1
|
Homan K, Onodera T, Matsuoka M, Iwasaki N. Glycosphingolipids in Osteoarthritis and Cartilage-Regeneration Therapy: Mechanisms and Therapeutic Prospects Based on a Narrative Review of the Literature. Int J Mol Sci 2024; 25:4890. [PMID: 38732111 PMCID: PMC11084896 DOI: 10.3390/ijms25094890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.
Collapse
Affiliation(s)
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; (K.H.); (M.M.); (N.I.)
| | | | | |
Collapse
|
2
|
Komuro M, Nagane M, Endo R, Nakamura T, Miyamoto T, Niwa C, Fukuyama T, Harashima H, Aihara N, Kamiie J, Suzuki R, Yamashita T. Glucosylceramide in T cells regulates the pathology of inflammatory bowel disease. Biochem Biophys Res Commun 2022; 599:24-30. [PMID: 35168060 DOI: 10.1016/j.bbrc.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease in the colon characterized by excessive activation of T cells. Glycosphingolipids (GSLs) are composed of lipid rafts in cellular membranes, and their content is linked to immune cell function. In the present study, we investigated the involvement of GSLs in IBD. Microarray data showed that in IBD patients, the expression of only UDP-glucose ceramide glucosyltransferase (UGCG) decreased among the GSLs synthases. Ad libitum access to dextran sulfate sodium (DSS) resulted in decreased UGCG and glucosylceramide (GlcCer) content in mesenteric lymph nodes and T cells from the spleen. Furthermore, the knockdown of Ugcg in T cells exacerbated the pathogenesis of colitis, which was accompanied by a decrease in Treg levels. Treatment with GlcCer nanoparticles prevented DSS-induced colitis. These results suggested that GlcCer in T cells is involved in the pathogenesis of IBD. Furthermore, GlcCer nanoparticles are a potential efficacious therapeutic target for IBD patients.
Collapse
Affiliation(s)
- Mariko Komuro
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan; Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan.
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takayoshi Miyamoto
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Chiaki Niwa
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tomoki Fukuyama
- Laboratory of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Rimina Suzuki
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
3
|
Andersson L, Cinato M, Mardani I, Miljanovic A, Arif M, Koh A, Lindbom M, Laudette M, Bollano E, Omerovic E, Klevstig M, Henricsson M, Fogelstrand P, Swärd K, Ekstrand M, Levin M, Wikström J, Doran S, Hyötyläinen T, Sinisalu L, Orešič M, Tivesten Å, Adiels M, Bergo MO, Proia R, Mardinoglu A, Jeppsson A, Borén J, Levin MC. Glucosylceramide synthase deficiency in the heart compromises β1-adrenergic receptor trafficking. Eur Heart J 2021; 42:4481-4492. [PMID: 34297830 PMCID: PMC8599074 DOI: 10.1093/eurheartj/ehab412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to β-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of β1-adrenergic receptors. CONCLUSIONS Our findings suggest that cardiac glycosphingolipids are required to maintain β-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.
Collapse
Affiliation(s)
- Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ara Koh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Johannes Wikström
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- School of Natural Sciences and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Turku Bioscience Centre, University of Turku, FIN-20521 Turku, Finland
| | - Åsa Tivesten
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institute, SE-141 83 Huddinge, Sweden
| | - Richard Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Inokuchi JI, Kanoh H, Inamori KI, Nagafuku M, Nitta T, Fukase K. Homeostatic and pathogenic roles of the GM3 ganglioside. FEBS J 2021; 289:5152-5165. [PMID: 34125497 DOI: 10.1111/febs.16076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Two decades ago, we achieved molecular cloning of ganglioside GM3 synthase (GM3S; ST3GAL5), the enzyme responsible for initiating biosynthesis of complex gangliosides. The efforts of our research group since then have been focused on clarifying the physiological and pathological roles of gangliosides, particularly GM3. This review summarizes our long-term studies on the roles of GM3 in insulin resistance and adipogenesis in adipose tissues, cholesterol uptake in intestine, and leptin resistance in hypothalamus. We hypothesized that GM3 plays a role in innate immune function of macrophages and demonstrated that molecular species of GM3 with differing acyl-chain structures and modifications functioned as pro- and anti-inflammatory endogenous Toll-like receptor 4 (TLR4) modulators in macrophages. Very-long-chain and α-hydroxy GM3 species enhanced TLR4 activation, whereas long-chain and unsaturated GM3 species counteracted this effect. Lipidomic analyses of serum and adipose tissues revealed that imbalances between such pro- and anti-inflammatory GM3 species promoted progression of metabolic disorders. GM3 thus functions as a physiological regulatory factor controlling the balance between homeostatic and pathological states. Ongoing studies based on these findings will clarify the mechanisms underlying ganglioside-dependent control of energy homeostasis and innate immune responses.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Koichi Fukase
- Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
5
|
Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. Int J Mol Sci 2020; 21:ijms21155349. [PMID: 32731387 PMCID: PMC7432706 DOI: 10.3390/ijms21155349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Gangliosides are essential components of cell membranes and are involved in a variety of physiological processes, including cell growth, differentiation, and receptor-mediated signal transduction. They regulate functions of proteins in membrane microdomains, notably receptor tyrosine kinases such as insulin receptor (InsR) and epidermal growth factor receptor (EGFR), through lateral association. Studies during the past two decades using knockout (KO) or pharmacologically inhibited cells, or KO mouse models for glucosylceramide synthase (GCS; Ugcg), GM3 synthase (GM3S; St3gal5), and GD3 synthase (GD3S; St8sia1) have revealed essential roles of gangliosides in hypothalamic control of energy balance. The a-series gangliosides GM1 and GD1a interact with leptin receptor (LepR) and promote LepR signaling through activation of the JAK2/STAT3 pathway. Studies of GM3S KO cells have shown that the extracellular signal-regulated kinase (ERK) pathway, downstream of the LepR signaling pathway, is also modulated by gangliosides. Recent studies have revealed crosstalk between the LepR signaling pathway and other receptor signaling pathways (e.g., InsR and EGFR pathways). Gangliosides thus have the ability to modulate the effects of leptin by regulating functions of such receptors, and by direct interaction with LepR to control signaling.
Collapse
|
6
|
Matsubara S, Onodera T, Maeda E, Momma D, Matsuoka M, Homan K, Ohashi T, Iwasaki N. Depletion of glycosphingolipids induces excessive response of chondrocytes under mechanical stress. J Biomech 2019; 94:22-30. [DOI: 10.1016/j.jbiomech.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
7
|
Bowser LE, Young M, Wenger OK, Ammous Z, Brigatti KW, Carson VJ, Moser T, Deline J, Aoki K, Morlet T, Scott EM, Puffenberger EG, Robinson DL, Hendrickson C, Salvin J, Gottlieb S, Heaps AD, Tiemeyer M, Strauss KA. Recessive GM3 synthase deficiency: Natural history, biochemistry, and therapeutic frontier. Mol Genet Metab 2019; 126:475-488. [PMID: 30691927 DOI: 10.1016/j.ymgme.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 11/19/2022]
Abstract
GM3 synthase, encoded by ST3GAL5, initiates synthesis of all downstream cerebral gangliosides. Here, we present biochemical, functional, and natural history data from 50 individuals homozygous for a pathogenic ST3GAL5 c.862C>T founder allele (median age 8.1, range 0.7-30.5 years). GM3 and its derivatives were undetectable in plasma. Weight and head circumference were normal at birth and mean Apgar scores were 7.7 ± 2.0 (1 min) and 8.9 ± 0.5 (5 min). Somatic growth failure, progressive microcephaly, global developmental delay, visual inattentiveness, and dyskinetic movements developed within a few months of life. Infantile-onset epileptic encephalopathy was characterized by a slow, disorganized, high-voltage background, poor state transitions, absent posterior rhythm, and spike trains from multiple independent cortical foci; >90% of electrographic seizures were clinically silent. Hearing loss affected cochlea and central auditory pathways and 76% of children tested failed the newborn hearing screen. Development stagnated early in life; only 13 (26%) patients sat independently (median age 30 months), three (6%) learned to crawl, and none achieved reciprocal communication. Incessant irritability, often accompanied by insomnia, began during infancy and contributed to high parental stress. Despite catastrophic neurological dysfunction, neuroimaging showed only subtle or no destructive changes into late childhood and hospitalizations were surprisingly rare (0.2 per patient per year). Median survival was 23.5 years. Our observations corroborate findings from transgenic mice which indicate that gangliosides might have a limited role in embryonic neurodevelopment but become vital for postnatal brain growth and function. These results have critical implications for the design and implementation of ganglioside restitution therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Thierry Morlet
- Auditory Physiology and Psychoacoustics Research Laboratory, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Ethan M Scott
- Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA
| | | | | | | | - Jonathan Salvin
- Division of Pediatric Ophthalmology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Steven Gottlieb
- Division of Pediatric Neurology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
8
|
FURUKAWA K, OHMI Y, KONDO Y, BHUIYAN RH, TAJIMA O, ZHANG P, OHKAWA Y, FURUKAWA K. Elucidation of the enigma of glycosphingolipids in the regulation of inflammation and degeneration - Great progress over the last 70 years. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:136-149. [PMID: 30853699 PMCID: PMC6541724 DOI: 10.2183/pjab.95.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Since globotetraosylceramide was defined as a major glycosphingolipid in human erythrocytes, various glycolipids have been found in normal cells and diseased organs. However, the implications of their polymorphic structures in the function of individual cells and tissues have not been clarified. Genetic manipulation of glycosphingolipids in cultured cells and experimental animals has enabled us to substantially elucidate their roles. In fact, great progress has been achieved in the last 70 years in revealing that glycolipids are essential in the maintenance of integrity of nervous tissues and other organs. Furthermore, the correct composition of glycosphingolipids has been shown to be critical for the protection against inflammation and degeneration. Here, we summarized historic information and current knowledge about glycosphingolipids, with a focus on their involvement in inflammation and degeneration. This topic is significant for understanding the biological responses to various stresses, because glycosphingolipids play roles in the interaction with various intrinsic and extrinsic factors. These findings are also important for the application of therapeutic interventions of various diseases.
Collapse
Affiliation(s)
- Koichi FURUKAWA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke OHMI
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Yuji KONDO
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H. BHUIYAN
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Orie TAJIMA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Pu ZHANG
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki OHKAWA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Keiko FURUKAWA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
9
|
Abstract
Gangliosides comprise a varied family of glycosphingolipid structures bearing one or more sialic acid residues. They are found in all mammalian tissues but are most abundant in the brain, where they represent the quantitatively major class of sialoglycans. As prominent molecular determinants on cell surfaces, they function as molecular-recognition partners for diverse glycan-binding proteins ranging from bacterial toxins to endogenous cell-cell adhesion molecules. Gangliosides also regulate the activity of plasma membrane proteins, including protein tyrosine kinases, by lateral association in the same membranes in which they reside. Their roles in molecular recognition and membrane protein regulation implicate gangliosides in human physiology and pathology, including infectious diseases, diabetes, cancer, and neurodegeneration. The varied structures and biosynthetic pathways of gangliosides are presented here, along with representative examples of their biological functions in health and disease.
Collapse
|
10
|
Yoshihara T, Satake H, Nishie T, Okino N, Hatta T, Otani H, Naruse C, Suzuki H, Sugihara K, Kamimura E, Tokuda N, Furukawa K, Fururkawa K, Ito M, Asano M. Lactosylceramide synthases encoded by B4galt5 and 6 genes are pivotal for neuronal generation and myelin formation in mice. PLoS Genet 2018; 14:e1007545. [PMID: 30114188 PMCID: PMC6095488 DOI: 10.1371/journal.pgen.1007545] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 07/06/2018] [Indexed: 01/10/2023] Open
Abstract
It is uncertain which β4-galactosyltransferase (β4GalT; gene name, B4galt), β4GalT-5 and/or β4GalT-6, is responsible for the production of lactosylceramide (LacCer) synthase, which functions in the initial step of ganglioside biosynthesis. Here, we generated conditional B4galt5 knockout (B4galt5 cKO) mice, using Nestin-Cre mice, and crossed these with B4galt6 KO mice to generate B4galt5 and 6 double KO (DKO) mice in the central nervous system (CNS). LacCer synthase activity and major brain gangliosides were completely absent in brain homogenates from the DKO mice, although LacCer synthase activity was about half its normal level in B4galt5 cKO mice and B4galt6 KO mice. The DKO mice were born normally but they showed growth retardation and motor deficits at 2 weeks and died by 4 weeks of age. Histological analyses showed that myelin-associated proteins were rarely found localized in axons in the cerebral cortex, and axonal and myelin formation were remarkably impaired in the spinal cords of the DKO mice. Neuronal cells, differentiated from neurospheres that were prepared from the DKO mice, showed impairments in neurite outgrowth and branch formation, which can be explained by the fact that neurospheres from DKO mice could weakly interact with laminin due to lack of gangliosides, such as GM1a. Furthermore, the neurons were immature and perineuronal nets (PNNs) were poorly formed in DKO cerebral cortices. Our results indicate that LacCer synthase is encoded by B4galt5 and 6 genes in the CNS, and that gangliosides are indispensable for neuronal maturation, PNN formation, and axonal and myelin formation. Gangliosides are membrane-bound glycosphingolipids that contain sialic acid residues and are abundant in the mammalian nervous system, suggesting that they play pivotal roles in neural functions. We generated conditional β4-galactosyltransferase-5 (B4galt5) knockout (KO) and double B4galt5/B4galt6 KO (DKO) mice to completely ablate lactosylceramide (LacCer) synthase in the central nervous system (CNS). LacCer functions in the initial step of ganglioside biosynthesis. DKO mice were born normally but showed growth retardation and motor deficits at 2 weeks and died by 4 weeks of age. Myelin-associated proteins were rarely found localized in axons in the cerebral cortex, and axonal and myelin formation were remarkably impaired in the spinal cords of DKO mice. Neurospheres prepared from DKO mice could weakly interact with laminin, probably due to the lack of gangliosides in these mice. This defect might have caused the impaired neurite outgrowth in neuronal cells from DKO mice and poor formation of perineuronal nets (PNNs) with immature neurons in the cerebral cortices of DKO mice. Our results indicate pivotal roles for gangliosides in the CNS, including neuronal maturation, PNN formation, and axonal and myelin formation.
Collapse
Affiliation(s)
- Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Satake
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Nishie
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Toshihisa Hatta
- Department of Molecular and Cell Structural Science, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Suzuki
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Eikichi Kamimura
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Noriyo Tokuda
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Koichi Fururkawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
11
|
Herzer S, Hagan C, von Gerichten J, Dieterle V, Munteanu B, Sandhoff R, Hopf C, Nordström V. Deletion of Specific Sphingolipids in Distinct Neurons Improves Spatial Memory in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2018; 11:206. [PMID: 29973867 PMCID: PMC6019486 DOI: 10.3389/fnmol.2018.00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and a concomitant loss of synapses and cognitive abilities. Recently, we have proposed that an alteration of neuronal membrane lipid microdomains increases neuronal resistance toward amyloid-β stress in cultured neurons and protects from neurodegeneration in a mouse model of AD. Lipid microdomains are highly enriched in a specific subclass of glycosphingolipids, termed gangliosides. The enzyme glucosylceramide synthase (GCS) catalyzes the rate-limiting step in the biosynthesis of these gangliosides. The present work now demonstrates that genetic GCS deletion in subsets of adult forebrain neurons significantly improves the spatial memory and counteracts the loss of dendritic spines in the hippocampal dentate gyrus of 5x familial AD mice (5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP mice), when compared to 5xFAD//Ugcgf/f littermates (5xFAD mice). Aberrantly activated glial cells and their expression of pro-inflammatory cytokines have emerged as the major culprits for synaptic loss in AD. Typically, astrocytic activation is accompanied by a thickening of astrocytic processes, which impairs astrocytic support for neuronal synapses. In contrast to 5xFAD mice, 5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP display a less pronounced thickening of astrocytic processes and a lower expression of tumor necrosis factor-α and interleukin 1-α in the hippocampus. Thus, this work further emphasizes that GCS inhibition may constitute a potential therapeutic target against AD.
Collapse
Affiliation(s)
- Silke Herzer
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Cassidy Hagan
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Johanna von Gerichten
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Vanessa Dieterle
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Bogdan Munteanu
- Center for Mass Spectrometry (CeMOS), University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry (CeMOS), University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Viola Nordström
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Lopez PH, Báez BB. Gangliosides in Axon Stability and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:383-412. [DOI: 10.1016/bs.pmbts.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 2017; 58:1247-1258. [PMID: 28373486 DOI: 10.1194/jlr.d076190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS2 method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kerstin Schlosser
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ivan Morace
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology and Center for Rare Diseases University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Richard Jennemann
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany .,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
14
|
Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 2016; 113:5928-33. [PMID: 27162368 DOI: 10.1073/pnas.1522071113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22-C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death.
Collapse
|
15
|
Schiffmann R. The consequences of genetic and pharmacologic reduction in sphingolipid synthesis. J Inherit Metab Dis 2015; 38:77-84. [PMID: 25164785 DOI: 10.1007/s10545-014-9758-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
A new therapy based on substrate synthesis reduction in sphingolipidoses is showing promise. The consequences of decreasing sphingolipid synthesis depend on the level at which synthetic blockage occurs and on the extent of the blockage. Complete synthetic blockage may be lethal if it includes all sphingolipids, such as in a global knockout of serine palmitoyltransferase. Partial inhibition of sphingolipid synthetic pathways is usually benign and may have beneficial effects in a number of lysosomal diseases and in more common pathologies, as seen in animal models for atherosclerosis, polycystic kidney disease, diabetes, and asthma. Studies of various forms of sphingolipid synthesis reduction serve to highlight not only the cellular role of these lipids but also the potential risks and therapeutic benefits of pharmacological agents to be used in therapy for human diseases.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, USA,
| |
Collapse
|
16
|
Yamaji T, Hanada K. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 2014; 16:101-22. [PMID: 25382749 DOI: 10.1111/tra.12239] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
Abstract
In recent decades, many sphingolipid enzymes, sphingolipid-metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide-1-phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four-phosphate adaptor protein 2 (FAPP2) and ceramide-1-phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids.
Collapse
Affiliation(s)
- Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | |
Collapse
|
17
|
Allende ML, Proia RL. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 2014; 31:613-22. [PMID: 25351657 PMCID: PMC4245496 DOI: 10.1007/s10719-014-9563-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) are a group of plasma-membrane lipids notable for their extremely diverse glycan head groups. The metabolic pathways for GSLs, including the identity of the biosynthetic enzymes needed for synthesis of their glycans, are now well understood. Many of their cellular functions, which include plasma-membrane organization, regulation of cell signaling, endocytosis, and serving as binding sites for pathogens and endogenous receptors, have also been established. However, an understanding of their functions in vivo had been lagging. Studies employing genetic manipulations of the GSL synthesis pathways in mice have been used to systematically reduce the large numbers and complexity of GSL glycan structures, allowing the in vivo functions of GSLs to be revealed from analysis of the resulting phenotypes. Findings from these studies have produced a clearer picture of the role of GSLs in mammalian physiology, which is the topic of this review.
Collapse
Affiliation(s)
- Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9D-06; 10 Center DR MSC 1821, Bethesda, MD, 20892-1821, USA
| | | |
Collapse
|
18
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
19
|
Ebel P, Vom Dorp K, Petrasch-Parwez E, Zlomuzica A, Kinugawa K, Mariani J, Minich D, Ginkel C, Welcker J, Degen J, Eckhardt M, Dere E, Dörmann P, Willecke K. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 2013; 288:21433-21447. [PMID: 23760501 DOI: 10.1074/jbc.m113.479907] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain.
Collapse
Affiliation(s)
- Philipp Ebel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | | | - Elisabeth Petrasch-Parwez
- the Department of Neuroanatomy and Molecular Brain Research, Ruhr-University of Bochum, 44801 Bochum, Germany
| | - Armin Zlomuzica
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Kiyoka Kinugawa
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Jean Mariani
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - David Minich
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Christina Ginkel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Jochen Welcker
- the Department of Neuroscience, Max-Delbrueck-Centrum, Berlin, 13125 Berlin, Germany
| | - Joachim Degen
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Matthias Eckhardt
- the Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Ekrem Dere
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany,; the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, and
| | - Klaus Willecke
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES),.
| |
Collapse
|
20
|
Jennemann R, Gröne HJ. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 2013; 52:231-48. [PMID: 23473748 DOI: 10.1016/j.plipres.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids (GSLs) are believed to be involved in many cellular events including trafficking, signaling and cellular interactions. Over the past decade considerable progress was made elucidating the function of GSLs by generating and exploring animal models with GSL-deficiency. Initial studies focused on exploring the role of complex sialic acid containing GSLs (gangliosides) in neuronal tissue. Although complex gangliosides were absent, surprisingly, the phenotype observed was rather mild. In subsequent studies, several mouse models with combinations of gene-deletions encoding GSL-synthesizing enzymes were developed. The results indicated that reduction of GSL-complexity correlated with severity of phenotypes. However, in these mice, accumulation of precursor GSLs or neobiosynthesized GSL-series seemed to partly compensate the loss of GSLs. Thus, UDP-glucose:ceramide glucosyltransferase (Ugcg), catalyzing the basic step of the glucosylceramide-based GSL-biosynthesis, was genetically disrupted. A total systemic deletion of Ugcg caused early embryonic lethality. Therefore, Ugcg was eliminated in a cell-specific manner using the cre/loxP-system. New insights into the cellular function of GSLs were gained. It was demonstrated that neurons require GSLs for differentiation and maintenance. In keratinocytes, preservation of the skin barrier depends on GSL synthesis and in enterocytes of the small intestine GSLs are involved in endocytosis and vesicular transport.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
21
|
Seito N, Yamashita T, Tsukuda Y, Matsui Y, Urita A, Onodera T, Mizutani T, Haga H, Fujitani N, Shinohara Y, Minami A, Iwasaki N. Interruption of glycosphingolipid synthesis enhances osteoarthritis development in mice. ACTA ACUST UNITED AC 2012; 64:2579-88. [PMID: 22391889 DOI: 10.1002/art.34463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Glycosphingolipids (GSLs) are ubiquitous membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions. GSL expression is decreased in the articular cartilage of humans with osteoarthritis (OA). This study was undertaken to determine the functional role of GSLs in cartilage metabolism related to OA pathogenesis in mice. METHODS We generated mice with knockout of the chondrocyte-specific Ugcg gene, which encodes an initial enzyme of major GSL synthesis, using the Cre/loxP system (Col2-Ugcg(-/-) mice). In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of GSLs on the cartilage degradation process. RESULTS Although Col2-Ugcg(-/-) mice developed and grew normally, OA changes in these mice were dramatically enhanced with aging, through the overexpression of matrix metalloproteinase 13 and chondrocyte apoptosis, compared to their wild-type (WT) littermates. Col2-Ugcg(-/-) mice showed more severe instability-induced pathologic OA in vivo and interleukin-1α (IL-1α)-induced cartilage degradation in vitro. IL-1α stimulation of chondrocytes from WT mice significantly increased Ugcg messenger RNA expression and up-regulated GSL metabolism. CONCLUSION Our results indicate that GSL deficiency in mouse chondrocytes enhances the development of OA. However, this deficiency does not affect the development and organization of cartilage tissue in mice at a young age. These findings indicate that GSLs maintain cartilage molecular metabolism and prevent disease progression, although GSLs are not essential for chondrogenesis of progenitor and stem cells and cartilage development in young mice. GSL metabolism in the cartilage is a potential target for developing a novel treatment for OA.
Collapse
|
22
|
Hirabayashi Y. A world of sphingolipids and glycolipids in the brain--novel functions of simple lipids modified with glucose. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:129-143. [PMID: 22498977 PMCID: PMC3406307 DOI: 10.2183/pjab.88.129] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Glycosphingolipids (GSLs) are present on cell surface membranes and are particularly abundant in the brain. Since over 300-400 GSLs are synthesized from glucosylceramide (GlcCer), GlcCer is believed to only serve as the source of most GSLs, including sialic acid-containing GSLs or gangliosides, in the brain. Recent studies, however, suggest that GlcCer itself plays a role in the heat stress response, as it functions as a glucose donor for the synthesis of cholesterylglucoside, a lipid mediator in heat stress responses in animals. GlcCer in adipose tissues is also thought to be involved in mechanisms that regulate energy (sugar and lipid) metabolism. Our extensive structural study revealed an additional novel glucosylated membrane lipid, called phosphatidylglucoside, in developing rodent brains and human neutrophils. These lipids, all modified with glucose, are enriched in lipid rafts and play important roles in basic cellular processes. Here, I summarize the recent progress regarding these glucosylated lipids and their biosynthesis and regulation in the central nervous system (CNS).
Collapse
Affiliation(s)
- Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan.
| |
Collapse
|
23
|
Ashe KM, Bangari D, Li L, Cabrera-Salazar MA, Bercury SD, Nietupski JB, Cooper CGF, Aerts JMFG, Lee ER, Copeland DP, Cheng SH, Scheule RK, Marshall J. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease. PLoS One 2011; 6:e21758. [PMID: 21738789 PMCID: PMC3126858 DOI: 10.1371/journal.pone.0021758] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/06/2011] [Indexed: 12/14/2022] Open
Abstract
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.
Collapse
Affiliation(s)
- Karen M. Ashe
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Dinesh Bangari
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Lingyun Li
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | | | - Scott D. Bercury
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | | | | | | | - Edward R. Lee
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Diane P. Copeland
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Seng H. Cheng
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Ronald K. Scheule
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - John Marshall
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| |
Collapse
|
24
|
Nomura KH, Murata D, Hayashi Y, Dejima K, Mizuguchi S, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Hirabayashi Y, Ito M, Nomura K. Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division. Glycobiology 2011; 21:834-48. [PMID: 21325339 DOI: 10.1093/glycob/cwr019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ceramide glucosyltransferase (Ugcg) [uridine diphosphate (UDP)-glucose:N-acylsphingosine D-glucosyltransferase or UDP-glucose ceramide glucosyltransferase (GlcT): EC 2.4.1.80] catalyzes formation of glucosylceramide (GlcCer) from ceramide and UDP-glucose. There is only one Ugcg gene in the mouse genome, which is essential in embryogenesis and brain development. The nematode Caenorhabditis elegans has three Ugcg genes (cgt-1, cgt-2 and cgt-3), and double RNAi of the cgt-1 and cgt-3 genes results in lethality at the L1 larval stage. In this study, we isolated knockout worms for the three genes and characterized the gene functions. Each gene product showed active enzymatic activity when expressed in GM95 cells deficient in glycosphingolipids (GSLs). When each gene function was disrupted, the brood size of the animal markedly decreased, and abnormal oocytes and multinucleated embryos were formed. The CGT-3 protein had the highest Ugcg activity, and knockout of its gene resulted in the severest phenotype. When cgt-3 RNAi was performed on rrf-1 worms lacking somatic RNAi machinery but with intact germline RNAi machinery, a number of abnormal oocytes and multinucleated eggs were observed, although the somatic phenotype, i.e., L1 lethal effects of cgt-1/cgt-3 RNAi, was completely suppressed. Cell surface expression of GSLs and sphingomyelin, which are important components of membrane domains, was affected in the RNAi-treated embryos. In the embryos, an abnormality in cytokinesis was also observed. From these results, we concluded that the Ugcg gene is indispensable in the germline and that an ample supply of GlcCer is needed for oocytes and fertilized eggs to maintain normal membranes and to proceed through the normal cell cycle.
Collapse
Affiliation(s)
- Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Watanabe S, Endo S, Oshima E, Hoshi T, Higashi H, Yamada K, Tohyama K, Yamashita T, Hirabayashi Y. Glycosphingolipid synthesis in cerebellar Purkinje neurons: roles in myelin formation and axonal homeostasis. Glia 2010; 58:1197-207. [PMID: 20544855 DOI: 10.1002/glia.20999] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosphingolipids (GSLs) occur in all mammalian plasma membranes. They are most abundant in neuronal cells and have essential roles in brain development. Glucosylceramide (GlcCer) synthase, which is encoded by the Ugcg gene, is the key enzyme driving the synthesis of most neuronal GSLs. Experiments using conditional Nestin-Cre Ugcg knockout mice have shown that GSL synthesis in vivo is essential, especially for brain maturation. However, the roles of GSL synthesis in mature neurons remain elusive, since Nestin-Cre is expressed in neural precursors as well as in postmitotic neurons. To address this problem, we generated Purkinje cell-specific Ugcg knockout mice using mice that express Cre under the control of the L7 promoter. In these mice, Purkinje cells survived for at least 10-18 weeks after Ugcg deletion. We observed apparent axonal degeneration characterized by the accumulation of axonal transport cargos and aberrant membrane structures. Dendrites, however, were not affected. In addition, loss of GSLs disrupted myelin sheaths, which were characterized by detached paranodal loops. Notably, we observed doubly myelinated axons enveloped by an additional concentric myelin sheath around the original sheath. Our data show that axonal GlcCer-based GSLs are essential for axonal homeostasis and correct myelin sheath formation.
Collapse
Affiliation(s)
- Shun Watanabe
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-Shi, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saadat L, Dupree JL, Kilkus J, Han X, Traka M, Proia RL, Dawson G, Popko B. Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 2010; 58:391-8. [PMID: 19705459 DOI: 10.1002/glia.20930] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To examine the function of glycosphingolipids (GSLs) in oligodendrocytes, the myelinating cells of the central nervous system (CNS), mice were generated that lack oligodendroglial expression of UDP-glucose ceramide glucosyltransferase (encoded by Ugcg). These mice (Ugcg(flox/flox);Cnp/Cre) did not show any apparent clinical phenotype, their total brain and myelin extracts had normal GSL content, including ganglioside composition, and myelin abnormalities were not detected in their CNS. These data indicate that the elimination of gangliosides from oligodendrocytes is not detrimental to myelination. These mice were also used to asses the potential compensatory effect of hydroxyl fatty acid glucosylceramide (HFA-GlcCer) accumulation in UDP-galactose:ceramide galactosyltransferase (encoded by Cgt, also known as Ugt8a) deficient mice. At postnatal day 18, the phenotypic characteristics of the Ugcg(flox/flox);Cnp/Cre;Cgt(-/-) mutants, including the degree of hypomyelination, were surprisingly similar to that of Cgt(-/-) mice, suggesting that the accumulation of HFA-GlcCer in Cgt(-/-) mice does not modify their phenotype. These studies demonstrate that abundant, structurally intact myelin can form in the absence of glycolipids, which normally represent over 20% of the dry weight of myelin.
Collapse
Affiliation(s)
- Laleh Saadat
- Department of Neurology, The Jack Miller Center for Peripheral Neuropathy, The University of Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:1-23. [PMID: 20919643 DOI: 10.1007/978-1-4419-6741-1_1] [Citation(s) in RCA: 753] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sphingolipids constitute a class of lipids defined by their eighteen carbon amino-alcohol backbones which are synthesized in the ER from nonsphingolipid precursors. Modification of this basic structure is what gives rise to the vast family of sphingolipids that play significant roles in membrane biology and provide many bioactive metabolites that regulate cell function. Despite the diversity of structure and function of sphingolipids, their creation and destruction are governed by common synthetic and catabolic pathways. In this regard, sphingolipid metabolism can be imagined as an array of interconnected networks that diverge from a single common entry point and converge into a single common breakdown pathway. In their simplest forms, sphingosine, phytosphingosine and dihydrosphingosine serve as the backbones upon which further complexity is achieved. For example, phosphorylation of the C1 hydroxyl group yields the final breakdown products and/or the important signaling molecules sphingosine-1-phosphate, phytosphingosine-1-phosphate and dihydrosphingosine-1-phosphate, respectively. On the other hand, acylation of sphingosine, phytosphingosine, or dihydrosphingosine with one of several possible acyl CoA molecules through the action of distinct ceramide synthases produces the molecules defined as ceramide, phytoceramide, or dihydroceramide. Ceramide, due to the differing acyl CoAs that can be used to produce it, is technically a class of molecules rather than a single molecule and therefore may have different biological functions depending on the acyl chain it is composed of. At the apex of complexity is the group of lipids known as glycosphingolipids (GSL) which contain dozens of different sphingolipid species differing by both the order and type of sugar residues attached to their headgroups. Since these molecules are produced from ceramide precursors, they too may have differences in their acyl chain composition, revealing an additional layer of variation. The glycosphingolipids are divided broadly into two categories: glucosphingolipids and galactosphingolipids. The glucosphingolipids depend initially on the enzyme glucosylceramide synthase (GCS) which attaches glucose as the first residue to the C1 hydroxyl position. Galactosphingolipids, on the other hand, are generated from galactosylceramide synthase (GalCerS), an evolutionarily dissimilar enzyme from GCS. Glycosphingolipids are further divided based upon further modification by various glycosyltransferases which increases the potential variation in lipid species by several fold. Far more abundant are the sphingomyelin species which are produced in parallel with glycosphingolipids, however they are defined by a phosphocholine headgroup rather than the addition of sugar residues. Although sphingomyelin species all share a common headgroup, they too are produced from a variety of ceramide species and therefore can have differing acyl chains attached to their C-2 amino groups. Whether or not the differing acyl chain lengths in SMs dictate unique functions or important biophysical distinctions has not yet been established. Understanding the function of all the existing glycosphingolipids and sphingomyelin species will be a major undertaking in the future since the tools to study and measure these species are only beginning to be developed (see Fig 1 for an illustrated depiction of the various sphingolipid structures). The simple sphingolipids serve both as the precursors and the breakdown products of the more complex ones. Importantly, in recent decades, these simple sphingolipids have gained attention for having significant signaling and regulatory roles within cells. In addition, many tools have emerged to measure the levels of simple sphingolipids and therefore have become the focus of even more intense study in recent years. With this thought in mind, this chapter will pay tribute to the complex sphingolipids, but focus on the regulation of simple sphingolipid metabolism.
Collapse
Affiliation(s)
- Christopher R Gault
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
28
|
Complex N-glycans or core 1-derived O-glycans are not required for the expression of stage-specific antigens SSEA-1, SSEA-3, SSEA-4, or Le(Y) in the preimplantation mouse embryo. Glycoconj J 2008; 26:335-47. [PMID: 18773292 DOI: 10.1007/s10719-008-9181-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/13/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
The glycan epitopes termed stage-specific embryonic antigens (SSEA) occur on glycoproteins and glycolipids in mammals. However, it is not known whether these epitopes are attached to N- or O-glycans on glycoproteins and/or on glycolipids in the developing mouse embryo. In this paper the expression of the antigens SSEA-1, SSEA-3, SSEA-4 and Le(Y) was examined on ovulated eggs, early embryos and blastocysts lacking either complex and hybrid N-glycans or core-1 derived O-glycans. In all cases, antigen expression determined by fluorescence microscopy of bound monoclonal antibodies to embryos at the stage of development of maximal expression was similar in mutant and control embryos. Thus, none of these developmental antigens are expressed solely on either complex N- or core 1-derived O-glycans attached to glycoproteins in the preimplantation mouse embryo. Furthermore, neither of these classes of glycan is essential for the expression of SSEA-1, SSEA-3, SSEA-4 or Le(Y) on mouse embryos.
Collapse
|
29
|
Wang G, Krishnamurthy K, Chiang YW, Dasgupta S, Bieberich E. Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development. J Neurochem 2008; 106:718-33. [PMID: 18466329 DOI: 10.1111/j.1471-4159.2008.05451.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We provide evidence that the sphingolipid ceramide, in addition to its pro-apoptotic function, regulates neural progenitor (NP) motility in vitro and brain development in vivo. Ceramide (N-palmitoyl d-erythro sphingosine and N-oleoyl d-erythro sphingosine) and the ceramide analog N-oleoyl serinol (S18) stimulate migration of NPs in scratch (wounding) migration assays. Sphingolipid depletion by inhibition of de novo ceramide biosynthesis, or ceramide inactivation using an anti-ceramide antibody, obliterates NP motility, which is restored by ceramide or S18. These results suggest that ceramide is crucial for NP motility. Wounding of the NP monolayer activates neutral sphingomyelinase indicating that ceramide is generated from sphingomyelin. In membrane processes, ceramide is co-distributed with its binding partner atypical protein kinase C zeta/lambda (aPKC), and Cdc42, alpha/beta-tubulin, and beta-catenin, three proteins involved in aPKC-dependent regulation of cell polarity and motility. Sphingolipid depletion by myriocin prevents membrane translocation of aPKC and Cdc42, which is restored by ceramide or S18. These results suggest that ceramide-mediated membrane association of aPKC/Cdc42 is important for NP motility. In vivo, sphingolipid depletion leads to ectopic localization of mitotic or post-mitotic neural cells in the embryonic brain, while S18 restores the normal brain organization. In summary, our study provides novel evidence that ceramide is critical for NP motility and polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Guanghu Wang
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
30
|
Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival. Prog Lipid Res 2008; 47:188-203. [PMID: 18319065 DOI: 10.1016/j.plipres.2008.01.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/30/2007] [Accepted: 01/17/2008] [Indexed: 01/14/2023]
Abstract
Sphingolipids represent a class of membrane lipids that contain a hydrophobic ceramide chain as its common backbone structure. Sphingolipid synthesis requires two simple components: l-serine and palmitoyl CoA. Although l-serine is classified as a non-essential amino acid, an external supply of l-serine is essential for the synthesis of sphingolipids and phosphatidylserine (PS) in particular types of central nervous system (CNS) neurons. l-Serine is also essential for these neurons to undergo neuritogenesis and to survive. Biochemical analysis has shown that l-serine is synthesized from glucose and released by astrocytes but not by neurons, which is the major reason why this amino acid is an essential amino acid for neurons. Biosynthesis of membrane lipids, such as sphingolipids, PS, and phosphatidylethanolamine (PE), in neurons is completely dependent on this astrocytic factor. Recent advances in lipid biology research using transgenic mice have demonstrated that synthesis of endogenous l-serine and neuronal sphingolipids is essential for brain development. In this review, we discuss the metabolic system that coordinates sphingolipid synthesis with the l-serine synthetic pathway between neurons and glia. We also discuss the crucial roles of the metabolic conversion of l-serine to sphingolipids in neuronal development and survival. Human diseases associated with serine and sphingolipid biosynthesis are also discussed.
Collapse
|
31
|
Sabourdy F, Kedjouar B, Sorli SC, Colié S, Milhas D, Salma Y, Levade T. Functions of sphingolipid metabolism in mammals--lessons from genetic defects. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:145-83. [PMID: 18294974 DOI: 10.1016/j.bbalip.2008.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 01/23/2023]
Abstract
Much is known about the pathways that control the biosynthesis, transport and degradation of sphingolipids. During the last two decades, considerable progress has been made regarding the roles this complex group of lipids play in maintaining membrane integrity and modulating responses to numerous signals. Further novel insights have been provided by the analysis of newly discovered genetic diseases in humans as well as in animal models harboring mutations in the genes whose products control sphingolipid metabolism and action. Through the description of the phenotypic consequences of genetic defects resulting in the loss of activity of the many proteins that synthesize, transport, bind, or degrade sphingolipids, this review summarizes the (patho)physiological functions of these lipids.
Collapse
|
32
|
Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, Gallala H, Sandhoff K, Wiegandt H, Gröne HJ. Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 2006; 282:3083-94. [PMID: 17145749 DOI: 10.1074/jbc.m610304200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular und Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|