1
|
Zheng Y, Zhou Z, Wei R, Xiao C, Zhang H, Fan T, Zheng B, Li C, He J. The RNA-binding protein PCBP1 represses lung adenocarcinoma progression by stabilizing DKK1 mRNA and subsequently downregulating β-catenin. J Transl Med 2022; 20:343. [PMID: 35907982 PMCID: PMC9338556 DOI: 10.1186/s12967-022-03552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background PolyC-RNA-binding protein 1 (PCBP1) functions as a tumour suppressor and RNA regulator that is downregulated in human cancers. Here, we aimed to reveal the biological function of PCBP1 in lung adenocarcinoma (LUAD). Methods First, PCBP1 was identified as an important biomarker that maintains LUAD through The Cancer Genome Atlas (TCGA) project screening and confirmed by immunohistochemistry and qPCR. Via colony formation, CCK8, IncuCyte cell proliferation, wound healing and Transwell assays, we confirmed that PCBP1 was closely related to the proliferation and migration of LUAD cells. The downstream gene DKK1 was discovered by RNA sequencing of PCBP1 knockdown cells. The underlying mechanisms were further investigated using western blot, qPCR, RIP, RNA pulldown and mRNA stability assays. Results We demonstrate that PCBP1 is downregulated in LUAD tumour tissues. The reduction in PCBP1 promotes the proliferation, migration and invasion of LUAD in vitro and in vivo. Mechanistically, the RNA-binding protein PCBP1 represses LUAD by stabilizing DKK1 mRNA. Subsequently, decreased expression of the DKK1 protein relieves the inhibitory effect on the Wnt/β-catenin signalling pathway. Taken together, these results show that PCBP1 acts as a tumour suppressor gene, inhibiting the tumorigenesis of LUAD. Conclusions We found that PCBP1 inhibits LUAD development by upregulating DKK1 to inactivate the Wnt/β-catenin pathway. Our findings highlight the potential of PCBP1 as a promising therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03552-y.
Collapse
Affiliation(s)
- Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr 2022; 71:78-88. [PMID: 36213789 PMCID: PMC9519419 DOI: 10.3164/jcbn.22-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Any independent life requires iron to survive. Whereas iron deficiency causes oxygen insufficiency, excess iron is a risk for cancer, generating a double-edged sword. Iron metabolism is strictly regulated via specific systems, including iron-responsive element (IRE)/iron regulatory proteins (IRPs) and the corresponding ubiquitin ligase FBXL5. Here we briefly reflect the history of bioiron research and describe major recent advancements. Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis, is providing huge impact on science. Carcinogenesis is a process to acquire ferroptosis-resistance and ferroptosis is preferred in cancer therapy due to immunogenicity. Poly(rC)-binding proteins 1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone proteins. The mechanism how cells retrieve stored iron in ferritin cores was unraveled as ferritinophagy, a form of autophagy. Of note, ferroptosis may exploit ferritinophagy during the progression. Recently, we discovered that cellular ferritin secretion is through extracellular vesicles (EVs) escorted by CD63 under the regulation of IRE/IRP system. Furthermore, this process was abused in asbestos-induced mesothelial carcinogenesis. In summary, cellular iron metabolism is tightly regulated by multi-system organizations as surplus iron is shared through ferritin in EVs among neighbor and distant cells in need. However, various noxious stimuli dramatically promote cellular iron uptake/storage, which may result in ferroptosis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| |
Collapse
|
3
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Lauw MIS, Lucas CHG, Ohgami RS, Wen KW. Primary Central Nervous System Lymphomas: A Diagnostic Overview of Key Histomorphologic, Immunophenotypic, and Genetic Features. Diagnostics (Basel) 2020; 10:diagnostics10121076. [PMID: 33322508 PMCID: PMC7764608 DOI: 10.3390/diagnostics10121076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare form of extranodal non-Hodgkin lymphoma that primarily arises in the brain, spinal cord, leptomeninges, and vitreoretinal compartment of the eye. The term is sometimes used interchangeably with primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) because DLBCL comprises a great majority (90–95%) of PCNSL. Although rare, other types of lymphomas can be seen in the central nervous system (CNS), and familiarity with these entities will help their recognition and further workup in order to establish the diagnosis. The latter is especially important in the case of PCNSL where procurement of diagnostic specimen is often challenging and yields scant tissue. In this review, we will discuss the most common types of primary lymphomas that can be seen in the CNS with emphasis on the diagnostic histomorphologic, immunophenotypic, and molecular genetic features. The differential diagnostic approach to these cases and potential pitfalls will also be discussed.
Collapse
Affiliation(s)
- Marietya I. S. Lauw
- Department of Pathology, University of California, San Francisco, CA 94143, USA; (C.-H.G.L.); (R.S.O.); (K.W.W.)
- Correspondence:
| | - Calixto-Hope G. Lucas
- Department of Pathology, University of California, San Francisco, CA 94143, USA; (C.-H.G.L.); (R.S.O.); (K.W.W.)
| | - Robert S. Ohgami
- Department of Pathology, University of California, San Francisco, CA 94143, USA; (C.-H.G.L.); (R.S.O.); (K.W.W.)
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Kwun Wah Wen
- Department of Pathology, University of California, San Francisco, CA 94143, USA; (C.-H.G.L.); (R.S.O.); (K.W.W.)
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Aukema SM, Ten Brinke GA, Timens W, Vos YJ, Accord RE, Kraft KE, Santing MJ, Morssink LP, Streefland E, van Diemen CC, Vrijlandt EJ, Hulzebos CV, Kerstjens-Frederikse WS. A homozygous variant in growth and differentiation factor 2 (GDF2) may cause lymphatic dysplasia with hydrothorax and nonimmune hydrops fetalis. Am J Med Genet A 2020; 182:2152-2160. [PMID: 32618121 DOI: 10.1002/ajmg.a.61743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
The etiology of nonimmune hydrops fetalis is extensive and includes genetic disorders. We describe a term-born female neonate with late onset extensive nonimmune hydrops, that is, polyhydramnios, edema, and congenital bilateral chylothorax. This newborn was successfully treated with repetitive thoracocentesis, total parenteral feeding, octreotide intravenously and finally surgical pleurodesis and corticosteroids. A genetic cause seemed plausible as the maternal history revealed a fatal nonimmune hydrops fetalis. A homozygous truncating variant in GDF2 (c.451C>T, p.(Arg151*)) was detected with exome sequencing. Genetic analysis of tissue obtained from the deceased fetal sibling revealed the same homozygous variant. The parents and two healthy siblings were heterozygous for the GDF2 variant. Skin and lung biopsies in the index patient, as well as the revised lung biopsy of the deceased fetal sibling, showed lymphatic dysplasia and lymphangiectasia. To the best of our knowledge, this is the first report of an association between a homozygous variant in GDF2 with lymphatic dysplasia, hydrothorax and nonimmune hydrops fetalis.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerdien A Ten Brinke
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yvonne J Vos
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ryan E Accord
- Department of Congenital Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Center for Congenital Heart Diseases, Groningen, The Netherlands
| | - Karianne E Kraft
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel J Santing
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leonard P Morssink
- Department of Obstetrics and Gynaecology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Esther Streefland
- Department of Obstetrics and Gynecology/Prenatal diagnosis, University Medical Centre of Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elianne Jle Vrijlandt
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christian V Hulzebos
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
6
|
Wright Muelas M, Mughal F, O'Hagan S, Day PJ, Kell DB. The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data. Sci Rep 2019; 9:17960. [PMID: 31784565 PMCID: PMC6884504 DOI: 10.1038/s41598-019-54288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
We recently introduced the Gini coefficient (GC) for assessing the expression variation of a particular gene in a dataset, as a means of selecting improved reference genes over the cohort ('housekeeping genes') typically used for normalisation in expression profiling studies. Those genes (transcripts) that we determined to be useable as reference genes differed greatly from previous suggestions based on hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was employed for both tissues and cell lines. We here extend this analysis to encompass seven other large datasets. Although their absolute values differ a little, the Gini values and median expression levels of the various genes are well correlated with each other between the various cell line datasets, implying that our original choice of the more ubiquitously expressed low-Gini-coefficient genes was indeed sound. In tissues, the Gini values and median expression levels of genes showed a greater variation, with the GC of genes changing with the number and types of tissues in the data sets. In all data sets, regardless of whether this was derived from tissues or cell lines, we also show that the GC is a robust measure of gene expression stability. Using the GC as a measure of expression stability we illustrate its utility to find tissue- and cell line-optimised housekeeping genes without any prior bias, that again include only a small number of previously reported housekeeping genes. We also independently confirmed this experimentally using RT-qPCR with 40 candidate GC genes in a panel of 10 cell lines. These were termed the Gini Genes. In many cases, the variation in the expression levels of classical reference genes is really quite huge (e.g. 44 fold for GAPDH in one data set), suggesting that the cure (of using them as normalising genes) may in some cases be worse than the disease (of not doing so). We recommend the present data-driven approach for the selection of reference genes by using the easy-to-calculate and robust GC.
Collapse
Affiliation(s)
- Marina Wright Muelas
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Farah Mughal
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Steve O'Hagan
- School of Chemistry, Department of Chemistry, The Manchester Institute of Biotechnology 131, Princess Street, Manchester, M1 7DN, UK
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester, M1 7DN, UK
| | - Philip J Day
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester, M1 7DN, UK.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK.
| | - Douglas B Kell
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, 10 Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Zhao L, Wang ZG, Zhang P, Yu XF, Su XJ. Poly r(C) Binding Protein 1 Regulates Posttranscriptional Expression of the Ubiquitin Ligase TRIM56 in Ovarian Cancer. IUBMB Life 2018; 71:177-182. [DOI: 10.1002/iub.1948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Zhao
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Zhi-gang Wang
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Ping Zhang
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Xiu-feng Yu
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Xiao-jie Su
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| |
Collapse
|
8
|
Wu YY, Jiang JN, Fang XD, Ji FJ. STEAP1 Regulates Tumorigenesis and Chemoresistance During Peritoneal Metastasis of Gastric Cancer. Front Physiol 2018; 9:1132. [PMID: 30246786 PMCID: PMC6110897 DOI: 10.3389/fphys.2018.01132] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
In China, majority of the mortality in gastric cancer are associated with peritoneal metastasis. Since most gastric tumors are metastatic at initial diagnosis, the treatment of gastric cancer is limited to radical resection. Therefore, it is imperative to identify diagnostic and prognostic biomarkers. From 2014 to 2015, 20 patients were enrolled in the study. To search translationally upregulated genes in the context of epithelial to mesenchymal transition (EMT), polysome profiling was performed. The MTT, migration, and invasion assay were conducted to determine cell proliferation, migration, and invasion ability respectively. Experiments of gain and loss of function were performed using the overexpression plasmid, siRNA, and shRNA. Xenograft assay was established using nude mice to explore the role of targets translationally upregulated gene in vivo. Polysome profiling defined the landscape of translationally regulated gene products with differential expression between non-metastatic and metastatic cohorts. Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) was found to be the most translationally upregulated gene product in either experimental groups. STEAP1 was found to be required for cell proliferation, in vitro migration and invasion, and in vivo tumorigenesis. RNAi-mediated silencing of STEAP1 potentiated chemosensitivity of the MKN45 cells to docetaxel treatment, highlighting the importance of STEAP1 as a novel biomarker in gastric cancer patients with peritoneal metastasis. STEAP1 is thus induced translationally and its expression promotes proliferation, migration, invasiveness, and tumorigenicity of gastric cancer. STEAP1 can be a potent candidate for designing of targeted therapy.
Collapse
Affiliation(s)
| | | | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Guo J, Jia R. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol 2018; 234:33-41. [PMID: 30132844 DOI: 10.1002/jcp.26873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jihua Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Buljan M, Blattmann P, Aebersold R, Boutros M. Systematic characterization of pan-cancer mutation clusters. Mol Syst Biol 2018; 14:e7974. [PMID: 29572294 PMCID: PMC5866917 DOI: 10.15252/msb.20177974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has shown that driver genes can often be distinguished not only by the elevated mutation frequency but also by specific nucleotide positions that accumulate changes at a high rate. However, properties associated with a residue's potential to drive tumorigenesis when mutated have not yet been systematically investigated. Here, using a novel methodological approach, we identify and characterize a compendium of 180 hotspot residues within 160 human proteins which occur with a significant frequency and are likely to have functionally relevant impact. We find that such mutations (i) are more prominent in proteins that can exist in the on and off state, (ii) reflect the identity of a tumor of origin, and (iii) often localize within interfaces which mediate interactions with other proteins or ligands. Following, we further examine structural data for human protein complexes and identify a number of additional protein interfaces that accumulate cancer mutations at a high rate. Jointly, these analyses suggest that disruption and dysregulation of protein interactions can be instrumental in switching functions of cancer proteins and activating downstream changes.
Collapse
Affiliation(s)
- Marija Buljan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland .,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
11
|
Ji FJ, Wu YY, An Z, Liu XS, Jiang JN, Chen FF, Fang XD. Expression of both poly r(C) binding protein 1 (PCBP1) and miRNA-3978 is suppressed in peritoneal gastric cancer metastasis. Sci Rep 2017; 7:15488. [PMID: 29138420 PMCID: PMC5686074 DOI: 10.1038/s41598-017-15448-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/23/2017] [Indexed: 01/23/2023] Open
Abstract
The expression of legumain which has been shown overexpressed in patients with metastatic gastric cancer is positively correlated to both disease progression and outcome, and negatively correlated to microRNA (miR)-3978 expression. The RNA-binding protein, poly r(C) binding protein 1 (PCBP1) was the most downregulated protein in the metastatic tissue specimens. Quantitative real-time PCR showed that PCBP1 expression is transcriptionally downregulated in peritoneal metastasis tissues. RNA immunoprecipitation experiments showed that PCBP1 and miR-3978 are sequestered in normal peritoneal tissue, but the complex is disrupted following metastatic progression. PCBP1 expression mimicked miR-3978 expression across gastric cancer patients. Finally, replenishment of PCBP1 or miR-3978 expression in the peritoneal metastasis cell line MKN45 decreased legumain protein expression and chemosensitized the cells to treatment with docetaxel. However, replenishment of one and concomitant depletion of the other failed to induce chemosensitivity to docetaxel. Replenishment of miR-3978 also resulted in induction of PCBP1 protein expression, potentially indicating that miR-3978 expression might downregulate a negative regulator targeting PCBP1. Our current study reveals PCBP1 as an additional biomarker in peritoneal metastasis. PCBP1 and miR-3978 expression were correlated and suggests a potential interplay of differential miRNA biogenesis and RNA binding protein during metastatic progression.
Collapse
Affiliation(s)
- Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuan-Yu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhe An
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xue-Song Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jun-Nan Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Fang-Fang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
12
|
Poly r(C) binding protein (PCBP) 1 expression is regulated by the E3 ligase UBE4A in thyroid carcinoma. Biosci Rep 2017; 37:BSR20170114. [PMID: 28963376 PMCID: PMC5662924 DOI: 10.1042/bsr20170114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Thyroid cancer patients with high miR-490-3p inhibit translation of PCBP1 mRNA, whereas in patients with low miR-490-3p PCBP1 mRNA expression is high; however, the resultant protein is targeted for degradation through the proteasome. The objective of the present study was to evaluate the molecular mechanism that regulates post-translation degradation of poly r(C) binding protein (PCBP) 1 expression in thyroid cancer cells. Mass spectrometric analysis of PCBP1 immunoprecipitates from MG-132 treated TPC1 cells revealed a list of ubiquitin ligases associated with PCBP1. RNAi-mediated silencing of the candidate ubiquitin ligases revealed that knockdown of the ubiquitin ligase UBE4A stabilized PCBP1 in TPC1 cells. Concurrent overexpression of the candidate ubiquitin ligases in the normal thyroid epithelial cell line Nthy-ori 3-1 confirmed that ubiquitin conjugation factor E4 A (UBE4A) is the ubiquitin ligase that is degrading PCBP1. Coimmunoprecipitation of HA-tagged PCBP1 in TPC1 cells cotransfected with FLAG-UBE4A revealed robust polyubiquitinated smear of PCBP1, thus confirming UBE4A as the ubiquitin ligase of PCBP1. UBE4A expression mimicked PCBP1 mRNA expression in thyroid cancer patients and was inversely correlated to PCBP1 protein expression. Low UBE4A expression level was associated with a better prognosis in thyroid cancer patients. Our data reveal a post-translational regulatory mechanism of regulating PCBP1 expression in thyroid cancer cells.
Collapse
|
13
|
Zhao X, Wang X, Wang F, Gao C, Wang J. Poly r(C) binding protein 1-mediated regulation of microRNA expression underlies post-sevoflurane amelioration of acute lung injury in rats. J Cell Physiol 2017; 233:3048-3054. [PMID: 28617947 DOI: 10.1002/jcp.26053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/13/2017] [Indexed: 11/07/2022]
Abstract
Acute lung injury (ALI) presents a pervasive health burden due to the high morbidity and mortality associated with it. Volatile anesthetics like sevoflurane has been previously shown to have organ-protective effect, both in the context of normal physiological function in liver, and during LPS-induced ALI. Sevoflurane was shown to exert lung protective effect during LPS-induced ALI by modulating expression level of microRNAs (miRNAs), specifically miR-155. The objective of the current study was to define the underlying mechanism by which sevoflurane alters miRNA expression levels. Lung injury caused by LPS and its amelioration post sevoflurane administration was first confirmed. Expression levels of different miRNA and messenger RNAs (mRNAs) encoding inflammatory cytokines were measured in a rat model of lipopolysaccharide (LPS)-induced ALI, which were subsequently treated with either sevoflurane or vehicle control. Host of miRNAs and messenger RNAs encoding pro-inflammatory cytokines are overexpressed during LPS-induced ALI, which are reversed following sevoflurane administration. Mass spectrometry analysis revealed that the RNA-binding protein, poly r(C) binding protein 1 (PCBP1) expression is induced in ALI and is repressed following sevoflurane treatment. RNA immunoprecipitation experiments revealed that PCBP1 expression dictates the altered miRNA expression and sevoflurane altered miRNA expression by suppressing PCBP1 expression. Our study thus elucidates a unique mechanism of lung protective effect of sevoflurane mediated by suppression of expression of a RNA-binding protein that potentiates expression of pro-inflammatory miRNAs.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Anesthesiology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Xiaoxia Wang
- Department of Anesthesiology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Fei Wang
- Department of Anesthesiology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Chengjie Gao
- Department of Anesthesiology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Jian Wang
- Department of Anesthesiology, Jinan Military General Hospital, Jinan, Shandong, China
| |
Collapse
|
14
|
|
15
|
Xia W, Wu J, Deng FY, Wu LF, Zhang YH, Guo YF, Lei SF. Integrative analysis for identification of shared markers from various functional cells/tissues for rheumatoid arthritis. Immunogenetics 2016; 69:77-86. [PMID: 27812736 DOI: 10.1007/s00251-016-0956-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/19/2016] [Indexed: 01/18/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease. So far, it is unclear whether there exist common RA-related genes shared in different tissues/cells. In this study, we conducted an integrative analysis on multiple datasets to identify potential shared genes that are significant in multiple tissues/cells for RA. Seven microarray gene expression datasets representing various RA-related tissues/cells were downloaded from the Gene Expression Omnibus (GEO). Statistical analyses, testing both marginal and joint effects, were conducted to identify significant genes shared in various samples. Followed-up analyses were conducted on functional annotation clustering analysis, protein-protein interaction (PPI) analysis, gene-based association analysis, and ELISA validation analysis in in-house samples. We identified 18 shared significant genes, which were mainly involved in the immune response and chemokine signaling pathway. Among the 18 genes, eight genes (PPBP, PF4, HLA-F, S100A8, RNASEH2A, P2RY6, JAG2, and PCBP1) interact with known RA genes. Two genes (HLA-F and PCBP1) are significant in gene-based association analysis (P = 1.03E-31, P = 1.30E-2, respectively). Additionally, PCBP1 also showed differential protein expression levels in in-house case-control plasma samples (P = 2.60E-2). This study represented the first effort to identify shared RA markers from different functional cells or tissues. The results suggested that one of the shared genes, i.e., PCBP1, is a promising biomarker for RA.
Collapse
Affiliation(s)
- Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jian Wu
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yu-Fan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
16
|
Ho C, Kluk MJ. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Lymphoid Neoplasms. Surg Pathol Clin 2016; 9:489-521. [PMID: 27523974 DOI: 10.1016/j.path.2016.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lymphoid neoplasms show great diversity in morphology, immunophenotypic profile, and postulated cells of origin, which also reflects the variety of genetic alterations within this group of tumors. This review discusses many of the currently known genetic alterations in selected mature B-cell and T-cell lymphoid neoplasms, and their significance as diagnostic, prognostic, and therapeutic markers. Given the rapidly increasing number of genetic alterations that have been described in this group of tumors, and that the clinical significance of many is still being studied, this is not an entirely exhaustive review of all of the genetic alterations that have been reported.
Collapse
Affiliation(s)
- Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michael J Kluk
- Department of Pathology, Weill Cornell Medical College, 525 East 68th Street, Mailbox #79, F-540, New York, NY 10065, USA.
| |
Collapse
|
17
|
Ding X, Lu J, Yu R, Wang X, Wang T, Dong F, Peng B, Wu W, Liu H, Geng Y, Zhang R, Ma H, Cheng J, Yu M, Fang S. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1. PLoS One 2016; 11:e0156017. [PMID: 27223893 PMCID: PMC4880285 DOI: 10.1371/journal.pone.0156017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics.
Collapse
Affiliation(s)
- Xiaoman Ding
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruoxi Yu
- Southern Medical University, Guangzhou, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ting Wang
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Fangyuan Dong
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yijie Geng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanwu Ma
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinquan Cheng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Muhua Yu
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (MHY); (SSF)
| | - Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (MHY); (SSF)
| |
Collapse
|
18
|
Miles RR, Shah RK, Frazer JK. Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2016; 173:582-96. [PMID: 26969846 DOI: 10.1111/bjh.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future.
Collapse
Affiliation(s)
- Rodney R Miles
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Rikin K Shah
- Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- E.L. and Thelma Gaylord Chair in Pediatric Oncology, Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Ji X, Park JW, Bahrami-Samani E, Lin L, Duncan-Lewis C, Pherribo G, Xing Y, Liebhaber SA. αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome. Nucleic Acids Res 2016; 44:2283-97. [PMID: 26896798 PMCID: PMC4797308 DOI: 10.1093/nar/gkw088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a robust generator of mammalian transcriptome complexity. Splice site specification is controlled by interactions of cis-acting determinants on a transcript with specific RNA binding proteins. These interactions are frequently localized to the intronic U-rich polypyrimidine tracts (PPT) located 5′ to the majority of splice acceptor junctions. αCPs (also referred to as polyC-binding proteins (PCBPs) and hnRNPEs) comprise a subset of KH-domain proteins with high affinity and specificity for C-rich polypyrimidine motifs. Here, we demonstrate that αCPs promote the splicing of a defined subset of cassette exons via binding to a C-rich subset of polypyrimidine tracts located 5′ to the αCP-enhanced exonic segments. This enhancement of splice acceptor activity is linked to interactions of αCPs with the U2 snRNP complex and may be mediated by cooperative interactions with the canonical polypyrimidine tract binding protein, U2AF65. Analysis of αCP-targeted exons predicts a substantial impact on fundamental cell functions. These findings lead us to conclude that the αCPs play a direct and global role in modulating the splicing activity and inclusion of an array of cassette exons, thus driving a novel pathway of splice site regulation within the mammalian transcriptome.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Duncan-Lewis
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon Pherribo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Han van Krieken J. New developments in the pathology of malignant lymphoma: a review of the literature published from May 2015-September 2015. J Hematop 2015; 8:225-234. [PMID: 26640600 PMCID: PMC4659846 DOI: 10.1007/s12308-015-0262-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|