1
|
Zhang Y, Wang J, Quan R, Lyu L. circ_0004662 contributes to colorectal cancer progression by interacting with hnRNPM. Int J Oncol 2025; 66:14. [PMID: 39821691 PMCID: PMC11753766 DOI: 10.3892/ijo.2025.5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells. circ_0004662 knockdown inhibited migration of CRC cells in vitro and in vivo; would healing and Transwell assays showed that circ_0004662 overexpression contributed to CRC migration. Nuclear cytoplasmic analysis and fluorescence in situ hybridization revealed localization of circ_0004662 in the nucleus and cytoplasm. CircRNADB databases predicted that circ_0004662 exhibited translational potential and liquid chromatography‑mass spectrometry (LC‑MS) of circ_0004662 pull‑down products suggested that circ_0004662 bound to multiple ribosomal subunits. However, peptide products of 149aa translated by circ_0004662, with a molecular weight of ~17 kDa were not detected. Nevertheless, LC‑MS analysis indicated that circ_0004662 bound multiple proteins. Immunoprecipitation of RNA‑binding proteins revealed that circ_0004662 bound to heterogeneous nuclear ribonucleoprotein M (hnRNPM) and that hnRNPM interference decreased circ_0004662 expression, thereby affecting CRC progression. In summary, circ_0004662 was significantly upregulated in CRC. As a non‑coding RNA, it may promote CRC progression by binding to hnRNPM, which may serve as a potential target for treating CRC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Hepatopancreatobiliary Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Ruiliang Quan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Lihua Lyu
- Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
2
|
Mohammed A, Khan A, Zhang X. Oncogenic LINC00698 suppresses apoptosis of melanoma stem cells to promote tumorigenesis via LINC00698-miR-3132-TCF7/hnRNPM axis. Cancer Cell Int 2024; 24:269. [PMID: 39068483 PMCID: PMC11283696 DOI: 10.1186/s12935-024-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Melanoma progression depends on melanoma stem cells (MSCs), which are distinguished by the distinct dysregulated genes. As the key factors in the dysregulation of genes, long non-coding RNAs (lncRNAs) take great effects on MSCs. However, the underlying mechanism of lncRNAs in MSCs has not been extensively characterized. To address the roles of lncRNAs in MSCs, LINC00698 was characterized in this study. The results revealed that LINC00698 was upregulated in MSCs, showing its important role in MSCs. The further data indicated that the LINC00698 silencing triggered cell cycle arrest in the G0/G1 phase and apoptosis of MSCs. LINC00698 could directly interact with miR-3132 to upregulate the expression of TCF7, which was required for sustaining the stemness and the tumorigenic potency of MSCs. At the same time, LINC00698 could bind to the hnRNPM protein to enhance the protein stability, thus suppressing apoptosis and promoting the stemness of MSCs. Furthermore, the in vivo data demonstrated that LINC00698 was essential for tumorigenesis of MSCs via the LINC00698-miR-3132-TCF7/hnRNPM axis. Therefore, our findings contributed novel insights into the underlying mechanism of melanoma progression.
Collapse
Affiliation(s)
- Anas Mohammed
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ahmad Khan
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
3
|
Liu YN, Tsai MF, Wu SG, Chang TH, Shih JY. CD44s and CD44v8-10 isoforms confer acquired resistance to osimertinib by activating the ErbB3/STAT3 signaling pathway. Life Sci 2024; 336:122345. [PMID: 38092140 DOI: 10.1016/j.lfs.2023.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
AIMS Although epidermal growth factor receptor (EGFR)-mutant lung cancers respond well to osimertinib, acquired resistance to osimertinib eventually develops through EGFR-dependent and EGFR-independent resistance mechanisms. CD44 splicing variants are widely expressed in lung cancer tissues. However, it remains unclear whether specific splicing variants are involved in acquired resistance to osimertinib. MAIN METHODS The real-time PCR was performed to measure the expression levels of total CD44 and specific CD44 splicing variants (CD44s or CD44v). Gene knockdown and restoration were performed to investigate the effects of CD44 splicing variants on osimertinib sensitivity. Activation of the signaling pathway was evaluated using receptor-tyrosine-kinase phosphorylation membrane arrays, co-immunoprecipitation, and western blotting. KEY FINDINGS Clinical analysis demonstrated that the expression level of total CD44 increased in primary cancer cells from lung adenocarcinomas patients after the development of acquired resistance to osimertinib. Furthermore, osimertinib-resistant cells showed elevated levels of either the CD44s variant or CD44v variants. Manipulations of CD44s or CD44v8-10 were performed to investigate their effects on treatment sensitivity to osimertinib. Knockdown of CD44 increased osimertinib-induced cell death in osimertinib-resistant cells. However, restoration of CD44s or CD44v8-10 in CD44-knockdown H1975/AZD-sgCD44 cells induced osimertinib resistance. Mechanically, we showed that ErbB3 interacted with CD44 and was transactivated by CD44, that consequently triggered activation of the ErbB3/STAT3 signaling pathway and led to CD44s- or CD44v8-10-mediated osimertinib resistance. SIGNIFICANCE CD44 is a co-receptor for ErbB3 and triggers activation of the ErbB3 signaling axis, leading to acquired resistance to osimertinib. CD44/ErbB3 signaling may represent a therapeutic target for overcoming osimertinib resistance.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Feng Tsai
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci 2023; 10:1326148. [PMID: 38106992 PMCID: PMC10722200 DOI: 10.3389/fmolb.2023.1326148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Alternative splicing is often deregulated in cancer, and cancer-specific isoform switches are part of the oncogenic transformation of cells. Accumulating evidence indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play different roles in cancer cells as compared to normal cells. In particular, the shift of CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is crucial for the maintenance of pluripotency in normal human cells and the acquisition of cancer stem cells phenotype for malignant cells. The growing and seemingly promising use of splicing inhibitors for treating cancer and other pathologies gives hope for the prospect of using such an approach to regulate CD44 alternative splicing. This review integrates current knowledge about regulating CD44 alternative splicing by RNA-binding proteins.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Zhong H, Li Q, Pei S, Wu Y, Li Z, Liu X, Peng Y, Zheng T, Xiao J, Feng H. hnRNPM suppressed IRF7-mediated IFN signaling in the antiviral innate immunity in triploid hybrid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104915. [PMID: 37586670 DOI: 10.1016/j.dci.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Mammalian heterogeneous nuclear ribonucleoproteins M (hnRNPM) is a critical splicing regulatory protein that has been reported to negatively regulate the RLR signaling pathway by impairing the binding of RIG-I and MDA5 to viral RNA. To explore the role of hnRNPM in the antiviral innate immune response in teleost fish, the hnRNPM homologue of triploid fish (3nhnRNPM) has been cloned and identified in this paper. The CDS of 3nhnRNPM gene is composed of 2016 nucleotides and encodes 671 amino acids. 3nhnRNPM migrated around 71 kDa in immunoblotting assay and was mainly detected in the nucleus in nucleo-cytoplasmic separation assay and immunofluorescent staining test. When 3nhnRNPM and 3nIRF7 were co-expressed in EPC cells, 3nhnRNPM significantly reduced the 3nIRF7-induced interferon (IFN) promoter transcription. Correspondingly, the mRNA levels of the SVCV-M, -N, -P, and -G genes were noteworthily enhanced, but the transcription levels of epcIFNφ1, epcMx1, epcPKR, and epcISG15 were dramatically decreased. Additionally, the knockdown of 3nhnRNPM resulted in restricted SVCV replication and enhanced host cell antiviral activity. Furthermore, the association between 3nhnRNPM and 3nIRF7 has been identified by the co-immunoprecipitation assay. In addition, we found that 3nIRF7 was detained in the nucleus when co-expressed with 3nhnRNPM. To sum up, our data supported the conclusion that 3nhnRNPM suppressed 3nIRF7-mediated IFN signaling in the antiviral innate immunity.
Collapse
Affiliation(s)
- Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qian Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuaibin Pei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yanfang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhenghao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaoyu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuqing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Tianle Zheng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Wang J, Luo X, Liu D. Knockdown of HNRNPM inhibits the progression of glioma through inducing ferroptosis. Cell Cycle 2023; 22:2264-2279. [PMID: 38016815 PMCID: PMC10730218 DOI: 10.1080/15384101.2023.2286782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 11/30/2023] Open
Abstract
PURPOSE Ferroptosis acts as an important regulator in diverse human tumors, including the glioma. This study aimed to screen potential ferroptosis-related genes involved in the progression of glioma. MATERIALS AND METHODS Differently expressed genes (DEGs) were screened based on GSE31262 and GSE12657 datasets, and ferroptosis-related genes were separated. Among the important hub genes in the protein-protein interaction networks, HNRNPM was selected as a research target. Following the knockdown of HNRNPM, the viability, migration, and invasion were detected by CCK8, wound healing, and transwell assays, respectively. The role of HNRNPM knockdown was also verified in a xenograft tumor model in mice. Immunohistochemistry detected the expression levels of HNRNPM and Ki67. Moreover, the ferroptosis was evaluated according to the levels of iron, glutathione peroxidase (GSH), and malondialdehyde (MDA), as well as the expression of PTGS2, GPX4, and FTH1. RESULTS Total 41 overlapping DEGs relating with ferroptosis and glioma were screened, among which 4 up-regulated hub genes (HNRNPM, HNRNPA3, RUVBL1, and SNRPPF) were determined. The up-regulation of HNRNPM presented a certain predictive value for glioma. In addition, knockdown of HNRNPM inhibited the viability, migration, and invasion of glioma cells in vitro, and also the tumor growth in mice. Notably, knockdown of HNRNPM enhanced the ferroptosis in glioma cells. Furthermore, HNRNPM was positively associated with SMARCA4 in glioma. CONCLUSIONS Knockdown of HNRNPM inhibits the progression of glioma via inducing ferroptosis. HNRNPM is a promising molecular target for the treatment of glioma via inducing ferroptosis. We provided new insights of glioma progression and potential therapeutic guidance.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Xiaolin Luo
- Party Committee Office, The Third Affiliated Hospital of Gannan Medical University/Affiliated stomatological hospital, Ganzhou, Jiangxi, China
| | - Dehua Liu
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Neurology, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Jian FX, Bao PX, Li WF, Cui YH, Hong HG. Negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cells and patient prognosis after breast cancer surgery. BMC Cancer 2023; 23:269. [PMID: 36964570 PMCID: PMC10037889 DOI: 10.1186/s12885-023-10738-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE To investigate how the negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cell lines and prognosis in postoperative breast cancer patients. METHODS RT-PCR, qRT-PCR, and western blot assays were used to detect the expression of CD44s, CD44v6, and CD44st at both mRNA and protein levels. The expression of miR-138-5p in breast cancer cell lines was also evaluated. The binding ability of miR-138-5p to CD44st was determined via a dual-luciferase assay. The CD44 protein expression in breast cancer tissues was detected using immunohistochemistry. A Transwell assay was used to detect the invasive ability of tumor cells. The correlation between CD44st and miR-138-5p mRNA expression in breast cancer tissues was evaluated using qRT-PCR, and the relationship between clinicopathological features was statistically analyzed. RESULTS CD44s and CD44v6 were highly expressed in MDAMB-231 cell line, while CD44st was highly expressed in MCF-7/Adr and Skbr-3 cells. None of the CD44 isoforms were expressed in MCF-7 cells. The miR-138-5p was highly expressed in MCF-7 cells, but not in MCF-7/Adr, Skbr-3, and MDAMB-231 cells. The dual-luciferase assay suggested that miR-138-5p could bind to wild-type CD44st 3'-UTR, miR-138-5p overexpression significantly inhibited the expression level of CD44 protein in MCF-7/Adr cells, and miR-138-5p + CD44st (3'-UTR)-treated MCF-7/Adr and Skbr-3 cells were significantly less invasive than those in the control group (P < 0.05). RT-PCR results for 80 postoperative breast cancer patients showed that the mRNA expression rate for CD44st was higher in cancer tissues than in paracancerous tissues, and the expression rate of miR-138-5p was higher in paracancerous tissues than in cancerous tissues (P < 0.01). In cancer tissues, CD44st was negatively correlated with miR-138-5p expression, with correlation coefficient r = -0.76 (Pearson's correlation), coefficient of determination R2 = 0.573, F = 106.89, and P < 0.001. The median overall survival value for patients in the low miR-138-5p expression group was 40.39 months [95% confidence interval (CI): 35.59-45.18 months] and 56.30 months (95% CI: 54.38-58.21 months) for patients in the high-expression group, with a log rank (Mantel-Cox) of 13.120, one degree of freedom, and P < 0.001. CONCLUSION In breast cancer cell lines, miR-138-5p negatively regulated expression of CD44st and affected the invasive ability of tumor cells and patient prognosis after breast cancer surgery.
Collapse
Affiliation(s)
- Fang Xin Jian
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China
| | - Peng Xiao Bao
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
| | | | - Yan Hai Cui
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| | - Hang Guan Hong
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
8
|
Abuwatfa WH, Paul V, AlSawaftah NM, Farooq A, Awad NS, Husseini GA. In Vitro Evaluation of Ultrasound Effectiveness in Controlling Doxorubicin Release from Albumin-Conjugated Liposomes. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalized liposomes are among the most promising antineoplastic agents delivery vehicles. Contemporaneous to their accretion at the tumor site, they need to be potentiated to release their cargo using a suitable triggering modality. In this work, targeted Doxorubicin (DOX)-loaded
stealth liposomes were synthesized and functionalized with Human Serum Albumin (HSA) to target the overexpressed HSA receptors (HSA-Rs). The effects of low-frequency ultrasound (LFUS) in inducing DOX release from the synthesized liposomes were investigated In Vitro. DOX release increased
with the increasing power density of ultrasound. HSA conjugation to the liposomes increased their sensitivity to LFUS. Furthermore, HSA conjugation also enhanced the liposome’s cytotoxic activity and uptake by the cancer cells overexpressing HSA-Rs. This cytotoxic activity and cellular
uptake were further enhanced by triggering drug release from those targeted liposomes using LFUS. Combining HSA-targeted liposomes with LFUS is a promising approach in drug delivery.
Collapse
Affiliation(s)
- Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Vinod Paul
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Nour M. AlSawaftah
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Afifa Farooq
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Nahid S. Awad
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah, 26666, UAE
| |
Collapse
|
9
|
dos Santos MGP, Gatti da Silva GH, Nagasse HY, Fuziwara CS, Kimura ET, Coltri PP. hnRNP A1 and hnRNP C associate with miR-17 and miR-18 in thyroid cancer cells. FEBS Open Bio 2022; 12:1253-1264. [PMID: 35417090 PMCID: PMC9157402 DOI: 10.1002/2211-5463.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are essential players in the regulation of gene expression. The majority of the twenty different hnRNP proteins act through the modulation of pre-mRNA splicing. Most have been shown to regulate the expression of critical genes for the progression of tumorigenic processes and were also observed to be overexpressed in several types of cancer. Moreover, these proteins were described as essential components for the maturation of some microRNAs (miRNAs). In the human genome, over 70% of miRNAs are transcribed from introns; therefore, we hypothesized that regulatory proteins involved with splicing could be important for their maturation. Increased expression of the miR-17-92 cluster has already been shown to be related to the development of many cancers, such as thyroid, lung, and lymphoma. In this article, we show that overexpression of hnRNP A1 and hnRNP C in BCPAP thyroid cancer cells directly affects the expression of miR-17-92 miRNAs. Both proteins associate with the 5'-end of this cluster, strongly precipitate miRNAs miR-17 and miR-18a and upregulate the expression of miR-92a. Upon overexpression of these hnRNPs, BCPAP cells also show increased proliferation, migration, and invasion rates, suggesting upregulation of these proteins and miRNAs is related to an enhanced tumorigenic phenotype.
Collapse
Affiliation(s)
- Maria Gabriela Pereira dos Santos
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
- Present address:
National Center for Tumor Diseases (NCT) DresdenFetscherstraße 74Dresden01307Germany
| | | | - Helder Yudi Nagasse
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Cesar Seigi Fuziwara
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Edna T. Kimura
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Patricia Pereira Coltri
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| |
Collapse
|
10
|
Application of explainable artificial intelligence in the identification of Squamous Cell Carcinoma biomarkers. Comput Biol Med 2022; 146:105505. [DOI: 10.1016/j.compbiomed.2022.105505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
11
|
Zhu GQ, Wang Y, Wang B, Liu WR, Dong SS, Chen EB, Cai JL, Wan JL, Du JX, Song LN, Chen SP, Yu L, Zhou ZJ, Wang Z, Zhou J, Shi YH, Fan J, Dai Z. Targeting HNRNPM Inhibits Cancer Stemness and Enhances Antitumor Immunity in Wnt-activated Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1413-1447. [PMID: 35158098 PMCID: PMC8938476 DOI: 10.1016/j.jcmgh.2022.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Cancer stemness and immune evasion are closely associated and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. METHODS The expressions of heterogeneous nuclear ribonucleoprotein M (HNRNPM) in 240 hepatocellular carcinoma (HCC) samples, public databases, and liver development databases were analyzed. Chromatin immunoprecipitation assays were performed to explore the associations between stem-cell transcription factors and HNRNPM. HNRNPM-regulated alternative splicing (AS) and its binding motif were identified by RNA-seq and RIP-seq. HNRNPM-specific antisense oligonucleotides were developed to explore potential therapeutic targets in HCC. CD8+ T cells that were co-cultured with tumor cells were sorted by flow cytometry assays. RESULTS We identified an elevated oncofetal splicing factor in HCC, HNRNPM, that unifies and regulates the positive association between cancer stemness and immune evasion. HNRNPM knockdown abolished HCC tumorigenesis and diminished cancer stem cell properties in vitro and in vivo. Mechanistically, HNRNPM regulated the AS of MBD2 by binding its flanking introns, whose isoforms played opposing roles. Although MBD2a and MBD2c competitively bound to CpG islands in the FZD3 promoter, MBD2a preferentially increased FZD3 expression and then activated the WNT/β-catenin pathway. Interestingly, FZD3 and β-catenin further provided additional regulation by targeting OCT4 and SOX2. We found that HNRNPM inhibition significantly promoted CD8+ T cell activation and that HNRNPM- antisense oligonucleotides effectively inhibited WNT/β-catenin to enhance anti-programmed cell death protein-1 immunotherapy by promoting CD8+ T cell infiltration. CONCLUSIONS HNRNPM has a tumor-intrinsic function in generating an immunosuppressive HCC environment through an AS-dependent mechanism and demonstrates proof of the concept of targeting HNRNPM in tailoring HCC immunotherapeutic approaches.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Shuang-Shuang Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Er-Bao Chen
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing-Lei Wan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Na Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Shi-Ping Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Lei Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Alterations in Glucose Metabolism Due to Decreased Expression of Heterogeneous Nuclear Ribonucleoprotein M in Pancreatic Ductal Adenocarcinoma. BIOLOGY 2021; 10:biology10010057. [PMID: 33466816 PMCID: PMC7830884 DOI: 10.3390/biology10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Pancreatic cancer has one of the worst prognoses when compared to those of other cancer subtypes. One of the reasons is the resistance of this tumor to the hypovascular environment (an environment with low blood flow and low supply of oxygen and nutrients (especially glucose)). However, the detailed mechanism remains elusive. Recently, it has been reported that heterogeneous ribonuclear protein M (HNRNPM) is a splicing factor associated with malignant tumors. Thus, in this study, we investigated the expression and effects of HNRNPM in pancreatic ductal adenocarcinoma (PDA). We revealed that HNRNPM was highly expressed in pancreatic tissues but expression decreased in PDA tissues. Furthermore, we found that knockdown of HNRNPM protein expression under low-glucose conditions altered glucose metabolism and prolonged cell survival by suppressing glucose consumption. These results suggest that reduced expression of HNRNPM in PDAs may be involved in adaptation to a hypovascular environment, and that therapeutic agents for this target may lead to improved prognosis for pancreatic cancer. Abstract The prognosis of pancreatic cancer is considerably worse than that of other cancers, as early detection of pancreatic cancer is difficult and due to its hypovascular environment, which involves low blood flow and a low supply of oxygen and nutrients. Moreover, pancreatic cancer demonstrates a mechanism that allows it to survive in a hypovascular environment. However, the detailed mechanism remains elusive. Recently, it has been reported that heterogeneous ribonuclear protein M (HNRNPM) is a splicing factor associated with malignant tumors. Thus, in this study, we investigated the expression and effects of HNRNPM in pancreatic ductal adenocarcinoma (PDA). We observed that HNRNPM expression, which is highly expressed in pancreatic tissues, was reduced in PDA tissues. Additionally, knockdown of HNRNPM under low-glucose conditions that mimic a hypovascular environment was shown to alter glucose metabolism and prolong cell survival by suppressing glucose consumption. These results suggest that the decreased expression of HNRNPM in PDA may be involved in its adaptation to a hypovascular environment.
Collapse
|
13
|
Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 2021; 48:897-914. [PMID: 33400075 DOI: 10.1007/s11033-020-06094-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Enhanced metastasis and disease recurrence accounts for the high mortality rates associated with cancer. The process of Epithelial-Mesenchymal Transition (EMT) contributes towards the augmentation of cancer invasiveness along with the gain of stem-like and the subsequent drug-resistant behavior. Apart from the well-established transcriptional regulation, EMT is also controlled post-transcriptionally by virtue of alternative splicing (AS). Numerous genes including Fibroblast Growth Factor receptor (FGFR) as well as CD44 are differentially spliced during this trans-differentiation process which, in turn, governs cancer progression. These splicing alterations are controlled by various splicing factors including ESRP, RBFOX2 as well as hnRNPs. Here, we have depicted the mechanisms governing the splice isoform switching of FGFR and CD44. Moreover, the role of the splice variants generated by AS of these gene transcripts in modulating the metastatic potential and stem-like/chemoresistant behavior of cancer cells has also been highlighted. Additionally, the involvement of splicing factors in regulating EMT/invasiveness along with drug-resistance as well as the metabolic properties of the cells has been emphasized. Tumorigenesis is accompanied by a remodeling of the cellular splicing profile generating diverse protein isoforms which, in turn, control the cancer-associated hallmarks. Therefore, we have also briefly discussed about a wide variety of genes which are differentially spliced in the tumor cells and promote cancer progression. We have also outlined different strategies for targeting the tumor-associated splicing events which have shown promising results and therefore this approach might be useful in developing therapies to reduce cancer aggressiveness in a more specific manner.
Collapse
|
14
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
15
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Transcriptome-wide analysis and modelling of prognostic alternative splicing signatures in invasive breast cancer: a prospective clinical study. Sci Rep 2020; 10:16504. [PMID: 33020551 PMCID: PMC7536242 DOI: 10.1038/s41598-020-73700-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant alternative splicing (AS) has been highly involved in the tumorigenesis and progression of most cancers. The potential role of AS in invasive breast cancer (IBC) remains largely unknown. In this study, RNA sequencing of IBC samples from The Cancer Genome Atlas was acquired. AS events were screened by conducting univariate and multivariate Cox analysis and least absolute shrinkage and selection operator regression. In total, 2146 survival-related AS events were identified from 1551 parental genes, of which 93 were related to prognosis, and a prognostic marker model containing 14 AS events was constructed. We also constructed the regulatory network of splicing factors (SFs) and AS events, and identified DDX39B as the node SF gene, and verified the accuracy of the network through experiments. Next, we performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in triple negative breast cancer patients with different responses to neoadjuvant chemotherapy, and found that the exon-specific expression of EPHX2, C6orf141, and HERC4 was associated with the different status of patients that received neoadjuvant chemotherapy. In conclusion, this study found that DDX39B, EPHX2 (exo7), and HERC4 (exo23) can be used as potential targets for the treatment of breast cancer, which provides a new idea for the treatment of breast cancer.
Collapse
|
17
|
Li H, Liu J, Shen S, Dai D, Cheng S, Dong X, Sun L, Guo X. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential. J Cell Mol Med 2020; 24:11111-11119. [PMID: 32915499 PMCID: PMC7576281 DOI: 10.1111/jcmm.15558] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
As the most critical alternative splicing regulator, heterogeneous nuclear ribonucleoproteins (hnRNPs) have been reported to be implicated in various aspects of cancer. However, the comprehensive understanding of hnRNPs in cancer is still lacking. The molecular alterations and clinical relevance of hnRNP genes were systematically analysed in 33 cancer types based on next-generation sequence data. The expression, mutation, copy number variation, functional pathways, immune cell correlations and prognostic value of hnRNPs were investigated across different cancer types. HNRNPA1 and HNRNPAB were highly expressed in most tumours. HNRNPM, HNRNPUL1, and HNRNPL showed high mutation frequencies, and most hnRNP genes were frequently mutated in uterine corpus endometrial carcinoma (UCEC). HNRNPA2B1 showed widespread copy number amplification across various cancer types. HNRNPs participated in cancer-related pathways including protein secretion, mitotic spindle, G2/M checkpoint, DNA repair, IL6/JAK/STAT3 signal and coagulation, of which hnRNP genes of HNRNPF, HNRNPH2, HNRNPU and HNRNPUL1 are more likely to be implicated. Significant correlation of hnRNP genes with T help cells, NK cells, CD8 positive T cells and neutrophils was identified. Most hnRNPs were associated with worse survival of adrenocortical carcinoma (ACC), liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD), whereas hnRNPs predicted better prognosis in kidney renal clear cell carcinoma (KIRC) and thymoma (THYM). The prognosis analysis of KIRC suggested that hnRNPs gene cluster was significantly associated with overall survival (HR = 0.5, 95% CI = 0.35-0.73, P = 0.003). These findings provide novel evidence for further investigation of hnRNPs in the development and therapy of cancer in the future.
Collapse
Affiliation(s)
- Hao Li
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jingwei Liu
- Department of Anorectal Surgerythe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryKey Laboratory of Cancer Etiology and PreventionThe First Hospital of China Medical UniversityChina Medical UniversityShenyangChina
| | - Di Dai
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shitong Cheng
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Xiaolong Dong
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryKey Laboratory of Cancer Etiology and PreventionThe First Hospital of China Medical UniversityChina Medical UniversityShenyangChina
| | - Xiaolin Guo
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
18
|
Transcriptome Analysis Reveals the Effects of Troxerutin and Cerebroprotein Hydrolysate Injection on Injured Spinal Cords in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3561235. [PMID: 32831862 PMCID: PMC7424371 DOI: 10.1155/2020/3561235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a serious condition that results in disability and has a high morbidity rate; its treatment is very difficult. Although troxerutin and cerebroprotein hydrolysate (TCH) injections have been extensively used in clinics in China for the treatment of traumatic brain injury (TBI) and cerebral stroke, the potential efficacy of TCH injection in the treatment of SCI has never been revealed. In this study, the effects of administering TCH injections on neurological recovery in post-SCI rats were first tested with regard to the behavior and histology; subsequently, the specific expression profile of mRNAs and long noncoding RNAs (LncRNAs) in their spinal cords were conducted using RNA sequencing (RNA-seq). The LncRNA-mRNA networks were also elucidated. After SCI, we found that TCH injection with the right dose is effective for the recovery of locomotion function and repairing of the damaged tissue in the spinal cord; TCH injection is also discovered to have a role in the regulation of 443 differentially expressed genes (DEGs) and 27 differentially expressed LncRNAs (DELs) that are identified to have multiple functions, including locomotion, blood vessel morphogenesis, thiamine metabolism, Hippo signaling pathway, and axon guidance, by applying the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. In addition, it is revealed that, after SCI, the highly expressed LncRNA AABR07071383.1 in the post-SCI cis/trans-regulates the expression of mRNA Acpp mRNA that encodes a key enzyme involved in the metabolic process of thiamine in the abirritation of the dorsal root ganglion (DRG), which implies that TCH injection may be more effective when administered with benfotiamine (a common treatment drug).
Collapse
|
19
|
Chi X, Jiang Y, Chen Y, Lv L, Chen J, Yang F, Zhang X, Pan F, Cai Q. microR-505/heterogeneous nuclear ribonucleoprotein M inhibits hepatocellular carcinoma cell proliferation and induces cell apoptosis through the Wnt/β-catenin signaling pathway. Biomark Med 2020; 14:981-996. [PMID: 32940078 DOI: 10.2217/bmm-2019-0511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: This study aimed to investigate the expression of microRNA-505 (miR-505) and explore its clinical significance, biological function and mechanisms in hepatocellular carcinoma (HCC). Methods: Expression of miR-505 was measured in 128 paired HCC tissues and five cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay, Transwell migration, invasion assays and apoptosis assay were performed to explore the functional role of miR-505. The target gene of miR-505 was assessed using the bioinformatics assay and the related signaling pathway was confirmed using western blot. Results: Expression of miR-505 in HCC serum and tissues were downregulated. The overexpression of miR-505 in HCC cells inhibited cell proliferation and metastasis, as well as enhanced cell apoptosis by directly downregulating heterogeneous nuclear ribonucleoprotein M (HNRNPM). The activity of the Wnt/β-catenin signaling pathway was suppressed by the overexpression of miR-505 but was promoted by the upregulation of HNRNPM. Conclusion: The results suggest that the regulation of miR-505/HNRNPM may be a novel strategy to improve the targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiaobin Chi
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Yongbiao Chen
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Jianwei Chen
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| |
Collapse
|
20
|
Tang X, Xiao Q, Yu K. Breast Cancer Candidate Gene Detection Through Integration of Subcellular Localization Data With Protein–Protein Interaction Networks. IEEE Trans Nanobioscience 2020; 19:556-561. [DOI: 10.1109/tnb.2020.2990178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
22
|
Liu T, Zhao X, Zheng X, Zheng Y, Dong X, Zhao N, Liao S, Sun B. The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas. Int J Oncol 2020; 56:750-760. [PMID: 32124963 PMCID: PMC7010216 DOI: 10.3892/ijo.2020.4972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Pulmonary sarcomatoid carcinomas (PSCs) are a rare subtype of non‑small‑cell lung cancer and are typically biphasic neoplasms. No effective treatment for PSCs is currently available in clinical practice. The expression of the epithelial‑mesenchymal transition (EMT) transcription factors, Twist1, Slug and Snail, as well as the EMT phenotype and vasculogenic mimicry (VM) were analysed in 41 PSC and 79 pulmonary squamous carcinoma (PSCC) samples. Compared with the PSCCs, the PSCs exhibited an EMT phenotype and VM, and they also exhibited an increased expression of the Twist1, Slug, Snail and VM markers. Twist1 expression was associated with metastasis and TNM stage. Twist1‑positive patients exhibited a poorer prognosis for overall survival (OS) than those with Twist1‑negative PSCs. Transforming growth factor β1 (TGFβ1) was used to induce an EMT transition in a PSCC cell line. SK‑MES‑1 cells treated with TGFβ1 exhibited an increased expression of Twist1. The EMT phenotype, VM and increased migratory and invasive abilities were induced following TGFβ1 treatment. Importantly, in cells treated with TGFβ1, the EMT phenotype was reversed, VM marker expression was decreased, and the migratory and invasive ability of the PSCC cell line was decreased following Twist1 knockdown. Collectively, this study provides a new perspective of Twist1 in the aggressiveness of PSCs. The identification of Twist1 as an independent marker of poor prognoses may lead to the development of novel strategies for improving the treatment of patients with PSC.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xu Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yanjun Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shihan Liao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
23
|
Nangraj AS, Selvaraj G, Kaliamurthi S, Kaushik AC, Cho WC, Wei DQ. Integrated PPI- and WGCNA-Retrieval of Hub Gene Signatures Shared Between Barrett's Esophagus and Esophageal Adenocarcinoma. Front Pharmacol 2020; 11:881. [PMID: 32903837 PMCID: PMC7438937 DOI: 10.3389/fphar.2020.00881] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a deadly cancer with high mortality rate, especially in economically advanced countries, while Barrett's esophagus (BE) is reported to be a precursor that strongly increases the risk of EAC. Due to the complexity of these diseases, their molecular mechanisms have not been revealed clearly. This study aims to explore the gene signatures shared between BE and EAC based on integrated network analysis. We obtained EAC- and BE-associated microarray datasets GSE26886, GSE1420, GSE37200, and GSE37203 from the Gene Expression Omnibus and ArrayExpress using systematic meta-analysis. These data were accompanied by clinical data and RNAseq data from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to explore the relationship between gene sets and clinical traits as well as to discover the key relationships behind the co-expression modules. A differentially expressed gene-based protein-protein interaction (PPI) complex was used to extract hub genes through Cytoscape plugins. As a result, 403 DEGs were excavated, comprising 236 upregulated and 167 downregulated genes, which are involved in the cell cycle and replication pathways. Forty key genes were identified using modules of MCODE, CytoHubba, and CytoNCA with different algorithms. A dark-gray module with 207 genes was identified which having a high correlation with phenotype (gender) in the WGCNA. Furthermore, five shared hub gene signatures (SHGS), namely, pre-mRNA processing factor 4 (PRPF4), serine and arginine-rich splicing factor 1 (SRSF1), heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-Box Helicase 9 (DHX9), and origin recognition complex subunit 2 (ORC2), were identified between BE and EAC. SHGS enrichment denotes that RNA metabolism and splicosomes play a key role in esophageal cancer development and progress. We conclude that the PPI complex and WGCNA co-expression network highlight the importance of phenotypic identifying hub gene signatures for BE and EAC.
Collapse
Affiliation(s)
- Asma Sindhoo Nangraj
- The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, Henan University of Technology, Zhengzhou, China
- *Correspondence: Gurudeeban Selvaraj, ; Dong Qing Wei,
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, Henan University of Technology, Zhengzhou, China
| | - Aman Chandra Kaushik
- The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Dong Qing Wei
- The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Center of Interdisciplinary Sciences-Computational Life Sciences, Henan University of Technology, Zhengzhou, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Gurudeeban Selvaraj, ; Dong Qing Wei,
| |
Collapse
|
24
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
25
|
Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A Structure-Informed Atlas of Human-Virus Interactions. Cell 2019; 178:1526-1541.e16. [PMID: 31474372 PMCID: PMC6736651 DOI: 10.1016/j.cell.2019.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sandra V Mayer
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Evandro R Winkelmann
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Tim Chu
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Oliver Elliot
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Kernyu Park
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY, USA; Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA.
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
26
|
Kim DM, Shim YH, Kwon H, Kim JP, Park JI, Kim DH, Kim DH, Kim JH, Jeong YI. CD44 Receptor-Specific and Redox-Sensitive Nanophotosensitizers of Hyaluronic Acid-Chlorin e6 Tetramer Having Diselenide Linkages for Photodynamic Treatment of Cancer Cells. J Pharm Sci 2019; 108:3713-3722. [PMID: 31394112 DOI: 10.1016/j.xphs.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
For reactive oxygen species (ROS)-sensitive and CD44 receptor-mediated delivery of photosensitizers, chlorin e6 (ce6) tetramer was synthesized using tetra acid (TA) via selenocystamine linkages and then conjugated with hyaluronic acid (HA) (abbreviated as HAseseCe6TA). HAseseCe6TA nanophotosensitizers were fabricated by dialysis procedure. HAseseCe6TA nanophotosensitizers showed spherical morphology with small particle sizes less than 100 nm and monomodal pattern. When H2O2 was added, size distribution was changed to multimodal pattern and morphological observation showed disintegration of nanophotosensitizers, indicating that HAseseCe6TA nanophotosensitizers have ROS sensitivity. Furthermore, H2O2 addition resulted in acceleration of Ce6 release from HAseseCe6TA nanophotosensitizers. In vitro cell culture study, HAseseCe6TA nanophotosensitizers increase Ce6 uptake ratio, ROS production efficiency, and photodynamic therapy efficacy in both B16F10 cells and CT26 cells. Especially, CD44-receptor blocking of cancer cells by pretreatment of HA showed that fluorescence intensity in B16F10 cells was significantly decreased while fluorescence intensity in CT26 cells was not significantly changed, indicating that HAseseCe6TA nanophotosensitizers can be delivered by CD44 receptor-mediated pathway. In vivo animal tumor xenograft study, HAseseCe6TA nanophotosensitizers was selectively delivered to B16F10 tumor rather than CT26 tumor. These results indicated that HAseseCe6TA nanophotosensitizers have ROS sensitivity and have CD44 receptor-recognition properties.
Collapse
Affiliation(s)
- Doo-Man Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Yong Ho Shim
- R & D Center, UltraV Co. Ltd., Seoul 04779, Republic of Korea
| | - Hanjin Kwon
- R & D Center, UltraV Co. Ltd., Seoul 04779, Republic of Korea
| | - Jong-Pil Kim
- Busan Center, Korea Basic Science Institute, Busan 46241, Republic of Korea
| | - Ji-In Park
- Busan Center, Korea Basic Science Institute, Busan 46241, Republic of Korea
| | - Do Hoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Douk-Hoon Kim
- Department of Optometry, Masan University, Gyeongnam 51217, Republic of Korea
| | - Jin Hyeok Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 500757, Republic of Korea.
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Republic of Korea.
| |
Collapse
|
27
|
Yang T, An Z, Zhang C, Wang Z, Wang X, Liu Y, Du E, Liu R, Zhang Z, Xu Y. hnRNPM, a potential mediator of YY1 in promoting the epithelial-mesenchymal transition of prostate cancer cells. Prostate 2019; 79:1199-1210. [PMID: 31251827 DOI: 10.1002/pros.23790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND With the popularity of serum prostate-specific antigen (PSA) screening, the number of newly diagnosed prostate cancer (PCa) patients is increasing. However, indolent or invasive PCa cannot be distinguished by PSA levels. Here, we mainly explored the role of heterogeneous nuclear ribonucleoprotein M (hnRNPM) in the invasiveness of PCa. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis was used to detect the expressions of hnRNPM in PCa and benign prostate hyperplasia (BPH) tissues as well as in PCa cell lines. Immunohistochemistry was applied to detect the hnRNPM or Yin Yang 1 (YY1) expression in BPH, prostate adenocarcinoma (ADENO) and neuroendocrine prostate cancer (NEPC) tissues. After aberrant, the expression of hnRNPM in C4-2 and PC3 cells, the changes of cell migration and invasion were observed through wound-healing and transwell assays. We also predicted the transcription factor of hnRNPM through databases, then verified the association of hnRNPM and YY1 using chromatin immunoprecipitation (ChIP) and luciferase assays. RESULTS The expression level of hnRNPM is gradually reduced in BPH, ADENO, and NEPC tissues and it is less expressed in more aggressive PCa cell lines. Overexpression of hnRNPM can significantly reduce Twist1 expression, which inhibits the migration and invasion of PCa cells in vitro. In PCa cells, overexpression of YY1 can promote epithelial-mesenchymal transition by reducing hnRNPM expression. Furthermore, this effect caused by overexpression of YY1 can be partially attenuated by simultaneous overexpression of hnRNPM. CONCLUSIONS Our study demonstrates that hnRNPM negatively regulated PCa cell migration and invasion, and its expression can be transcriptionally inhibited by YY1. We speculated that hnRNPM may be a biomarker to assist in judging the aggressiveness of PCa.
Collapse
Affiliation(s)
- Tong Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Zesheng An
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Zhen Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xiaoming Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Yan Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - E Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| |
Collapse
|
28
|
Meng X, Yang S, Zhang J, Yu H. Contribution of alternative splicing to breast cancer metastasis. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:21. [PMID: 31737791 PMCID: PMC6857724 DOI: 10.20517/2394-4722.2018.96] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is a major contributor to transcriptome and proteome diversity in eukaryotes. Comparing to normal samples, about 30% more alternative splicing events were recently identified in 32 cancer types included in The Cancer Genome Atlas database. Some alternative splicing isoforms and their encoded proteins contribute to specific cancer hallmarks. In this review, we will discuss recent progress regarding the contributions of alternative splicing to breast cancer metastasis. We plan to dissect the role of MTDH, CD44 and their interaction with other mRNA splicing factors. We believe an in-depth understanding of the mechanism underlying the contribution of splicing to breast cancer metastasis will provide novel strategies to the management of breast cancer.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jun Zhang
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huimin Yu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Pathogenic Biology, Shenzhen University School of medicine, Shenzhen 518060, China
| |
Collapse
|
29
|
Han S, Huang T, Li W, Wang X, Wu X, Liu S, Yang W, Shi Q, Li H, Hou F. Prognostic Value of CD44 and Its Isoforms in Advanced Cancer: A Systematic Meta-Analysis With Trial Sequential Analysis. Front Oncol 2019; 9:39. [PMID: 30788285 PMCID: PMC6372530 DOI: 10.3389/fonc.2019.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Cancer stem cell marker CD44 and its variant isoforms (CD44v) may be correlated with tumor growth, metastasis, and chemo-radiotherapy resistance. However, the prognostic power of CD44 and CD44v in advanced cancer remains controversial. Therefore, the purpose of our study was to generalize the prognostic significance of these cancer stem cell markers in advanced cancer patients. Methods: Hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated from multivariable analysis to assess the associations among CD44, CD44v6, and CD44v9 positivity and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), and recurrence-free survival (RFS). Trial sequential analysis (TSA) was also conducted. Results: We included 15 articles that reported on 1,201 patients with advanced cancer (CD44: nine studies with 796 cases, CD44v6: three studies with 143 cases, and CD44v9: three studies with 262 cases). CD44 expression was slightly linked to worse OS (HR = 2.03, P = 0.027), but there was no correlation between CD44 expression and DFS, RFS, or PFS. Stratified analysis showed that CD44 expression was not correlated with OS at ≥5 years or OS in patients receiving adjuvant therapy. CD44v6 expression was not associated with OS. CD44v9 expression was closely associated with poor 5-years CSS in patients treated with chemo/radiotherapy (HR = 3.62, P < 0.001). However, TSA suggested that additional trials were needed to confirm these conclusions. Conclusions: CD44 or CD44v9 might be novel therapeutic targets for improving the treatment of advanced cancer patients. Additional prospective clinical trials are strongly needed across different cancer types.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wen Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shanshan Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjia Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Chen DD, Ji JA, Yan HC, Huang GH, Fang XJ. Effect of CD44st and HER2 expression on the postoperative prognosis of breast cancer patients. Onco Targets Ther 2019; 12:577-585. [PMID: 30697055 PMCID: PMC6339464 DOI: 10.2147/ott.s180972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective CD44st is a member of the CD44 family; abnormal expression of some CD44 isoforms are closely associated with axillary lymph node metastasis, cancer progression, and patients’ prognosis. The objective of this study is to investigate the correlation between the expression of CD44st and HER2 in breast cancer and the effect on patients’ prognosis. Methods Primers were designed to target the CD44st mRNA (Gene Bank No FJ216964) which has been newly identified in a drug-resistant breast cancer cell line. The expression of CD44st and HER2 mRNA and proteins in cancerous and paracancerous tissue of postoperative breast cancer patients was detected and compared. Tissue samples were obtained from 102 cases of invasive ductal carcinoma, 19 cases of intraductal carcinoma, and 11 cases of medullary carcinoma. The correlation between CD44st and HER2 expression and clinical pathological features was examined. Results The expression rate of CD44st mRNA and protein in breast cancer tissue was 64.4% (85/132), while HER2 mRNA and protein was expressed in 22.0% (29/106) of the samples. The expression of CD44st and HER2 were low in paracancerous tissue. In breast cancer tissue, the expression rate of HER2 mRNA and protein in the CD44st-positive group was 28.2% (24/85), and 10.6% (5/47) in the CD44st-negative group. This difference was statistically significant (P=0.015). Sequencing analysis showed that the amplified CD44st gene in this study was the same as that which was previously discovered in the drug-resistant breast cancer cell line. A linear correlation was found between the expression of CD44st and HER2 (r=0.972, r2=0.945, F=2,213.51, P<0.001). The expression of CD44st and HER2 was also closely associated with luminal cancer subtypes, lymph node metastasis, and TNM stage (P<0.05), but not associated with age, pathological type, or tumor size (P>0.05). The median overall survival in the CD44st high-expression group was 51.85 months (95% CI: 48.48–55.22), which was significantly shorter than that in the CD44st low-expression group (57.61 months; 95% CI: 55.54–59.68, P=0.032). Conclusion CD44st is closely related to the expression of HER2. The expression of CD44st affects patient prognosis and is associated with lymph node metastasis, TNM staging, and molecular subtyping.
Collapse
Affiliation(s)
- Dan Dan Chen
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Jun An Ji
- Department of Medical Oncology, The Gan Yu District Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Hai Cui Yan
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Guan Hong Huang
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Xin Jian Fang
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| |
Collapse
|
31
|
Harvey SE, Xu Y, Lin X, Gao XD, Qiu Y, Ahn J, Xiao X, Cheng C. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA (NEW YORK, N.Y.) 2018; 24:1326-1338. [PMID: 30042172 PMCID: PMC6140460 DOI: 10.1261/rna.066712.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental developmental process that is abnormally activated in cancer metastasis. Dynamic changes in alternative splicing occur during EMT. ESRP1 and hnRNPM are splicing regulators that promote an epithelial splicing program and a mesenchymal splicing program, respectively. The functional relationships between these splicing factors in the genome scale remain elusive. Comparing alternative splicing targets of hnRNPM and ESRP1 revealed that they coregulate a set of cassette exon events, with the majority showing discordant splicing regulation. Discordant splicing events regulated by hnRNPM show a positive correlation with splicing during EMT; however, concordant events do not, indicating the role of hnRNPM in regulating alternative splicing during EMT is more complex than previously understood. Motif enrichment analysis near hnRNPM-ESRP1 coregulated exons identifies guanine-uridine rich motifs downstream from hnRNPM-repressed and ESRP1-enhanced exons, supporting a general model of competitive binding to these cis-elements to antagonize alternative splicing. The set of coregulated exons are enriched in genes associated with cell migration and cytoskeletal reorganization, which are pathways associated with EMT. Splicing levels of coregulated exons are associated with breast cancer patient survival and correlate with gene sets involved in EMT and breast cancer subtyping. This study identifies complex modes of interaction between hnRNPM and ESRP1 in regulation of splicing in disease-relevant contexts.
Collapse
Affiliation(s)
- Samuel E Harvey
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yilin Xu
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xiaodan Lin
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin D Gao
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yushan Qiu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jaegyoon Ahn
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
32
|
Zhang FL, Cao JL, Xie HY, Sun R, Yang LF, Shao ZM, Li DQ. Cancer-Associated MORC2-Mutant M276I Regulates an hnRNPM-Mediated CD44 Splicing Switch to Promote Invasion and Metastasis in Triple-Negative Breast Cancer. Cancer Res 2018; 78:5780-5792. [PMID: 30093560 DOI: 10.1158/0008-5472.can-17-1394] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 04/14/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with a high propensity for distant metastasis and limited treatment options, yet its molecular underpinnings remain largely unknown. Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling protein whose mutations have been causally implicated in several neurologic disorders. Here, we report that a cancer-associated substitution of methionine to isoleucine at residue 276 (M276I) of MORC2 confers gain-of-function properties in the metastatic progression of TNBC. Expression of mutant MORC2 in TNBC cells increased cell migration, invasion, and lung metastasis without affecting cell proliferation and primary tumor growth compared with its wild-type counterpart. The M276I mutation enhanced binding of MORC2 to heterogeneous nuclear ribonucleoprotein M (hnRNPM), a component of the spliceosome machinery. This interaction promoted an hnRNPM-mediated splicing switch of CD44 from the epithelial isoform (CD44v) to the mesenchymal isoform (CD44s), ultimately driving epithelial-mesenchymal transition (EMT). Knockdown of hnRNPM reduced the binding of mutant MORC2 to CD44 pre-mRNA and reversed the mutant MORC2-induced CD44 splicing switch and EMT, consequently impairing the migratory, invasive, and lung metastatic potential of mutant MORC2-expressing cells. Collectively, these findings provide the first functional evidence for the M276I mutation in promoting TNBC progression. They also establish the first mechanistic connection between MORC2 and RNA splicing and highlight the importance of deciphering unique patient-derived mutations for optimizing clinical outcomes of this highly heterogeneous disease.Significance: A gain-of-function effect of a single mutation on MORC2 promotes metastasis of triple-negative breast cancer by regulating CD44 splicing. Cancer Res; 78(20); 5780-92. ©2018 AACR.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Ling Cao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Yan Xie
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Sun
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Feng Yang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Yang WH, Ding MJ, Cui GZ, Yang M, Dai DL. Heterogeneous nuclear ribonucleoprotein M promotes the progression of breast cancer by regulating the axin/β-catenin signaling pathway. Biomed Pharmacother 2018; 105:848-855. [PMID: 30021377 DOI: 10.1016/j.biopha.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 11/18/2022] Open
Abstract
Despite significant progress in the treatment of breast cancer due to advances in surgery, cytotoxic agents, and endocrine therapy, the prognosis for patients has not improved much. Accumulated evidence indicates that heterogeneous nuclear ribonucleoprotein M (hnRNPM) and Wnt/β-catenin function as tumor oncogenes in the progression of many cancers. The present study aimed to explore whether HnRNPM/β-catenin signaling molecules might serve as a genetic target for breast cancer treatment. To shed light on this issue, quantitative real-time polymerase chain reaction (qRT-PCR) detection, Western blotting, and immunohistochemical staining were performed. The hnRNPM is expressed at a much higher level in breast cancer tissues and cell lines than in noncancerous tissues and cell lines. In vitro studies revealed that overexpressed hnRNPM promoted cell proliferation and colony formation but inhibited cell apoptosis. In vivo results demonstrated that upregulation of hnRNPM dramatically increased breast cancer xenograft tumor growth. Western blotting and immunofluorescence studies revealed that hnRNPM markedly activated the Wnt/β-catenin pathway and catalyzed its translocation from the cytoplasm to the nucleus by targeting axin, a negative regulator of Wnt/β-catenin signaling in MCF-7 and KPL-4 cells. Elevated levels of c-Myc and cyclin D1 were observed when MCF-7 and KPL-4 cells were transfected with a hnRNPM vector. These findings indicate that the hnRNPM/axin/β-catenin signaling pathway acts as an oncogenic promoter in the progression of breast cancer, suggesting that hnRNPM may be a potential target for the treatment of this disease.
Collapse
Affiliation(s)
- Wen-Hua Yang
- Department of Oncology 2, Cangzhou Central Hospital, NO. 16 Xinhua Road, Cangzhou 061000, Hebei, China
| | - Ming-Jian Ding
- Department of Oncology 2, Cangzhou Central Hospital, NO. 16 Xinhua Road, Cangzhou 061000, Hebei, China
| | - Guo-Zhong Cui
- Department of Oncology 2, Cangzhou Central Hospital, NO. 16 Xinhua Road, Cangzhou 061000, Hebei, China
| | - Meng Yang
- Department of Oncology 2, Cangzhou Central Hospital, NO. 16 Xinhua Road, Cangzhou 061000, Hebei, China
| | - Dian-Lu Dai
- Department of Oncology 2, Cangzhou Central Hospital, NO. 16 Xinhua Road, Cangzhou 061000, Hebei, China.
| |
Collapse
|
34
|
Liu T, Sun H, Liu S, Yang Z, Li L, Yao N, Cheng S, Dong X, Liang X, Chen C, Wang Y, Zhao X. The suppression of DUSP5 expression correlates with paclitaxel resistance and poor prognosis in basal-like breast cancer. Int J Med Sci 2018; 15:738-747. [PMID: 29910679 PMCID: PMC6001410 DOI: 10.7150/ijms.24981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022] Open
Abstract
Basal-like breast cancer (BLBC) is resistant to endocrinotherapy and targeted therapy and new molecular therapies are needed for BLBC. In this study, we evaluated the role of DUSP1 and DUSP5, negative regulators of mitogen-activated protein kinase pathway, in the aggressiveness of BLBC. MDA-MB-231 cells were given paclitaxel (PTX) treatment and subsequently PTX resistant cell clones were established. Microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR), and online analysis of large cohorts of breast cancer patients were performed. The PTX resistant cells showed stronger cell proliferation ability by exhibiting the upregulation of CENPF, CDC6, MCM3, CLSPN and SMC1A expression. Furthermore, DUSP1 and DUSP5 expression was significantly downregulated in PTX resistant cells. In addition, in large breast cancer patients' database, both DUSP1 and DUSP5 correlated negatively with higher histological grade. DUSP1 low expression was obvious in HER2 positive and basal like while DUSP5 low expression was peculiar for basal like compared with other subtypes. Remarkably, low expression of DUSP5, but not DUSP1, was significantly correlated with poor survival of BLBC patients. In conclusion, our data suggest that loss of DUSP5 expression results in PTX resistance and tumor progression, providing a rationale for a therapeutic agent that restores DUSP5 in BLBC.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Shiqi Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Yang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Linqi Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Nan Yao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Siqi Cheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|