 surgically resected PDAC patients by comparative genomic hybridization arrays, and the genes coded in altered chromosomes with prognostic value were identified by high-density single-nucleotide polymorphism arrays in 20 cases. Copy number changes of chromosomes 4 and 9q34 with gains of 8q24 were independently associated with shorter OS. On the basis of these three chromosomal alterations, a score is proposed that identifies patients with significantly different (P < 0.001) 5-year OS rates: 60% ± 20%, 16% ± 8%, and 0% ± 0%, respectively. Our results show an association between tumor cytogenetics and OS of PDAC patients and provide the basis for further prognostic stratification of patients undergoing complete tumor resection. Further studies to identify specific genes coded in these chromosomes and their functional consequences are necessary to understand the clinical effect of these changes.
Collapse
Affiliation(s)
- María L Gutiérrez
- Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Luis Muñoz-Bellvis
- Department of General and Digestive Surgery, University Hospital of Salamanca, Salamanca, Spain
| | - María E Sarasquete
- Hematology Service, Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Salamanca, Spain
| | - David G Hernández-Mejía
- Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - María del Mar Abad
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Luis Corchete
- Hematology Service, Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Salamanca, Spain
| | - María González-González
- Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jacinto García-García
- Department of General and Digestive Surgery, University Hospital of Salamanca, Salamanca, Spain
| | - Marcos Gonzalez
- Hematology Service, Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Salamanca, Spain
| | - Ines Mota
- Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.
| | - José M Sayagues
- Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro. Exp Cell Res 2014; 322:159-67. [DOI: 10.1016/j.yexcr.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/26/2022]
|
27
|
Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol Rep 2013; 30:2127-36. [PMID: 23969835 DOI: 10.3892/or.2013.2669] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
A hallmark of directional cell migration is localized actin polymerization at the leading protrusions of the cell. The Arp2/3 complex nucleates the formation of the dendritic actin network (lamellipodia) at the leading edge of motile cells. This study was designed to investigate the role of the Arp2/3 complex in the infiltrative behavior of glioma cells. Immunofluorescence and western blotting showed a positive correlation between the expression of Arp2/3 and the malignancy of glioma specimens (r=0.686, P=0.02) and confocal microscopy demonstrated localization of the Arp2/3 complex in lamellipodia of glioma cells. Furthermore, we examined the effects of Arp2/3 complex inhibition in U251, LN229 and SNB19 glioma cells using CK666, an Arp2/3 complex inhibitor. Glioma cells lost lamellipodia and cell polarity after treatment with CK666. Inhibition of the Arp2/3 complex significantly affected the ability of glioma cells to migrate and invade. In the wound-healing assay, CK666 markedly inhibited cell migration, U251 cell migration was inhibited to 38.73±3.45% of control, LN229 cells to 57.40±2.16% of control and SNB19 cells to 34.17±3.82% of control. Also, CK666 significantly impaired Transwell chamber invasion capability of U251, LN229 and SNB19 cells compared with DMSO control by 72.70±4.86, 39.12±8.42 and 41.41±4.66%, respectively. The Arp2/3 complex is, therefore, likely to be a crucial participant in glioma cell invasion and migration, and may represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhifeng Liu
- Neuro-Oncology Laboratory, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Myofibrillogenesis regulator-1 promotes cell adhesion and migration in human hepatoma cells. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Goh XY, Newton R, Wernisch L, Fitzgerald R. Testing the utility of an integrated analysis of copy number and transcriptomics datasets for inferring gene regulatory relationships. PLoS One 2013; 8:e63780. [PMID: 23737949 PMCID: PMC3667814 DOI: 10.1371/journal.pone.0063780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/07/2013] [Indexed: 12/31/2022] Open
Abstract
Correlation patterns between matched copy number variation and gene expression data in cancer samples enable the inference of causal gene regulatory relationships by exploiting the natural randomization of such systems. The aim of this study was to test and verify experimentally the accuracy of a causal inference approach based on genomic randomization using esophageal cancer samples. Two candidates with strong regulatory effects emerging from our analysis are components of growth factor receptors, and implicated in cancer development, namely ERBB2 and FGFR2. We tested experimentally two ERBB2 and three FGFR2 regulated interactions predicted by the statistical analysis, all of which were confirmed. We also applied the method in a meta-analysis of 10 cancer datasets and tested 15 of the predicted regulatory interactions experimentally. Three additional predicted ERBB2 regulated interactions were confirmed, as well as interactions regulated by ARPC1A and FANCG. Overall, two thirds of experimentally tested predictions were confirmed.
Collapse
Affiliation(s)
- Xin Yi Goh
- Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Richard Newton
- Medical Research Council Biostatistics Unit, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- Medical Research Council Biostatistics Unit, Cambridge, United Kingdom
| | - Rebecca Fitzgerald
- Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom
| |
Collapse
|
30
|
Zucchini C, Manara MC, Pinca RS, De Sanctis P, Guerzoni C, Sciandra M, Lollini PL, Cenacchi G, Picci P, Valvassori L, Scotlandi K. CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity. Oncogene 2013; 33:1912-21. [PMID: 23644663 DOI: 10.1038/onc.2013.152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
Abstract
CD99, a transmembrane protein encoded by MIC2 gene is involved in multiple cellular events including cell adhesion and migration, apoptosis, cell differentiation and regulation of protein trafficking either in physiological or pathological conditions. In osteosarcoma, CD99 is expressed at low levels and functions as a tumour suppressor. The full-length protein (CD99wt) and the short-form harbouring a deletion in the intracytoplasmic domain (CD99sh) have been associated with distinct functional outcomes with respect to tumour malignancy. In this study, we especially evaluated modulation of cell-cell contacts, reorganisation of the actin cytoskeleton and modulation of signalling pathways by comparing osteosarcoma cells characterised by different metastasis capabilities and CD99 expression, to identify molecular mechanisms responsible for metastasis. Our data indicate that forced expression of CD99wt induces recruitment of N-cadherin and β-catenin to adherens junctions. In addition, transfection of CD99wt inhibits the expression of several molecules crucial to the remodelling of the actin cytoskeleton, such as ACTR2, ARPC1A, Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) as well as ezrin, an ezrin/radixin/moesin family member that has been clearly associated with tumour progression and metastatic spread in osteosarcoma. Functional studies point to ROCK2 as a crucial intracellular mediator regulating osteosarcoma migration. By maintaining c-Src in an inactive conformation, CD99wt inhibits ROCK2 signalling and this leads to ezrin decrease at cell membrane while N-cadherin and β-catenin translocate to the plasma membrane and function as main molecular bridges for actin cytoskeleton. Taken together, we propose that the re-expression of CD99wt, which is generally present in osteoblasts but lost in osteosarcoma, through inhibition of c-Src and ROCK2 activity, manages to increase contact strength and reactivate stop-migration signals that counteract the otherwise dominant promigratory action of ezrin in osteosarcoma cells.
Collapse
Affiliation(s)
- C Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - M C Manara
- 1] CRS Development of Biomolecular Therapies, Bologna, Italy [2] Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - R S Pinca
- 1] CRS Development of Biomolecular Therapies, Bologna, Italy [2] Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - P De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - C Guerzoni
- 1] Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy [2] PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Sciandra
- CRS Development of Biomolecular Therapies, Bologna, Italy
| | - P-L Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - G Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - P Picci
- Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Valvassori
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - K Scotlandi
- 1] CRS Development of Biomolecular Therapies, Bologna, Italy [2] Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy [3] PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
31
|
Abstract
In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins.
Collapse
Affiliation(s)
- Stephane R Gross
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
32
|
Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD, Pollack JR. SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One 2011; 6:e23924. [PMID: 21887346 PMCID: PMC3161761 DOI: 10.1371/journal.pone.0023924] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 08/01/2011] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer is a deadly disease, and new therapeutic targets are urgently needed. We previously identified DNA amplification at 7q21-q22 in pancreatic cancer cell lines. Now, by high-resolution genomic profiling of human pancreatic cancer cell lines and human tumors (engrafted in immunodeficient mice to enrich the cancer epithelial fraction), we define a 325 Kb minimal amplicon spanning SMURF1, an E3 ubiquitin ligase and known negative regulator of transforming growth factor β (TGFβ) growth inhibitory signaling. SMURF1 amplification was confirmed in primary human pancreatic cancers by fluorescence in situ hybridization (FISH), where 4 of 95 cases (4.2%) exhibited amplification. By RNA interference (RNAi), knockdown of SMURF1 in a human pancreatic cancer line with focal amplification (AsPC-1) did not alter cell growth, but led to reduced cell invasion and anchorage-independent growth. Interestingly, this effect was not mediated through altered TGFβ signaling, assayed by transcriptional reporter. Finally, overexpression of SMURF1 (but not a catalytic mutant) led to loss of contact inhibition in NIH-3T3 mouse embryo fibroblast cells. Together, these findings identify SMURF1 as an amplified oncogene driving multiple tumorigenic phenotypes in pancreatic cancer, and provide a new druggable target for molecularly directed therapy.
Collapse
Affiliation(s)
- Kevin A. Kwei
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - A. Hunter Shain
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Ryan Bair
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Kelli Montgomery
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Collins A. Karikari
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Matt van de Rijn
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Manuel Hidalgo
- Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Clinical Research Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Anirban Maitra
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Murali D. Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India
| | - Jonathan R. Pollack
- Department of Pathology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
The actin cytoskeleton is indispensable for normal cellular function. In particular, several actin-based structures coordinate cellular motility, a process hijacked by tumor cells in order to facilitate their propagation to distant sites. The actin cytoskeleton, therefore, represents a point for chemotherapeutic intervention. The challenge in disrupting the actin cytoskeleton is in preserving actin-driven contraction of cardiac and skeletal muscle. By targeting actin-binding proteins with altered expression in malignancy, it may be possible to achieve tumor-specific toxicity. A number of actin-binding proteins act cooperatively and synergistically to regulate actin structures required for motility. The actin cytoskeleton is characterized by a significant degree of plasticity. Targeting specific actin-binding proteins for chemotherapy will only be successful if no other compensatory mechanisms exist.
Collapse
|
34
|
Abstract
The invasion of cancer cells into the surrounding tissue is a prerequisite and initial step in metastasis, which is the leading cause of death from cancer. Invasive cell migration requires the formation of various structures, such as invadopodia and pseudopodia, which require actin assembly that is regulated by specialized actin nucleation factors. There is a large variety of different actin nucleators in human cells, such as formins, spire and Arp2/3-regulating proteins, and the list is likely to grow. Studies of the mechanisms of various actin nucleation factors that are involved in cancer cell function may ultimately provide new treatments for invasive and metastatic disease.
Collapse
Affiliation(s)
- Alexander Nürnberg
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Str. 1, 35032 Marburg, Germany
| | | | | |
Collapse
|
35
|
Kuuselo R, Simon R, Karhu R, Tennstedt P, Marx AH, Izbicki JR, Yekebas E, Sauter G, Kallioniemi A. 19q13 amplification is associated with high grade and stage in pancreatic cancer. Genes Chromosomes Cancer 2010; 49:569-75. [PMID: 20232484 DOI: 10.1002/gcc.20767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is a devastating disease with an extremely poor prognosis, and thus, there is a great need for better diagnostic and therapeutic tools. The 19q13 chromosomal locus is amplified in several cancer types, including pancreatic cancer, but the possible clinical significance of this aberration remains unclear. We used fluorescence in situ hybridization on tissue microarrays containing 357 primary pancreatic tumors, 151 metastases, and 24 local recurrences as well as 120 cancer cell lines from various tissues to establish the frequency of the 19q13 amplification and to find potential correlations to clinical parameters including patient survival. Copy number increases were found in 12.2% of the primary pancreatic tumors and 9.3% of the cell lines, including those derived from bladder, colorectal, ovarian, and thyroid carcinomas. Copy number changes were linked to high grade (P = 0.044) and stage (P = 0.025) tumors, and the average survival time of patients with 19q13 amplification was shorter than that of those without this aberration. Our findings revealed recurrent 19q13 amplification in pancreatic cancer and involvement of the same locus as in bladder, colorectal, ovarian, and thyroid carcinomas. More importantly, the 19q13 amplifications were associated with poor tumor phenotype and showed a trend toward shorter survival.
Collapse
Affiliation(s)
- Riina Kuuselo
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ketolainen JM, Alarmo EL, Tuominen VJ, Kallioniemi A. Parallel inhibition of cell growth and induction of cell migration and invasion in breast cancer cells by bone morphogenetic protein 4. Breast Cancer Res Treat 2010; 124:377-86. [PMID: 20182795 DOI: 10.1007/s10549-010-0808-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/13/2010] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMP) are extracellular signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily. Bone morphogenetic proteins have diverse roles during development where they regulate proliferation, differentiation, and apoptosis in many different cell types by modulating the transcription of specific target genes. BMPs have also been implicated in both promotion and inhibition of cancer progression. We have recently shown that BMP4 is commonly expressed in breast cancer but its functional significance has not been previously explored. Our data demonstrate that in all nine breast cancer cell lines studied, BMP4 treatment leads to a dramatic growth suppression as a result of the induction of G1 arrest of the cell cycle. At the same time, BMP4 stimulates cell migration and invasion in a subset of these breast cancer cell lines. The BMP4-induced phenotypic changes were mediated through the activation of the canonical SMAD signaling pathway whereas no activation of MAP-kinases ERK1/2 or p38 was detected. Our results thus implicate that BMP4 is an important regulator of key phenotypic characteristics of cancer cells, cell growth, cell migration, and invasion, and that, similar to TGFβ, it possesses both tumor suppressive and oncogenic properties in breast cancer.
Collapse
Affiliation(s)
- Johanna M Ketolainen
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, 33014, Tampere, Finland
| | | | | | | |
Collapse
|
37
|
Maślikowski BM, Néel BD, Wu Y, Wang L, Rodrigues NA, Gillet G, Bédard PA. Cellular processes of v-Src transformation revealed by gene profiling of primary cells--implications for human cancer. BMC Cancer 2010; 10:41. [PMID: 20152043 PMCID: PMC2837010 DOI: 10.1186/1471-2407-10-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/12/2010] [Indexed: 01/05/2023] Open
Abstract
Background Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets. Methods CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets. Results The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis. Conclusion By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.
Collapse
Affiliation(s)
- Bart M Maślikowski
- Department of Biology, McMaster University, 1280 Main street West, Hamilton, ON, L8S 4K1, Canada
| | | | | | | | | | | | | |
Collapse
|