1
|
Marcelis L, Sciot R. [Undifferentiated small round cell sarcomas of bone and soft tissue]. Ann Pathol 2025; 45:78-91. [PMID: 39510958 DOI: 10.1016/j.annpat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
In the 2020 5th edition of the World Health Organization classification of soft tissue and bone tumours a major reorganization of Undifferentiated Small Round Cell Sarcomas (USRCS) took place based on the underlying molecular features. The classification now recognizes Ewing sarcoma, round cell sarcoma with EWSR1-non-ETS fusions, CIC-rearranged sarcoma and sarcoma with BCOR alterations. The focus on these genetic alterations highlights the importance of molecular techniques in the diagnosis of these entities. Knowledge of these features can drastically reduce the time to diagnosis and avoid potential misdiagnosis. Molecular diagnostic capabilities should not be limited to an overall small number of centres worldwide as is reflected by the WHO's recognition of 'essential' and 'desirable' diagnostic criteria. A good knowledge of the usual histomorphology, uncommon variants and diagnostic pitfalls remains essential even in centres with access to a full molecular testing arsenal. This review aims to give an overview of the current classification of USRCS not by going over each entity, but instead going over the molecular, morphological, immunophenotypic and clinical features step by step to allow easy comparison of these features between the separate entities.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Pathology, UZ Leuven, University Hospitals, Leuven, Belgique; O&N IV Herestraat 49, 3000 Leuven, Belgique.
| | - Rafael Sciot
- Department of Pathology, UZ Leuven, University Hospitals, Leuven, Belgique; O&N IV Herestraat 49, 3000 Leuven, Belgique
| |
Collapse
|
2
|
Tauziède-Espariat A, Ebrahimi A, Boddaert N, Pietsch T, Grajkowska W, Blau T, Koch A, Sievers P, Guillemot D, Pierron G, Uro-Coste E, Nicaise Y, Siegfried A, Gilles A, Bielle F, Mokhtari K, Cazals-Hatem D, Iakovlev G, Lhermitte B, Entz-Werle N, Csanyi M, Maurage CA, Legrand V, Boutonnat J, Godfraind C, McLeer A, Hasty L, Métais A, Aboubakr O, Blauwblomme T, Beccaria K, Dangouloff-Ros V, Varlet P. CIC/ATXN1-rearranged tumors in the central nervous system are mainly represented by sarcomas: A comprehensive clinicopathological and epigenetic series. Brain Pathol 2024:e13303. [PMID: 39442927 DOI: 10.1111/bpa.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 10/25/2024] Open
Abstract
CIC fusions have been described in two different central nervous system (CNS) tumor entities. On one hand, fusions of CIC or ATXN1 genes belonging to the same complex of transcriptional repressors, were reported in the CIC-rearranged, sarcoma (SARC-CIC). The diagnosis of this tumor type, which was recently added to the World Health Organization (WHO) Classification of CNS tumors, is difficult mainly because the data concerning its histopathology (as compared to its soft tissue counterpart), immunoprofile, and clinical as well as radiological characteristics are scarce in the literature. On the other hand, a recent study, based on DNA-methylation profiling, has identified a novel high-grade neuroepithelial tumor characterized by recurrent CIC fusions (HGNET-CIC). The aim of this multicentric study was to characterize a cohort of 15 primary CNS tumors harboring a CIC or ATXN1 fusion in terms of clinical, radiological, histopathological, immunophenotypical, and epigenetic characteristics. According to the integrated diagnoses, 14/15 tumors corresponded to SARC-CIC, and only one to HGNET-CIC. The tumors showed similar clinical (mainly pediatric), radiological (mostly supratentorial, cystic, and contrast enhancing), immunophenotypical (common expression of glioneuronal markers), and genetic (similar spectrum of fusions) profiles but their histopathological appearance was clearly distinct. Moreover, we found a novel fusion transcript (CIC::EWSR1) in a SARC-CIC. Most DNA methylation profiles using the Heidelberg Brain Tumor Classifier (v12.8) annotated the samples to the methylation class "SARC-CIC" (9/14 tumors with available data). By using uniform manifold approximation and projection analysis, four other samples were classified as SARC-CIC and another clustered within the methylation class of HGNET-CIC. Our findings confirm that CNS CIC-fused tumors do not represent a single molecular tumor entity. Further analyses are needed to characterize HGNET-CIC in more detail. These results may help to refine the essential diagnostic criteria for SARC-CIC and their terminology (with a suggested consensual name of sarcoma, CIC/ATXN1-complex rearranged).
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
- INSERM U1266, IMABrain, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France
| | - Azadeh Ebrahimi
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Nathalie Boddaert
- Pediatric Radiology Department, Hôpital Necker Enfants Malades, AP-HP, Paris, France
- UMR 1163, Institut Imagine and INSERM U1299, Université Paris Cité, Paris, France
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Tobias Blau
- Institute for Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Sievers
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center DKFZ), Heidelberg, Germany
| | - Delphine Guillemot
- INSERMU830, Institut Curie Research Center, Paris-Sciences-Lettres, Paris, France
- Laboratory of Somatic Genetics, Institut Curie Hospital, Paris, France
| | - Gaëlle Pierron
- INSERMU830, Institut Curie Research Center, Paris-Sciences-Lettres, Paris, France
- Laboratory of Somatic Genetics, Institut Curie Hospital, Paris, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Yvan Nicaise
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Aurore Siegfried
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Adam Gilles
- Department of Neuroradiology, Toulouse University Hospital, Toulouse, France
| | - Franck Bielle
- Department of Neuropathology, Pitié-Salpêtrière Hospital, AP-HP Paris, Paris, France
| | - Karima Mokhtari
- Department of Neuropathology, Pitié-Salpêtrière Hospital, AP-HP Paris, Paris, France
| | | | - Gueorgui Iakovlev
- Department of Neurosurgery, APHP University Hospital Beaujon, Clichy, France
| | - Benoît Lhermitte
- Department of Pathology, Strasbourg Hospital, Strasbourg, France
| | - Natacha Entz-Werle
- Department of Pediatric Oncology, Strasbourg Hospital, Strasbourg, France
| | - Marie Csanyi
- Department of Biopathology, Lille University Hospital, Lille, France
| | | | - Victor Legrand
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Jean Boutonnat
- Department of Pathology, Grenoble University Hospital, La Tronche, France
| | - Catherine Godfraind
- Neuropathology Unit, UMR 1071, Clermont-Ferrand University Hospital and Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Anne McLeer
- Molecular Pathology Unit, Department of Pathology, Grenoble Alpes University, Grenoble University Hospital, Grenoble, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
- INSERM U1266, IMABrain, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France
| | - Oumaima Aboubakr
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, Hôpital Necker Enfants Malades, AP-HP, Paris, France
- UMR 1163, Institut Imagine and INSERM U1299, Université Paris Cité, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
- INSERM U1266, IMABrain, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Nishino S, Kojima N, Sugino H, Mori T, Yatabe Y, Yoshida A. MUC5AC immunoreactivity in scattered tumor cells is useful for diagnosing CIC-rearranged sarcoma. Virchows Arch 2024; 485:359-363. [PMID: 38970674 DOI: 10.1007/s00428-024-03863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
CIC-rearranged sarcoma is an aggressive round cell sarcoma, and an alternative ATXN1/ATXN1L fusion has been reported. Diagnosis may be difficult, and molecular assays may suffer from imperfect sensitivity. Characteristic histology and ETV4 immunohistochemical positivity are diagnostically helpful. However, ETV4 staining is unavailable in most laboratories. Here, we explored the diagnostic utility of MUC5AC immunohistochemistry in CIC-rearranged sarcomas. All 30 cases, except one, of CIC-rearranged sarcomas and 2 ATXN1-rearranged sarcomas were positive for MUC5AC, although the number of immunopositive cells was generally low (< 5%) in most samples, representing a characteristic scattered pattern. The only MUC5AC-negative case had the lowest tumor volume. Among the 110 mimicking round cell malignancies, 12 tumors showed MUC5AC positivity, including occasional cases of synovial sarcoma and small cell carcinoma, whereas the remaining 98 samples were negative. Despite its lower specificity than that of ETV4 and sparse reactivity that requires careful interpretation, MUC5AC may serve as a useful marker for CIC/ATXN1-rearranged sarcoma because of its wider accessibility.
Collapse
Affiliation(s)
- Shogo Nishino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
4
|
Dehner CA, Lazar AJ, Chrisinger JSA. Updates on WHO classification for small round cell tumors: Ewing sarcoma vs. everything else. Hum Pathol 2024; 147:101-113. [PMID: 38280658 DOI: 10.1016/j.humpath.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The WHO Classification of Soft Tissue and Bone Tumours currently recognizes four categories of undifferentiated small round cell sarcoma: Ewing sarcoma, round cell sarcoma with EWSR1-non-ETS fusions including NFATc2 and PATZ1, CIC-rearranged sarcoma, and sarcoma with BCOR genetic alterations. These neoplasms frequently pose significant diagnostic challenges due to rarity and overlapping morphologic and immunohistochemical findings. Further, molecular testing, with accompanying pitfalls, may be needed to establish a definitive diagnosis. This review summarizes the clinical, histologic, immunohistochemical, and molecular features of these neoplasms. In addition, differential diagnosis and areas of uncertainty and ongoing investigation are discussed.
Collapse
MESH Headings
- Humans
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/classification
- Sarcoma, Ewing/chemistry
- Bone Neoplasms/pathology
- Bone Neoplasms/genetics
- Bone Neoplasms/classification
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Sarcoma, Small Cell/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- World Health Organization
- Diagnosis, Differential
- Immunohistochemistry
- Soft Tissue Neoplasms/pathology
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/classification
- RNA-Binding Protein EWS/genetics
- Repressor Proteins/genetics
- Gene Rearrangement
- Proto-Oncogene Proteins/genetics
- Predictive Value of Tests
- Phenotype
- Genetic Predisposition to Disease
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
A. Jacobo J. Central nervous system tumors of uncertain differentiation. World Neurosurg X 2024; 22:100349. [PMID: 38455248 PMCID: PMC10918257 DOI: 10.1016/j.wnsx.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Background The 2021 World Health Organization classification for brain tumors introduced several new entities and categories.Tumors of uncertain differentiation are a new subcategory that includes the intracranial mesenchymal tumor, FET-CREB fusion-positive; the CIC-rearranged sarcoma; and the Primary intracranial sarcoma, DICER1-mutant. Methods A search was made in Pubmed and Google Scholar to include all articles with the term "uncertain differentiation", "Mesenchymal, non-meningothelial", "FET-CREB fusion positive", "DICER1-mutant sarcoma" and "CIC-Rearranged sarcoma" in their title. These articles were reviewed to draft a concise review on this subject. Results This review on CNS non-meningothelial mesenchymal tumors is meant to provide an update with diagnostic, prognostic, and therapeutic implications. Conclusion Tumors of uncertain differentiation include a variety of mesenchymal, non-meningothelial tumors that have distinct molecular characteristics and consequently behave in a very particular matter.Given that these tumors have been described only recently, there is still an important lack of information regarding the most appropriate treatment and prognosis.
Collapse
Affiliation(s)
- Javier A. Jacobo
- Neuro-Oncology Unit, Center for the Treatment and Investigation About Cancer (CTIC), Bogotá, Colombia
| |
Collapse
|
6
|
Yuan X, Wang H, Sun Z, Zhou C, Chu SC, Bu J, Shen N. Anchored-fusion enables targeted fusion search in bulk and single-cell RNA sequencing data. CELL REPORTS METHODS 2024; 4:100733. [PMID: 38503288 PMCID: PMC10985232 DOI: 10.1016/j.crmeth.2024.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
Here, we present Anchored-fusion, a highly sensitive fusion gene detection tool. It anchors a gene of interest, which often involves driver fusion events, and recovers non-unique matches of short-read sequences that are typically filtered out by conventional algorithms. In addition, Anchored-fusion contains a module based on a deep learning hierarchical structure that incorporates self-distillation learning (hierarchical view learning and distillation [HVLD]), which effectively filters out false positive chimeric fragments generated during sequencing while maintaining true fusion genes. Anchored-fusion enables highly sensitive detection of fusion genes, thus allowing for application in cases with low sequencing depths. We benchmark Anchored-fusion under various conditions and found it outperformed other tools in detecting fusion events in simulated data, bulk RNA sequencing (bRNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Our results demonstrate that Anchored-fusion can be a useful tool for fusion detection tasks in clinically relevant RNA-seq data and can be applied to investigate intratumor heterogeneity in scRNA-seq data.
Collapse
Affiliation(s)
- Xilu Yuan
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Haishuai Wang
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Zhongquan Sun
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunpeng Zhou
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Simon Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jiajun Bu
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Ning Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Murphy J, Resch EE, Leland C, Meyer CF, Llosa NJ, Gross JM, Pratilas CA. Clinical outcomes of patients with CIC-rearranged sarcoma: a single institution retrospective analysis. J Cancer Res Clin Oncol 2024; 150:112. [PMID: 38436779 PMCID: PMC10912249 DOI: 10.1007/s00432-024-05631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE CIC-rearranged sarcomas represent a type of undifferentiated small round cell sarcoma (USRCS) characterized by poor survival, rapid development of chemotherapy resistance, and high rates of metastasis. We aim to contribute to the growing body of knowledge regarding diagnosis, treatment, clinical course, and outcomes for these patients. METHODS This case series investigates the clinical courses of ten patients with CIC-rearranged sarcoma treated at the Johns Hopkins Hospital from July 2014 through January 2024. Clinical data were retrospectively extracted from electronic medical records. RESULTS Patients ranged from 10 to 67 years of age at diagnosis, with seven patients presenting with localized disease and three with metastatic disease. Tumors originated from soft tissues of various anatomic locations. Mean overall survival (OS) was 22.1 months (10.6-52.2), and mean progression-free survival (PFS) was 16.7 months (5.3-52.2). Seven patients received intensive systemic therapy with an Ewing sarcoma-directed regimen or a soft tissue sarcoma-directed regimen. Three patients experienced prolonged disease-free survival without systemic treatment. CONCLUSION Most patients in this case series demonstrated aggressive clinical courses consistent with those previously described in the literature, although we note a spectrum of clinical outcomes not previously reported. The diversity of clinical courses underscores the need for an improved understanding of individual tumor biology to enhance clinical decision-making and patient prognosis. Despite its limitations, this article broadens the spectrum of reported clinical outcomes, providing a valuable addition to the published literature on this rare cancer.
Collapse
Affiliation(s)
- Jacob Murphy
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Erin E Resch
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - Christopher Leland
- Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, USA
| | - Christian F Meyer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - Nicolas J Llosa
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Christine A Pratilas
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Makise N, Yoshida A. CIC-Rearranged Sarcoma. Surg Pathol Clin 2024; 17:141-151. [PMID: 38278603 DOI: 10.1016/j.path.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
CIC-rearranged sarcoma is a rare type of small round cell sarcoma. The tumors often affect the deep soft tissues of patients in a wide age range. They are highly aggressive, respond poorly to chemotherapy, and have a worse outcome than Ewing sarcoma. CIC-rearranged sarcoma has characteristic and recognizable histology, including lobulated growth, focal myxoid changes, round to epithelioid cells, and minimal variation of nuclear size and shape. Nuclear ETV4 and WT1 expression are useful immunohistochemical findings. CIC fusion can be demonstrated using various methods; however, even next-generation sequencing suffers from imperfect sensitivity, especially for CIC::DUX4.
Collapse
Affiliation(s)
- Naohiro Makise
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba, 260-8717, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Rare Cancer Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
9
|
Gubbiotti MA, Madsen PJ, Tucker AM, Abdullaev Z, Aldape K, Shekdar K, Yang A, Minturn JE, Santi M, Viaene AN. ZFTA-fused supratentorial ependymoma with a novel fusion partner, DUX4. J Neuropathol Exp Neurol 2023; 82:668-671. [PMID: 37218333 PMCID: PMC10501467 DOI: 10.1093/jnen/nlad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter J Madsen
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alexander M Tucker
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zied Abdullaev
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth Aldape
- Laboratory of Pathology and Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Karuna Shekdar
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Yang
- Department of Pediatrics, Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jane E Minturn
- Department of Pediatrics, Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Tauziède-Espariat A, Hasty L, Métais A, Varlet P. Mesenchymal non-meningothelial tumors of the central nervous system: a literature review and diagnostic update of novelties and emerging entities. Acta Neuropathol Commun 2023; 11:22. [PMID: 36737790 PMCID: PMC9896826 DOI: 10.1186/s40478-023-01522-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (CNS) now includes mesenchymal tumors that occur uniquely or frequently in the CNS. Moreover, this version has aligned the terminology of mesenchymal tumors with their soft tissue counterparts. New tumor types have been added, such as the "intracranial mesenchymal tumor, FET-CREB fusion-positive", the "CIC-rearranged sarcoma", and the "Primary intracranial sarcoma, DICER1-mutant". Other entities (such as rhabdomyosarcoma) have remained in the current WHO classification because these tumor types may present specificities in the CNS as compared to their soft tissue counterparts. Based on an extensive literature review, herein, we will discuss these newly recognized entities in terms of clinical observation, radiology, histopathology, genetics and outcome, and consider strategies for an accurate diagnosis. In light of this literature analysis, we will also introduce some potentially novel tumor types.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, 75014, Paris, France. .,Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.
| | - Lauren Hasty
- grid.414435.30000 0001 2200 9055Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, 75014 Paris, France ,grid.512035.0Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Alice Métais
- grid.414435.30000 0001 2200 9055Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, 75014 Paris, France ,grid.512035.0Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Pascale Varlet
- grid.414435.30000 0001 2200 9055Department of Neuropathology, Sainte-Anne Hospital, 1, rue Cabanis, 75014 Paris, France ,grid.512035.0Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| |
Collapse
|
11
|
Yoshida A. Ewing and Ewing-like sarcomas: A morphological guide through genetically-defined entities. Pathol Int 2023; 73:12-26. [PMID: 36484765 PMCID: PMC10107474 DOI: 10.1111/pin.13293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
The fifth edition of the World Health Organization classification of soft tissue and bone tumors redefined Ewing sarcoma by fusions between EWSR1/FUS and ETS family of transcription factors, and recognized three tumor groups among Ewing-like sarcoma: CIC-rearranged sarcoma, sarcoma with BCOR genetic alterations, and round cell sarcoma with EWSR1::non-ETS fusions. Although this classification underscores the critical role of molecular genetics in the diagnosis of small round cell sarcoma, each entry is recognized as a specific entity not only because they have different genetics but because their phenotypes are distinct and reasonably robust to support the diagnosis. This review focuses on the morphological aspects of Ewing sarcoma and a subset of Ewing-like sarcomas (CIC-rearranged sarcoma, BCOR-associated sarcoma, and EWSR1::NFATC2 sarcoma) for which phenotypic characteristics have been well established. Classic histological findings, uncommon variations, and recurrent diagnostic pitfalls are addressed, along with the utility of recently developed immunohistochemical markers (NKX2.2, PAX7, ETV4, BCOR, CCNB3, and NKX3.1). Phenotypic expertise would significantly expedite the diagnostic process and complement (or sometimes outperform) genetic testing, even in well-resourced settings. Morphological knowledge plays an even more substantial role in facilities that do not have easy access to molecular testing.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center, Tokyo, Japan
| |
Collapse
|