1
|
Konger RL, Xuei X, Derr-Yellin E, Fang F, Gao H, Liu Y. The Loss of PPARγ Expression and Signaling Is a Key Feature of Cutaneous Actinic Disease and Squamous Cell Carcinoma: Association with Tumor Stromal Inflammation. Cells 2024; 13:1356. [PMID: 39195246 DOI: 10.3390/cells13161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Given the importance of peroxisome proliferator-activated receptor (PPAR)-gamma in epidermal inflammation and carcinogenesis, we analyzed the transcriptomic changes observed in epidermal PPARγ-deficient mice (Pparg-/-epi). A gene set enrichment analysis revealed a close association with epithelial malignancy, inflammatory cell chemotaxis, and cell survival. Single-cell sequencing of Pparg-/-epi mice verified changes to the stromal compartment, including increased inflammatory cell infiltrates, particularly neutrophils, and an increase in fibroblasts expressing myofibroblast marker genes. A comparison of transcriptomic data from Pparg-/-epi and publicly available human and/or mouse actinic keratoses (AKs) and cutaneous squamous cell carcinomas (SCCs) revealed a strong correlation between the datasets. Importantly, PPAR signaling was the top common inhibited canonical pathway in AKs and SCCs. Both AKs and SCCs also had significantly reduced PPARG expression and PPARγ activity z-scores. Smaller reductions in PPARA expression and PPARα activity and increased PPARD expression but reduced PPARδ activation were also observed. Reduced PPAR activity was also associated with reduced PPARα/RXRα activity, while LPS/IL1-mediated inhibition of RXR activity was significantly activated in the tumor datasets. Notably, these changes were not observed in normal sun-exposed skin relative to non-exposed skin. Finally, Ppara and Pparg were heavily expressed in sebocytes, while Ppard was highly expressed in myofibroblasts, suggesting that PPARδ has a role in myofibroblast differentiation. In conclusion, these data provide strong evidence that PPARγ and possibly PPARα represent key tumor suppressors by acting as master inhibitors of the inflammatory changes found in AKs and SCCs.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fang Fang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Zou DD, Sun YZ, Li XJ, Wu WJ, Xu D, He YT, Qi J, Tu Y, Tang Y, Tu YH, Wang XL, Li X, Lu FY, Huang L, Long H, He L, Li X. Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. eLife 2023; 12:e85270. [PMID: 38099574 PMCID: PMC10783873 DOI: 10.7554/elife.85270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, KunmingYunnanChina
| | - Ya-Zhou Sun
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, GuangdongChina
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Xin-Jie Li
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yu-Tong He
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yang Tang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yun-Hua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Xiao-Li Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical UniversityShanghaiChina
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, ChuxiongYunnanChina
| | - Feng-Yan Lu
- Department of Dermatology, Qujing Affiliated Hospital of Kunming Medical University, The First People’s Hospital of QujingYunnanChina
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, DaliYunnanChina
| | - Heng Long
- Wenshan Zhuang and Miao Autonomous Prefecture Dermatology Clinic, Wenshan Zhuang and Miao Autonomous Prefecture Specialist Hospital of Dermatology, WenshanYunnanChina
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Xin Li
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen UniversityGuangdongChina
| |
Collapse
|
3
|
Lee YB, Kim JI. Genetic Studies of Actinic Keratosis Development: Where Are We Now? Ann Dermatol 2023; 35:389-399. [PMID: 38086352 PMCID: PMC10733082 DOI: 10.5021/ad.23.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 12/22/2023] Open
Abstract
Actinic keratosis (AK) is a common precancerous skin lesion that can develop into cutaneous squamous cell carcinoma (CSCC). AK is characterized by atypical keratinocytes in the skin's outer layer and is commonly found in sun-exposed areas. Like many precancerous lesions, the development of AK is closely associated with genetic mutations. The molecular biology and transcriptional mechanisms underlying AK development are not well understood. Ultraviolet (UV) light exposure, especially UVA and UVB radiation, is a significant risk factor for AK, causing DNA damage and mutagenic effects. Besides UV exposure, comorbidities like diabetes, rheumatoid arthritis, and psoriasis may also influence AK development. AK patients have shown associations with various internal malignancies, indicating potential vulnerability in cancer-associated genes. Treatment for AK includes cryosurgery, electrodesiccation and curettage, chemotherapeutic creams, photodynamic therapy, or topical immune-modulators. Genomic studies have identified genetic aberrations in AK, with common mutations found in genes like TP53, NOTCH1, and NOTCH2. The progression from AK to CSCC involves chromosomal aberrations and alterations in oncogenes and tumor-suppressor genes. The functional relationships among these genes are not fully understood, but network analysis provides insights into their potential mechanisms. Further research is needed to enhance our understanding of AK's pathogenesis and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Young Bok Lee
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Xiong L, Tan J, Zhang R, Long Q, Xiong R, Liu Y, Liu Y, Tang J, Li Y, Feng G, Song G, Liu K. LINC01305 recruits basonuclin 1 to act on G-protein pathway suppressor 1 to promote esophageal squamous cell carcinoma. Cancer Sci 2023; 114:4314-4328. [PMID: 37705202 PMCID: PMC10637064 DOI: 10.1111/cas.15963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
EsophageaL squamous cell carcinoma (ESCC) is one of the most common and lethal tumors, however, its underlying molecular mechanisms are not completely understood and new therapeutic targets are needed. Here, we found that the transcription factor basonuclin 1 (BNC1) was significantly upregulated and closely related to the differentiation and metastasis of ESCC. Furthermore, BNC1, LINC01305, and G-protein pathway suppressor 1 (GPS1) had significant oncogenic roles in ESCC. In addition, in vivo experiments showed that knockdown of BNC1 indeed significantly inhibited the proliferation and metastasis of ESCC. We also revealed the molecular mechanism by which LINC01305 recruits BNC1 to the promoter of GPS1, and then GPS1 could mediate the JNK signaling pathway to promote the proliferation and metastases of ESCC. Taken together, we discovered the novel molecular mechanism by which LINC01305/BNC1 upregulates GPS1 expression to promote the development of ESCC, providing a new therapeutic target for ESCC.
Collapse
Affiliation(s)
- Li Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Jinsong Tan
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Ruolan Zhang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Qiongxian Long
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Yanqun Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
| | - Yun Liu
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Jiancai Tang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Yan Li
- Department of Anatomy and Physiology, College of Basic Medical Science, Songjiang Research Institute and Songjiang HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
| | - Guiqin Song
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| |
Collapse
|
5
|
Marjanovic J, Ramirez HA, Jozic I, Stone RC, Wikramanayake TC, Head CR, Abdo Abujamra B, Ojeh N, Kirsner RS, Lev-Tov H, Pastar I, Tomic-Canic M. Dichotomous role of miR193b-3p in diabetic foot ulcers maintains inhibition of healing and suppression of tumor formation. Sci Transl Med 2022; 14:eabg8397. [PMID: 35544594 PMCID: PMC9707408 DOI: 10.1126/scitranslmed.abg8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite the hyperproliferative environment marked by activation of β-catenin and overexpression of c-myc, the epidermis surrounding chronic diabetic foot ulcers (DFUs) is clinically hypertrophic and nonmigratory yet does not undergo malignant transformation. We identified miR193b-3p as a master regulator that contributes to this unique cellular phenotype. We determined that induction of tumor suppressor miR193b-3p is a unique feature of DFUs that is not found in venous leg ulcers, acute wounds, or cutaneous squamous cell carcinoma (SCC). Genomic analyses of DFUs identified suppression of the miR193b-3p target gene network that orchestrates cell motility. Inhibition of migration and wound closure was further confirmed by overexpression of miR193b-3p in human organotypic and murine in vivo wound models, whereas miR193b-3p knockdown accelerated wound reepithelialization in human ex vivo and diabetic murine wounds in vivo. The dominant negative effect of miR193b-3p on keratinocyte migration was maintained in the presence of promigratory miR31-5p and miR15b-5p, which were also overexpressed in DFUs. miR193b-3p mediated antimigratory activity by disrupting stress fiber formation and by decreasing activity of GTPase RhoA. Conversely, miR193b-3p targets that typically participate in malignant transformation were found to be differentially regulated between DFUs and SCC, including the proto-oncogenes KRAS (Kirsten rat sarcoma viral proto-oncogene) and KIT (KIT proto-oncogene). Although miR193b-3p acts as a tumor suppressor contributing to low tumor incidence in DFUs, it also acts as a master inhibitor of cellular migration and epithelialization in DFUs. Thus, miR193b-3p may represent a target for wound healing induction, cancer therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Horacio A Ramirez
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Tongyu C Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Beatriz Abdo Abujamra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Faculty of Medical Sciences, The University of the West Indies, Bridgetown BB11000, Barbados
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
6
|
Minaei E, Mueller SA, Ashford B, Thind AS, Mitchell J, Perry JR, Genenger B, Clark JR, Gupta R, Ranson M. Cancer Progression Gene Expression Profiling Identifies the Urokinase Plasminogen Activator Receptor as a Biomarker of Metastasis in Cutaneous Squamous Cell Carcinoma. Front Oncol 2022; 12:835929. [PMID: 35480116 PMCID: PMC9035872 DOI: 10.3389/fonc.2022.835929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/16/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) of the head and neck region is the second most prevalent skin cancer, with metastases to regional lymph nodes occurring in 2%–5% of cases. To further our understanding of the molecular events characterizing cSCC invasion and metastasis, we conducted targeted cancer progression gene expression and pathway analysis in non-metastasizing (PRI-) and metastasizing primary (PRI+) cSCC tumors of the head and neck region, cognate lymph node metastases (MET), and matched sun-exposed skin (SES). The highest differentially expressed genes in metastatic (MET and PRI+) versus non-metastatic tumors (PRI-) and SES included PLAU, PLAUR, MMP1, MMP10, MMP13, ITGA5, VEGFA, and various inflammatory cytokine genes. Pathway enrichment analyses implicated these genes in cellular pathways and functions promoting matrix remodeling, cell survival and migration, and epithelial to mesenchymal transition, which were all significantly activated in metastatic compared to non-metastatic tumors (PRI-) and SES. We validated the overexpression of urokinase plasminogen activator receptor (uPAR, encoded by PLAUR) in an extended patient cohort by demonstrating higher uPAR staining intensity in metastasizing tumors. As pathway analyses identified epidermal growth factor (EGF) as a potential upstream regulator of PLAUR, the effect of EGF on uPAR expression levels and cell motility was functionally validated in human metastatic cSCC cells. In conclusion, we propose that uPAR is an important driver of metastasis in cSCC and represents a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Elahe Minaei
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Simon A. Mueller
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Department for Otorhinolaryngology, Head and Neck Surgery, Zurich University Hospital University of Zurich, Zurich, Switzerland
| | - Bruce Ashford
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Amarinder Singh Thind
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jenny Mitchell
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia
| | - Jay R. Perry
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Benjamin Genenger
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan R. Clark
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- NSW Health Pathology, Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Marie Ranson,
| |
Collapse
|
7
|
Emerging precision diagnostics in advanced cutaneous squamous cell carcinoma. NPJ Precis Oncol 2022; 6:17. [PMID: 35322182 PMCID: PMC8943023 DOI: 10.1038/s41698-022-00261-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced cutaneous squamous cell carcinoma (cSCC) encompasses unresectable and metastatic disease. Although immune checkpoint inhibition has been approved for this entity recently, a considerable proportion of cases is associated with significant morbidity and mortality. Clinical, histopathological, and radiological criteria are used for current diagnostics, classification, and therapeutic decision-making. The identification of complex molecular biomarkers to accurately stratify patients is a not yet accomplished requirement to further shift current diagnostics and care to a personalized precision medicine. This article highlights new insights into the mutational profile of cSCC, summarizes current diagnostic and therapeutic standards, and discusses emerging diagnostic approaches with emphasis on liquid biopsy and tumor tissue-based analyses.
Collapse
|
8
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
9
|
Liang ZQ, Zhong LY, Li J, Shen JH, Tu XY, Zhong ZH, Zeng JJ, Chen JH, Wei ZX, Dang YW, Huang SN, Chen G. Clinicopathological significance and underlying molecular mechanism of downregulation of basonuclin 1 expression in ovarian carcinoma. Exp Biol Med (Maywood) 2022; 247:106-119. [PMID: 34644201 PMCID: PMC8777474 DOI: 10.1177/15353702211052036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we aim to identify the clinical significance of basonuclin 1 (BNC1) expression in ovarian carcinoma (OV) and to explore its latent mechanisms. Via integrating in-house tissue microarrays, gene chips, and RNA-sequencing data, we explored the expression and clinical value of BNC1 in OV. Immunohistochemical staining was utilized to confirm the protein expression status of BNC1. A combined SMD of -2.339 (95% CI: -3.649 to -1.028, P < 0.001) identified that BNC1 was downregulated based on 1346 samples, and the sROC (AUC = 0.93) showed a favorable discriminatory ability of BNC1 in OV patients. We used univariate and multivariate Cox regulation to evaluate the prognostic role of BNC1 for OV patients, and a combined hazard ratio of 0.717 (95% CI: 0.445-0.989, P < 0.001) revealed that BNC1 was a protective factor for OV. Furthermore, the fraction of infiltrating naive B cells, memory B cells, and other immune cells showed statistical differences between the high- and low-BNC1 expression groups through cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Enrichment analysis showed that BNC1 may have a relationship with immune-related items in OV. By predicting the potential regulatory transcription factors (TFs) of BNC1, friend leukemia virus integration 1 (FLI1) may be a potential upstream TF of BNC1. Corporately, a decreasing trend of BNC1 may serve as a tumor suppressor and prognostic biomarker in OV patients. Moreover, BNC1 may take part in immune-related pathways and influence the fraction of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Lu-Yang Zhong
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jie Li
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jin-Hai Shen
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Xin-Yue Tu
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Zheng-Hong Zhong
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jun-Hong Chen
- Department of Pathology, Maternal and Child Health Hospital of
Guangxi Zhuang Autonomous Region, Nanning 530003, P. R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer
Hospital, Nanning 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
- Gang Chen.
| |
Collapse
|
10
|
Díez-López C, Tajes Orduña M, Enjuanes Grau C, Moliner Borja P, González-Costello J, García-Romero E, Francesch Manzano J, Yun Viladomat S, Jiménez-Marrero S, Ramos-Polo R, Ras Jiménez MDM, Comín-Colet J. Blood Differential Gene Expression in Patients with Chronic Heart Failure and Systemic Iron Deficiency: Pathways Involved in Pathophysiology and Impact on Clinical Outcomes. J Clin Med 2021; 10:jcm10214937. [PMID: 34768457 PMCID: PMC8585093 DOI: 10.3390/jcm10214937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Iron deficiency is a common disorder in patients with heart failure and is related with adverse outcomes and poor quality of life. Previous experimental studies have shown biological connections between iron homeostasis, mitochondrial metabolism, and myocardial function. However, the mechanisms involved in this crosstalk are yet to be unfolded. Methods: The present research attempts to investigate the intrinsic biological mechanisms between heart failure and iron deficiency and to identify potential prognostic biomarkers by determining the gene expression pattern in the blood of heart failure patients, using whole transcriptome and targeted TaqMan® low-density array analyses. Results: We performed a stepwise cross-sectional longitudinal study in a cohort of chronic heart failure patients with and without systemic iron deficiency. First, the full transcriptome was performed in a nested case-control exploratory cohort of 7 paired patients and underscored 1128 differentially expressed transcripts according to iron status (cohort1#). Later, we analyzed the messenger RNA levels of 22 genes selected by their statistical significance and pathophysiological relevance, in a validation cohort of 71 patients (cohort 2#). Patients with systemic iron deficiency presented lower mRNA levels of mitochondrial ferritin, sirtuin-7, small integral membrane protein 20, adrenomedullin and endothelin converting enzyme-1. An intermediate mitochondrial ferritin gene expression and an intermediate or low sirtuin7 and small integral membrane protein 20 mRNA levels were associated with an increased risk of all-cause mortality and heart failure admission ((HR 2.40, 95% CI 1.04–5.50, p-value = 0.039), (HR 5.49, 95% CI 1.78–16.92, p-value = 0.003), (HR 9.51, 95% CI 2.69–33.53, p-value < 0.001), respectively). Conclusions: Patients with chronic heart failure present different patterns of blood gene expression depending on systemic iron status that affect pivotal genes involved in iron regulation, mitochondrial metabolism, endothelial function and cardiovascular physiology, and correlate with adverse clinical outcomes.
Collapse
Affiliation(s)
- Carles Díez-López
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Marta Tajes Orduña
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
| | - Cristina Enjuanes Grau
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Pedro Moliner Borja
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - José González-Costello
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Elena García-Romero
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Advanced Heart Failure and Heart Transplant Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Francesch Manzano
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
| | - Sergi Yun Viladomat
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Internal Medicine, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Santiago Jiménez-Marrero
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907 Barcelona, Spain
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Raul Ramos-Polo
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Maria del Mar Ras Jiménez
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Internal Medicine, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Comín-Colet
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-L.); (M.T.O.); (C.E.G.); (P.M.B.); (J.G.-C.); (E.G.-R.); (J.F.M.); (S.Y.V.); (S.J.-M.); (R.R.-P.); (M.d.M.R.J.)
- Community Heart Failure Unit, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907 Barcelona, Spain
- Community Heart Failure Program, Cardiology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-607-078
| |
Collapse
|
11
|
Thomson J, Bewicke-Copley F, Anene CA, Gulati A, Nagano A, Purdie K, Inman GJ, Proby CM, Leigh IM, Harwood CA, Wang J. The Genomic Landscape of Actinic Keratosis. J Invest Dermatol 2021; 141:1664-1674.e7. [PMID: 33482222 PMCID: PMC8221374 DOI: 10.1016/j.jid.2020.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Actinic keratoses (AKs) are lesions of epidermal keratinocyte dysplasia and are precursors for invasive cutaneous squamous cell carcinoma (cSCC). Identifying the specific genomic alterations driving the progression from normal skin to skin with AK to skin with invasive cSCC is challenging because of the massive UVR-induced mutational burden characteristic at all stages of this progression. In this study, we report the largest AK whole-exome sequencing study to date and perform a mutational signature and candidate driver gene analysis on these lesions. We demonstrate in 37 AKs from both immunosuppressed and immunocompetent patients that there are significant similarities between AKs and cSCC in terms of mutational burden, copy number alterations, mutational signatures, and patterns of driver gene mutations. We identify 44 significantly mutated AK driver genes and confirm that these genes are similarly altered in cSCC. We identify azathioprine mutational signature in all AKs from patients exposed to the drug, providing further evidence for its role in keratinocyte carcinogenesis. cSCCs differ from AKs in having higher levels of intrasample heterogeneity. Alterations in signaling pathways also differ, with immune-related signaling and TGFβ signaling significantly more mutated in cSCC. Integrating our findings with independent gene expression datasets confirms that dysregulated TGFβ signaling may represent an important event in AK‒cSCC progression.
Collapse
Affiliation(s)
- Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chinedu Anthony Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Abha Gulati
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ai Nagano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karin Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
12
|
Chou CF, Huang CC, Bin Dabil N, Chang PL. Assessing SPP1/Osteopontin (OPN) Splice Variants and Their Association to Nonmelanoma Skin Cancer by Absolute Quantification: Identification of OPN-5 Subvariants and Their Protein Coding Potential. Cancer Invest 2021; 39:559-570. [PMID: 34043476 DOI: 10.1080/07357907.2021.1933015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study evaluated whether SPP1/osteopontin (OPN) splice variants are differentially expressed in nonmelanoma skin cancer compared to normal skin. The absolute number of mRNA molecules of OPN-a predominated in normal skin and nonmelanoma skin cancer compared to OPN-b, OPN-c, and OPN-5. However, mRNAs of OPN-a, OPN-b, and OPN-c were expressed in higher levels in cutaneous squamous cell carcinomas (cSCCs) and basal cell carcinomas relative to normal skin. Additionally, OPN-5 expression was higher than OPN-b and OPN-c, and OPN-c, in normal skin and nonmelanoma skin cancer, respectively. Furthermore, we identified four OPN-5 splice variants, which were cloned and analyzed for protein expression.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Conway C Huang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noura Bin Dabil
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Zhang G, Yan G, Fu Z, Wu Y, Wu F, Zheng Z, Fang S, Gao Y, Bao X, Liu Y, Wang X, Zhu S. Loss of retinoic acid receptor-related receptor alpha (Rorα) promotes the progression of UV-induced cSCC. Cell Death Dis 2021; 12:247. [PMID: 33664254 PMCID: PMC7933246 DOI: 10.1038/s41419-021-03525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is prevalent in the world, accounting for a huge part of non-melanoma skin cancer. Most cSCCs are associated with a distinct pre-cancerous lesion, the actinic keratosis (AK). However, the progression trajectory from normal skin to AK and cSCC has not been fully demonstrated yet. To identify genes involved in this progression trajectory and possible therapeutic targets for cSCC, here we constructed a UV-induced cSCC mouse model covering the progression from normal skin to AK to cSCC, which mimicked the solar UV radiation perfectly using the solar-like ratio of UVA and UVB, firstly. Then, transcriptome analysis and a series of bioinformatics analyses and cell experiments proved that Rorα is a key transcript factor during cSCC progression. Rorα could downregulate the expressions of S100a9 and Sprr2f in cSCC cells, which can inhibit the proliferation and migration in cSCC cells, but not the normal keratinocyte. Finally, further animal experiments confirmed the inhibitory effect of cSCC growth by Rorα in vivo. Our findings showed that Rorα would serve as a potential novel target for cSCC, which will facilitate the treatment of cSCC in the future.
Collapse
MESH Headings
- Animals
- Calgranulin B/genetics
- Calgranulin B/metabolism
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cornified Envelope Proline-Rich Proteins/genetics
- Cornified Envelope Proline-Rich Proteins/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Keratosis, Actinic/etiology
- Keratosis, Actinic/genetics
- Keratosis, Actinic/metabolism
- Keratosis, Actinic/pathology
- Mice, Hairless
- Neoplasm Invasiveness
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/metabolism
- Neoplasms, Radiation-Induced/pathology
- Nuclear Receptor Subfamily 1, Group F, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Octamer Transcription Factors/genetics
- Octamer Transcription Factors/metabolism
- Skin Neoplasms/etiology
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transcriptome
- Ultraviolet Rays
- Mice
Collapse
Affiliation(s)
- Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhiliang Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200438, China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhe Zheng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Ying Gao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Xunxia Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200438, China
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Invasive squamous cell carcinomas and precursor lesions on UV-exposed epithelia demonstrate concordant genomic complexity in driver genes. Mod Pathol 2020; 33:2280-2294. [PMID: 32461624 PMCID: PMC7934000 DOI: 10.1038/s41379-020-0571-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Although squamous cell carcinomas (SCC) are the most frequent human solid tumor at many anatomic sites, the driving molecular alterations underlying their progression from precursor lesions are poorly understood, especially in the context of photodamage. Therefore, we used high-depth, targeted next-generation sequencing (NGS) of RNA and DNA from routine tissue samples to characterize the progression of both well- (cutaneous) and poorly (ocular) studied SCCs. We assessed 56 formalin-fixed paraffin-embedded (FFPE) cutaneous lesions (n = 8 actinic keratosis, n = 30 carcinoma in situ [CIS], n = 18 invasive) and 43 FFPE ocular surface lesions (n = 2 conjunctival/corneal intraepithelial neoplasia, n = 20 CIS, n = 21 invasive), from institutions in the US and Brazil. An additional seven cases of advanced cutaneous SCC were profiled by hybrid capture-based NGS of >1500 genes. The cutaneous and ocular squamous neoplasms displayed a predominance of UV-signature mutations. Precursor lesions had highly similar somatic genomic landscapes to SCCs, including chromosomal gains of 3q involving SOX2, and highly recurrent mutations and/or loss of heterozygosity events affecting tumor suppressors TP53 and CDKN2A. Additionally, we identify a novel molecular subclass of CIS with RB1 mutations. Among TP53 wild-type tumors, human papillomavirus transcript was detected in one matched pair of cutaneous CIS and SCC. Amplicon-based whole-transcriptome sequencing of select 20 cutaneous lesions demonstrated significant upregulation of pro-invasion genes in cutaneous SCCs relative to precursors, including MMP1, MMP3, MMP9, LAMC2, LGALS1, and TNFRSF12A. Together, ocular and cutaneous squamous neoplasms demonstrate similar alterations, supporting a common model for neoplasia in UV-exposed epithelia. Treatment modalities useful for cutaneous SCC may also be effective in ocular SCC given the genetic similarity between these tumor types. Importantly, in both systems, precursor lesions possess the full complement of major genetic changes seen in SCC, supporting non-genetic drivers of invasiveness.
Collapse
|
15
|
Power KM, Akella JS, Gu A, Walsh JD, Bellotti S, Morash M, Zhang W, Ramadan YH, Ross N, Golden A, Smith HE, Barr MM, O’Hagan R. Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function. PLoS Genet 2020; 16:e1009052. [PMID: 33064774 PMCID: PMC7592914 DOI: 10.1371/journal.pgen.1009052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/28/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022] Open
Abstract
Ciliary microtubules are subject to post-translational modifications that act as a "Tubulin Code" to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C. elegans, mutations in ccpp-1, the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5(my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in the ttll-4, ttll-5, or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4(my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C. elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C. elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kade M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Jyothi S. Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Amanda Gu
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Jonathon D. Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Sebastian Bellotti
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Margaret Morash
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Winnie Zhang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Yasmin H. Ramadan
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Nicole Ross
- Biology Department, Montclair State University, Montclair, NJ, United States of America
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Robert O’Hagan
- Biology Department, Montclair State University, Montclair, NJ, United States of America
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Cutaneous squamous cell carcinoma (cSCC) is a highly prevalent malignancy frequently occurring on body surfaces chronically exposed to ultraviolet radiation. While a large majority of tumors remain localized to the skin and immediate subcutaneous tissue and are cured with surgical excision, a small subset of patients with cSCC will develop metastatic disease. Risk stratification for cSCC is performed using clinical staging systems, but given a high mutational burden and advances in targeted and immunotherapy, there is growing interest in molecular predictors of high-risk disease. RECENT FINDINGS Recent literature on the risk for metastasis in cSCC includes notable findings in genes involved in cell-cycle regulation, tumor suppression, tissue invasion and microenvironment, interactions with the host-immune system, and epigenetic regulation. SUMMARY cSCC is a highly mutated tumor with complex carcinogenesis. Regulators of tumor growth and local invasion are numerous and increasingly well-understood but drivers of metastasis are less established. Areas of importance include central system regulators (NOTCH, miRNAs), proteins involved in tissue invasion (podoplanin, E-cadherin), and targets of existing and emerging therapeutics (PD-1, epidermal growth factor receptor). Given the complexity of cSCC carcinogenesis, the use of machine learning algorithms and computational genomics may provide ultimate insight and prospective studies are needed to verify clinical relevance.
Collapse
|