1
|
Nieuwoudt C, Farooq FB, Brooks-Wilson A, Bureau A, Graham J. Statistics to prioritize rare variants in family-based sequencing studies with disease subtypes. Genet Epidemiol 2024; 48:324-343. [PMID: 38940260 DOI: 10.1002/gepi.22579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Family-based sequencing studies are increasingly used to find rare genetic variants of high risk for disease traits with familial clustering. In some studies, families with multiple disease subtypes are collected and the exomes of affected relatives are sequenced for shared rare variants (RVs). Since different families can harbor different causal variants and each family harbors many RVs, tests to detect causal variants can have low power in this study design. Our goal is rather to prioritize shared variants for further investigation by, for example, pathway analyses or functional studies. The transmission-disequilibrium test prioritizes variants based on departures from Mendelian transmission in parent-child trios. Extending this idea to families, we propose methods to prioritize RVs shared in affected relatives with two disease subtypes, with one subtype more heritable than the other. Global approaches condition on a variant being observed in the study and assume a known probability of carrying a causal variant. In contrast, local approaches condition on a variant being observed in specific families to eliminate the carrier probability. Our simulation results indicate that global approaches are robust to misspecification of the carrier probability and prioritize more effectively than local approaches even when the carrier probability is misspecified.
Collapse
Affiliation(s)
- Christina Nieuwoudt
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fabiha Binte Farooq
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Angela Brooks-Wilson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Alexandre Bureau
- Département de Médecine Sociale et Préventive, Université Laval, Québec City, Québec, Canada
- Centre de recherche CERVO, Québec City, Québec, Canada
| | - Jinko Graham
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
Liu Q, Zhou Y, Cogan JD, Mitchell DB, Sheng Q, Zhao S, Bai Y, Ciombor KK, Sabusap CM, Malabanan MM, Markin CR, Douglas K, Ding G, Banovich NE, Nickerson DA, Blue EE, Bamshad MJ, Brown KK, Schwartz DA, Phillips JA, Martinez-Barricarte R, Salisbury ML, Shyr Y, Loyd JE, Kropski JA, Blackwell TS. The Genetic Landscape of Familial Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 207:1345-1357. [PMID: 36622818 PMCID: PMC10595451 DOI: 10.1164/rccm.202204-0781oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biostatistics
| | | | - Joy D. Cogan
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics
| | | | | | | | | | | | | | | | | | | | - Guixiao Ding
- Division of Allergy, Pulmonary and Critical Care Medicine
| | | | | | | | - Michael J. Bamshad
- Department of Genome Sciences
- Brotman-Baty Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado Denver, Denver, Colorado; and
| | - John A. Phillips
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics
| | | | | | | | - James E. Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Alade A, Awotoye W, Butali A. Genetic and epigenetic studies in non-syndromic oral clefts. Oral Dis 2022; 28:1339-1350. [PMID: 35122708 DOI: 10.1111/odi.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The etiology of non-syndromic oral clefts (NSOFC) is complex with genetics, genomics, epigenetics, and stochastics factors playing a role. Several approaches have been applied to understand the etiology of non-syndromic oral clefts. These include linkage, candidate gene association studies, genome-wide association studies, whole-genome sequencing, copy number variations, and epigenetics. In this review, we shared these approaches, genes, and loci reported in some studies.
Collapse
Affiliation(s)
- Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Waheed Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Pang H, Xia Y, Luo S, Huang G, Li X, Xie Z, Zhou Z. Emerging roles of rare and low-frequency genetic variants in type 1 diabetes mellitus. J Med Genet 2021; 58:289-296. [PMID: 33753534 PMCID: PMC8086251 DOI: 10.1136/jmedgenet-2020-107350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disorder and has enormous complexity and heterogeneity. Although its precise pathogenic mechanisms are obscure, this disease is widely acknowledged to be precipitated by environmental factors in individuals with genetic susceptibility. To date, the known susceptibility loci, which have mostly been identified by genome-wide association studies, can explain 80%–85% of the heritability of T1DM. Researchers believe that at least a part of its missing genetic component is caused by undetected rare and low-frequency variants. Most common variants have only small to modest effect sizes, which increases the difficulty of dissecting their functions and restricts their potential clinical application. Intriguingly, many studies have indicated that rare and low-frequency variants have larger effect sizes and play more significant roles in susceptibility to common diseases, including T1DM, than common variants do. Therefore, better recognition of rare and low-frequency variants is beneficial for revealing the genetic architecture of T1DM and for providing new and potent therapeutic targets for this disease. Here, we will discuss existing challenges as well as the great significance of this field and review current knowledge of the contributions of rare and low-frequency variants to T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Sherman T, Fu J, Scharpf RB, Bureau A, Ruczinski I. Detection of rare disease variants in extended pedigrees using RVS. Bioinformatics 2020; 35:2509-2511. [PMID: 30500888 PMCID: PMC6612888 DOI: 10.1093/bioinformatics/bty976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/20/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022] Open
Abstract
Summary Family-based sequencing studies enable researchers to identify highly penetrant genetic variants too rare to be tested in conventional case-control studies, by studying co-segregation of variant and disease phenotypes. When multiple affected subjects in a family are sequenced, the probability that a variant or a set of variants is shared identical-by-descent by some or all affected relatives provides evidence against the null hypothesis of complete absence of linkage and association. The Rare Variant Sharing software package RVS implements a suite of tools to assess association and linkage between rare genetic variants and a dichotomous disease indicator in family pedigrees. Availability and Implementation RVS is available as open source software from the Bioconductor webpage at https://bioconductor.org/packages/release/bioc/html/RVS.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thomas Sherman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Jack Fu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Robert B Scharpf
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexandre Bureau
- Département de Médecine Sociale et Préventive, Université Laval, Québec, QC, Canada.,Centre de Recherche CERVO, Québec, QC, Canada
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|