1
|
Santos MVC, Feltrin AS, Costa-Amaral IC, Teixeira LR, Perini JA, Martins DC, Larentis AL. Network Analysis of Biomarkers Associated with Occupational Exposure to Benzene and Malathion. Int J Mol Sci 2023; 24:ijms24119415. [PMID: 37298367 DOI: 10.3390/ijms24119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Complex diseases are associated with the effects of multiple genes, proteins, and biological pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically explore not only the molecular complexity of a specific disease but may also lead to the identification of disease modules and pathways. Such an approach enables us to gain a better understanding of how environmental chemical exposures affect the function of human cells, providing better perceptions about the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such as benzene and malathion. We selected differentially expressed genes for exposure to benzene and malathion. The construction of interaction networks was carried out using GeneMANIA and STRING. Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4, JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions, HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of high-throughput data, reflects biological processes more clearly and comprehensively than analyses involving the evaluation of individual genes. We emphasize the central roles played by several important hub genes obtained by exposure to benzene and malathion.
Collapse
Affiliation(s)
- Marcus Vinicius C Santos
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| | - Arthur S Feltrin
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Isabele C Costa-Amaral
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| | - Liliane R Teixeira
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| | - Jamila A Perini
- Research Laboratory of Pharmaceutical Sciences (LAPESF), State University of Rio de Janeiro (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - David C Martins
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Ariane L Larentis
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
2
|
Acute cytotoxicity, genotoxicity, and apoptosis induced by petroleum VOC emissions in A549 cell line. Toxicol In Vitro 2022; 83:105409. [DOI: 10.1016/j.tiv.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
|
3
|
Epigenetic Effects of Benzene in Hematologic Neoplasms: The Altered Gene Expression. Cancers (Basel) 2021; 13:cancers13102392. [PMID: 34069279 PMCID: PMC8156840 DOI: 10.3390/cancers13102392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Benzene is produced by diverse petroleum transformation processes and it is widely employed in industry despite its oncogenic effects. In fact, occupational exposure to benzene may cause hematopoietic malignancy. The leukemogenic action of benzene is particularly complex. Possible processes of onset of hematological malignancies have been recognized as a genotoxic action and the provocation of immunosuppression. However, benzene can induce modifications that do not involve alterations in the DNA sequence, the so-called epigenetics changes. Acquired epigenetic modification may also induce leukemogenesis, as benzene may alter nuclear receptors, and cause changes at the protein level, thereby modifying the function of regulatory proteins, including oncoproteins and tumor suppressor proteins. Abstract Benzene carcinogenic ability has been reported, and chronic exposure to benzene can be one of the risk elements for solid cancers and hematological neoplasms. Benzene is acknowledged as a myelotoxin, and it is able to augment the risk for the onset of acute myeloid leukemia, myelodysplastic syndromes, aplastic anemia, and lymphomas. Possible mechanisms of benzene initiation of hematological tumors have been identified, as a genotoxic effect, an action on oxidative stress and inflammation and the provocation of immunosuppression. However, it is becoming evident that genetic alterations and the other causes are insufficient to fully justify several phenomena that influence the onset of hematologic malignancies. Acquired epigenetic alterations may participate with benzene leukemogenesis, as benzene may affect nuclear receptors, and provoke post-translational alterations at the protein level, thereby touching the function of regulatory proteins, comprising oncoproteins and tumor suppressor proteins. DNA hypomethylation correlates with stimulation of oncogenes, while the hypermethylation of CpG islands in promoter regions of specific tumor suppressor genes inhibits their transcription and stimulates the onset of tumors. The discovery of the systems of epigenetic induction of benzene-caused hematological tumors has allowed the possibility to operate with pharmacological interventions able of stopping or overturning the negative effects of benzene.
Collapse
|
4
|
Modes of action considerations in threshold expectations for health effects of benzene. Toxicol Lett 2020; 334:78-86. [DOI: 10.1016/j.toxlet.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
|
5
|
Li W, Schnatter AR. Benzene risk assessment: does new evidence on myelodysplastic syndrome justify a new approach? Crit Rev Toxicol 2018; 48:417-432. [DOI: 10.1080/10408444.2018.1437389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Wenchao Li
- Occupational and Public Health Division, ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - A. Robert Schnatter
- Occupational and Public Health Division, ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA
- EpiSolutions, LLC, Easton, PA, USA
| |
Collapse
|
6
|
Gross SA, Paustenbach DJ. Shanghai Health Study (2001-2009): What was learned about benzene health effects? Crit Rev Toxicol 2017; 48:217-251. [PMID: 29243948 DOI: 10.1080/10408444.2017.1401581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Shanghai Health Study (SHS) was a large epidemiology study conducted as a joint effort between the University of Colorado and Fudan University in Shanghai, China. The study was funded by members of the American Petroleum Institute between 2001 and 2009 and was designed to evaluate the human health effects associated with benzene exposure. Two arms of the SHS included: an occupational-based molecular epidemiology study and several hospital-based case control studies. Consistent with historical literature, following sufficient exposure to relatively high airborne concentrations and years of exposure, the SHS concluded that exposure to benzene resulted in an increased risk of various blood and bone marrow abnormalities such as benzene poisoning, aplastic anemia (AA), myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). Non-Hodgkin lymphoma (NHL) was not significantly increased for the exposures examined in this study. Perhaps the most important contribution of the SHS was furthering our understanding of the mechanism of benzene-induced bone marrow toxicity and the importance of identifying the proper subset of MDS relevant to benzene. Investigators found that benzene-exposed workers exhibited bone marrow morphology consistent with an immune-mediated inflammatory response. Contrary to historic reports, no consistent pattern of cytogenetic abnormalities was identified in these workers. Taken together, findings from SHS provided evidence that the mechanism for benzene-induced bone marrow damage was not initiated by chromosome abnormalities. Instead, chronic inflammation, followed by an immune-mediated response, is likely to play a more significant role in benzene-induced disease initiation and progression than previously thought.
Collapse
|
7
|
Jiménez-Garza O, Guo L, Byun HM, Carrieri M, Bartolucci GB, Barrón-Vivanco BS, Baccarelli AA. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol Appl Pharmacol 2017; 339:65-72. [PMID: 29217486 DOI: 10.1016/j.taap.2017.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Occupational exposure to volatile organic compounds (VOCs) may cause hematopoietic malignancy, either by single exposure to benzene or possibly due to a concomitant exposure to several VOCs. Since oxidative stress, inflammation and DNA repair pathways are closely involved in cancer development, the effect of VOC exposure on expression of proteins involved in these pathways has been studied, but epigenetic changes have not been well described. Here, DNA methylation status following occupational exposure to a VOC mixture was assessed by bisulfite sequencing of the promoter regions of seven genes involved in the mentioned pathways. Peripheral blood samples and individual-level VOC exposure data were obtained from healthy leather shoe factory workers (LS, n=40) and gas station attendants (GS, n=36), as well as a reference group of university employees (C, n=66). Exposure levels for acetone, ethylbenzene, methyl ethyl ketone, n-hexane, toluene and xylene were higher in LS (p<0.001); benzene and methyl acetate levels were higher in GS (p<0.001). TOP2A, SOD1, and TNF-α promoter methylation status was increased in LS (p<0.05). In LS, we also found significant correlations between GSTP1 promoter methylation and both iNOS (r=0.37, p=0.008) and COX-2 (r=-0.38, p=0.007) methylation. In exposed groups, ethylbenzene exposure levels showed a significant correlation with TOP2A methylation (β=0.33). Our results show early, toxic effects at the epigenetic level caused by occupational exposure to high levels of a VOC mixture. These subcellular modifications may represent the initial mechanism of toxicity leading to hematopoietic malignancy, possibly due to a synergistic, hematotoxic effect of VOC mixtures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Division, University of Guanajuato, León, Campus. Blvd. Puente del Mienio 1001, Fracción del Predio San Carlos, C.P. 37670 León Guanajuato, Mexico.
| | - Liqiong Guo
- Department of Occupational & Environmental Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Mariella Carrieri
- Department of Cardiologic, Thoracic and Vascular Science, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Giovanni Battista Bartolucci
- Department of Cardiologic, Thoracic and Vascular Science, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Briscia Socorro Barrón-Vivanco
- The Laboratory of Environmental Toxicology and Pollution, Autonomous University of Nayarit, Av de la Cultura Amado Nervo S/N, CP 36000 Tepic, Nayarit, Mexico
| | - Andrea A Baccarelli
- The Laboratory of Human Environmental Epigenetics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
8
|
Kerzic PJ, Irons RD. Distribution of chromosome breakpoints in benzene-exposed and unexposed AML patients. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:212-216. [PMID: 28926803 DOI: 10.1016/j.etap.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Results of laboratory studies and investigations of occupationally exposed healthy individuals have been used to develop a mode of action for benzene-induced leukemia that mirrors disease following treatment with chemotherapeutic agents. Recently we have described series of AML and MDS cases with benzene exposure history, and have provided cytogenetic, molecular, and pathologic evidence that these cases differ significantly in many features from therapy-related disease. Here we have extended this work, and describe chromosome breakpoints across 441 identifiable regions, in terms of gains or losses, in 710 AML cases collected during the Shanghai Health Study, which include 75 with a history of benzene exposure. Using FISH and cytogenetic analysis, we developed prevalence information and risk ratios for benzene exposure across all regions with a lesion in at least one exposed and unexposed case. These results indicate that AML following benzene exposure mirrors de novo disease, and supports a mechanism for development of hematopoietic disease that bears no resemblance to therapy-related disease.
Collapse
Affiliation(s)
- Patrick J Kerzic
- California Environmental Protection Agency, 9211 Oakdale Ave, Chatsworth, CA, 91311, USA.
| | - Richard D Irons
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
9
|
Sun R, Zhang J, Wei H, Meng X, Ding Q, Sun F, Cao M, Yin L, Pu Y. Acetyl-l-carnitine partially prevents benzene-induced hematotoxicity and oxidative stress in C3H/He mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:108-113. [PMID: 28233701 DOI: 10.1016/j.etap.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Benzene is an environmental pollutant and occupational toxicant which induces hematotoxicity. Our previous metabonomics study suggested that acetyl-l-carnitine (ALCAR) decreased in the mouse plasma and bone marrow (BM) cells due to benzene exposure. In the present study, the topic on whether ALCAR influences hematotoxicity caused by benzene exposure was explored. Thirty-two male C3H/He mice were divided into four groups: control group (C: vehicle, oil), benzene group (150mg/kg body weight (b.w.) benzene), benzene+A1 group (150mg/kg b.w. benzene+100mg/kg b.w. ALCAR), and benzene+A2 group (150mg/kg b.w. benzene+200mg/kg b.w. ALCAR). Benzene was injected subcutaneously, and ALCAR was orally administrated via gavage once daily for 4 weeks consecutively. After the experimental period, the blood routine, BM cell number and frequency of hematopoietic stem/progenitor cell (HS/PC) were assessed. The mitochondrial membrane potential and ATP level were determined to evaluate the mitochondrial function. Reactive oxygen species (ROS), hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were also examined, and the comet assay was performed to measure oxidative stress. Results showed that ALCAR intervention can partially reduce the benzene-induced damage on BM and HS/PCs and can simultaneously alleviate the DNA damage by reducing benzene-induced H2O2, ROS, and MDA.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Haiyan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xing Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fengxia Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Meng Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
10
|
Linet MS, Yin SN, Gilbert ES, Dores GM, Hayes RB, Vermeulen R, Tian HY, Lan Q, Portengen L, Ji BT, Li GL, Rothman N. A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers. Int J Cancer 2015; 137:2184-97. [PMID: 25944549 DOI: 10.1002/ijc.29591] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
Benzene exposure has been causally linked with acute myeloid leukemia (AML), but inconsistently associated with other hematopoietic, lymphoproliferative and related disorders (HLD) or solid tumors in humans. Many neoplasms have been described in experimental animals exposed to benzene. We used Poisson regression to estimate adjusted relative risks (RR) and the likelihood ratio statistic to derive confidence intervals for cause-specific mortality and HLD incidence in 73,789 benzene-exposed compared with 34,504 unexposed workers in a retrospective cohort study in 12 cities in China. Follow-up and outcome assessment was based on factory, medical and other records. Benzene-exposed workers experienced increased risks for all-cause mortality (RR = 1.1, 95% CI = 1.1, 1.2) due to excesses of all neoplasms (RR = 1.3, 95% CI = 1.2, 1.4), respiratory diseases (RR = 1.7, 95% CI = 1.2, 2.3) and diseases of blood forming organs (RR = ∞, 95% CI = 3.4, ∞). Lung cancer mortality was significantly elevated (RR = 1.5, 95% CI = 1.2, 1.9) with similar RRs for males and females, based on three-fold more cases than in our previous follow-up. Significantly elevated incidence of all myeloid disorders reflected excesses of myelodysplastic syndrome/acute myeloid leukemia (RR = 2.7, 95% CI = 1.2, 6.6) and chronic myeloid leukemia (RR = 2.5, 95% CI = 0.8, 11), and increases of all lymphoid disorders included excesses of non-Hodgkin lymphoma (RR = 3.9, 95%CI = 1.5, 13) and all lymphoid leukemia (RR = 5.4, 95%CI = 1.0, 99). The 28-year follow-up of Chinese benzene-exposed workers demonstrated increased risks of a broad range of myeloid and lymphoid neoplasms, lung cancer, and respiratory diseases and suggested possible associations with other malignant and non-malignant disorders.
Collapse
Affiliation(s)
- Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD
| | - Song-Nian Yin
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ethel S Gilbert
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD
| | - Graça M Dores
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hao-Yuan Tian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD
| | - Lutzen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD
| | - Gui-Lan Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD
| | | |
Collapse
|
11
|
Yang J, Bai WL, Chen YJ, Gao A. 1,4-benzoquinone-induced STAT-3 hypomethylation in AHH-1 cells: Role of oxidative stress. Toxicol Rep 2015; 2:864-869. [PMID: 28962422 PMCID: PMC5598509 DOI: 10.1016/j.toxrep.2015.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Benzene, a known occupational and environmental contaminant, is associated with increased risk of leukemia. The objectives of this study were to elucidate the regulatory mechanism of the hypomethylated STAT3 involved in benzene toxicity in vitro. As 1,4-benzoquinone (1,4-BQ) is one of benzene’s major toxic metabolites, AHH-1 cells were treated by 1,4-BQ for 24 h with or without pretreatment of the antioxidant a-LA or the methyltransferase inhibitor, 5-aza-2′ deoxycytidine (5-aza). The cell viability was investigated using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ROS was determined via 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) flow cytometric assays. The level of oxidative stress marker 8-OHdG was measured by enzyme-linked immunosorbent assay. Methylation-specific PCR was used to detect the methylation status of STAT3. Results indicated the significantly increasing expression of ROS and 8-OHdG which accompanied with STAT3 hypomethylation in 1,4-BQ-treated AHH-1 cells. α-LA suppressed the expression of both ROS and 8-OHdG, simultaneously reversed 1,4-BQ-induced STAT3 hypomethylation. However, although the methylation inhibitor, 5-aza reduced the expression level of ROS and 8-OHdG, but had no obvious inhibiting effect on STAT3 methylation level. Taken together, oxidative stress are involved 1,4-BQ-induced STAT3 methylation expression.
Collapse
Key Words
- 1,4-BQ, 1,4-benzoquinone
- 1,4-benzoquinone
- 5-aza, 5-aza-2′ deoxycytidine
- 8-OHdG, 8-hydroxy deoxyguanosine adduct
- DCFH-DA, 2,7-dichlorofluorescein diacetate
- DMSO, dimethylsulfoxide
- DNMT, DNA methyltransferase
- ELISA, enzyme-linked immunosorbent assay
- MSP, methylation-specific PCR
- Methylation
- Oxidative stress
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- STAT3
- α-LA, alpha lipoic acid
Collapse
Affiliation(s)
- Jing Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wen-lin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yu-jiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Corresponding author at: Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China. Tel.: +86 10 83911509.
| |
Collapse
|
12
|
De Palma G, Manno M. Metabolic polymorphisms and biomarkers of effect in the biomonitoring of occupational exposure to low-levels of benzene: state of the art. Toxicol Lett 2014; 231:194-204. [PMID: 25447454 DOI: 10.1016/j.toxlet.2014.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Current levels of occupational exposure to benzene, a genotoxic human carcinogen, in Western countries are reduced by two-three orders of magnitude (from ppm to ppb) as compared to the past. However, as benzene toxicity is strongly dependent on biotransformation and recent evidence underlines a higher efficiency of bio-activation pathways at lower levels of exposure, toxic effects at low doses could be higher than expected, particularly in susceptible individuals. Currently, biological monitoring can allow accurate exposure assessment, relying on sensitive and specific enough biomarkers of internal dose. The availability of similarly reliable biomarkers of early effect or susceptibility could greatly improve the risk assessment process to such an extent that risk could even be assessed at the individual level. As to susceptibility biomarkers, functional genetic polymorphisms of relevant biotransformation enzymes may modulate the risk of adverse effects (NQO1) and the levels of biomarkers of internal dose, in particular S-phenylmercapturic acid (GSTM1, GSTT1, GSTA1). Among biomarkers of early effect, genotoxicity indicators, although sensitive in some cases, are too aspecific for routine use in occupational health surveillance programmes. Currently only the periodical blood cell count seems suitable enough to be applied in the longitudinal monitoring of effects from benzene exposure. Novel biomarkers of early effect are expected from higher collaboration among toxicologists and clinicians, also using advanced "omics" techniques.
Collapse
Affiliation(s)
- G De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - M Manno
- Department of Public Health, Section of Occupational Medicine and Toxicology, University of Napoli Federico II, Via S. Pansini, 5, 80131 Napoli, Italy
| |
Collapse
|
13
|
Yang J, Bai W, Niu P, Tian L, Gao A. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data. Exp Mol Pathol 2014; 96:346-53. [PMID: 24613686 DOI: 10.1016/j.yexmp.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Abstract
Chronic occupational benzene exposure is associated with an increased risk of hematological malignancies such as aplastic anemia and leukemia. The new biomarker and action mechanisms of chronic benzene poisoning are still required to be explored. Aberrant DNA methylation, which may lead to genomic instability and the altered gene expression, is frequently observed in hematological cancers. To gain an insight into the new biomarkers and molecular mechanisms of chronic benzene poisoning, DNA methylation profiles and mRNA expression pattern from the peripheral blood mononuclear cells of four chronic benzene poisoning patients and four health controls that matched age and gender without benzene exposure were performed using the high resolution Infinium 450K methylation array and Gene Chip Human Gene 2.0ST Arrays, respectively. By integrating DNA methylation and mRNA expression data, we identified 3 hypermethylated genes showing concurrent down-regulation (PRKG1, PARD3, EPHA8) and 2 hypomethylated genes showing increased expression (STAT3, IFNGR1). Signal net analysis of differential methylation genes associated with chronic benzene poisoning showed that two key hypomethylated STAT3 and hypermethylated GNAI1 were identified. Further GO analysis and pathway analysis indicated that hypomethylated STAT3 played central roles through regulation of transcription, DNA-dependent, positive regulation of transcription from RNA polymerase II promoter, JAK-STAT cascade and adipocytokine signaling pathway, Acute myeloid leukemia, and JAK-STAT signaling pathway. In conclusion, the aberrant hypomethylated STAT3 might be a potential biomarker of chronic benzene poisoning.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adipokines/genetics
- Adult
- Benzene/poisoning
- Biomarkers/metabolism
- Case-Control Studies
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/genetics
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- DNA Methylation
- Down-Regulation
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression
- Humans
- Leukocytes, Mononuclear/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Occupational Exposure/adverse effects
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Receptor, EphA8/genetics
- Receptor, EphA8/metabolism
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jing Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenlin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Bai W, Chen Y, Yang J, Niu P, Tian L, Gao A. Aberrant miRNA profiles associated with chronic benzene poisoning. Exp Mol Pathol 2014; 96:426-30. [DOI: 10.1016/j.yexmp.2014.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 11/25/2022]
|
15
|
Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:40-64. [PMID: 24731989 DOI: 10.1016/j.mrrev.2014.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Abstract
Lymphohematopoietic neoplasia are one of the most common types of cancer induced by therapeutic and environmental agents. Of the more than 100 human carcinogens identified by the International Agency for Research on Cancer, approximately 25% induce leukemias or lymphomas. The objective of this review is to provide an introduction into the origins and mechanisms underlying lymphohematopoietic cancers induced by xenobiotics in humans with an emphasis on acute myeloid leukemia, and discuss the implications of this information for risk assessment. Among the agents causing lymphohematopoietic cancers, a number of patterns were observed. Most physical and chemical leukemia-inducing agents such as the therapeutic alkylating agents, topoisomerase II inhibitors, and ionizing radiation induce mainly acute myeloid leukemia through DNA-damaging mechanisms that result in either gene or chromosomal mutations. In contrast, biological agents and a few immunosuppressive chemicals induce primarily lymphoid neoplasms through mechanisms that involve alterations in immune response. Among the environmental agents examined, benzene was clearly associated with acute myeloid leukemia in humans, with increasing but still limited evidence for an association with lymphoid neoplasms. Ethylene oxide and 1,3-butadiene were linked primarily to lymphoid cancers. Although the association between formaldehyde and leukemia remains controversial, several recent evaluations have indicated a potential link between formaldehyde and acute myeloid leukemia. The four environmental agents examined in detail were all genotoxic, inducing gene mutations, chromosomal alterations, and/or micronuclei in vivo. Although it is clear that rapid progress has been made in recent years in our understanding of leukemogenesis, many questions remain for future research regarding chemically induced leukemias and lymphomas, including the mechanisms by which the environmental agents reviewed here induce these diseases and the risks associated with exposures to such agents.
Collapse
|
16
|
Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 2014; 1310:7-31. [PMID: 24495159 PMCID: PMC4002179 DOI: 10.1111/nyas.12362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells (HPCs), which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow (BM) niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within HPCs and cells within the BM niche, may lead to the development of strategies for prevention of occupational and cancer therapy-induced disease.
Collapse
|
17
|
Gao A, Yang J, Yang G, Niu P, Tian L. Differential gene expression profiling analysis in workers occupationally exposed to benzene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:872-879. [PMID: 24342094 DOI: 10.1016/j.scitotenv.2013.11.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
UNLABELLED Benzene is an important industrial chemical and an environmental contaminant, but the pathogenesis of hematotoxicity induced by chronic occupational benzene exposure remains to be elucidated. To gain an insight into the molecular mechanisms and new biomarkers, microarray analysis was used to identify the differentially expressed mRNA critical for benzene hematotoxicity. RNA was extracted from four chronic benzene poisoning patients occupationally exposed to benzene, three benzene-exposed workers without clinical symptoms and three health controls without benzene exposure and mRNA expression profiling was performed using Gene Chip Human Gene 2.0ST Arrays. Analysis of mRNA expression profiles were conducted to identify key genes, biological processes and pathways by the series test of cluster (STC), STC-Gene Ontology analysis (STC-GO), pathway analysis and Signal-net. PRINCIPAL FINDINGS 1) 1661 differentially expressed mRNAs were identified and assigned to sixteen model profiles. 2) Profiles 14, 10, 11, 1 and 15 are the predominant expression profiles which were involved in immune response, inflammatory response, chemotaxis, defense response, anti-apoptosis and signal transduction. 3) The importance of immune response at benzene hematotoxicity is highlighted by several immune-related signaling pathways such as B/T cell receptor signaling pathway, acute myeloid leukemia, hematopoietic cell lineage and natural killer cell mediated cytotoxicity. 4) Signet analysis showed that PIK3R1, PIK3CG, PIK3R2, GNAI3, KRAS, NRAS, NFKB1, HLA-DMA, and HLA-DMB were key genes involved in benzene hematotoxicity. These genes might be new biomarkers for the prevention and early diagnosis of benzene poisoning. This is a preliminary study that paves the way to further functional study to understand the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gengxia Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Irons RD, Kerzic PJ. Cytogenetics in benzene-associated myelodysplastic syndromes and acute myeloid leukemia: new insights into a disease continuum. Ann N Y Acad Sci 2014; 1310:84-8. [PMID: 24611724 DOI: 10.1111/nyas.12336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoiesis in health and disease results from complex interactions between primitive hematopoietic stem cells (HSCs) and the extrinsic influences of other cells in the bone marrow (BM) niche. Advances in stem cell biology, molecular genetics, and computational biology reveal that the immortality, self-renewal, and maintenance of blood homeostasis generally attributed to individual HSCs are functions of the cells' behavior in the normal BM environment. Here we discuss how these advances, together with results of outcomes-based clinical epidemiology studies, provide new insight into the importance of epigenetic events in leukemogenesis. For the chemical benzene (Bz), development of myeloid neoplasms depends predominantly on alterations within the microenvironments in which they arise. The primary persistent disease in Bz myelotoxicity is myelodysplastic syndrome, which precedes cytogenetic injury. Evidence indicates that acute myeloid leukemia arises as a secondary event, subsequent to evolution of the leukemia-initiating cell phenotype within the altered BM microenvironment. Further explorations into the nature of chemical versus de novo disease should consider this mechanism, which is biologically distinct from previous models of clonal cytogenetic injury. Understanding alterations of homeostatic regulation in the BM niche is important for validation of models of leukemogenesis, monitoring at-risk populations, and development of novel treatment and prevention strategies.
Collapse
Affiliation(s)
- Richard D Irons
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Anshutz Medical Center, University of Colorado, Aurora, Colorado; Cinpathogen, Inc, Boulder, Colorado
| | | |
Collapse
|