1
|
Viola V, Chinnappa K, Francis F. Radial glia progenitor polarity in health and disease. Front Cell Dev Biol 2024; 12:1478283. [PMID: 39416687 PMCID: PMC11479994 DOI: 10.3389/fcell.2024.1478283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface. A shorter apical process also terminates with an endfoot that faces the ventricle, with a primary cilium protruding in the cerebrospinal fluid. These cell domains have particular subcellular compositions that are critical for the correct functioning of RG. When altered, this can affect proper development of the cortex, ultimately leading to cortical malformations, associated with different pathological outcomes. In this review, we focus on the current knowledge concerning the cell biology of these bipolar stem cells and discuss the role of their polarity in health and disease.
Collapse
Affiliation(s)
- Valeria Viola
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Kaviya Chinnappa
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Fiona Francis
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| |
Collapse
|
2
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Meyerink BL, Tiwari NK, Pilaz LJ. Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells 2020; 10:E3. [PMID: 33375033 PMCID: PMC7822038 DOI: 10.3390/cells10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
4
|
Basigin Associates with Integrin in Order to Regulate Perineurial Glia and Drosophila Nervous System Morphology. J Neurosci 2020; 40:3360-3373. [PMID: 32265259 DOI: 10.1523/jneurosci.1397-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system.SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system.
Collapse
|
5
|
Liu Q, Jiang M, Kuang Y, Shu X, Li J, Li MW, Li H. Dicer1 Ablation Impairs Responsiveness of Cerebellar Granule Neuron Precursors to Sonic Hedgehog and Disrupts Expression of Distinct Cell Cycle Regulator Genes. THE CEREBELLUM 2017; 16:450-461. [PMID: 27600805 DOI: 10.1007/s12311-016-0821-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Granule neuron precursors (GNPs) proliferate under the influence of Sonic hedgehog (Shh) that is secreted by Purkinje neurons during early postnatal cerebellar development. To investigate microRNA (miRNA) function in this developmental process, we conditionally deleted the Dicer1 gene under the activity of human glial fibrillary acidic protein (hGFAP) promoter. We report that Dicer1-ablated GNPs display decreased proliferation and survival at early postnatal stages and that the proliferation defect of mutant GNPs cannot be rescued by treatment of an Shh agonist in vitro as assayed by 5-bromo-2'-deoxyuridine (BrdU) pulse labeling and Shh target gene expression detection. Further analysis reveals that the expression of distinct cell cycle regulator genes including cell cycle inhibitor, CDKN1a (p21), selectively increases in Dicer1-ablated GNPs. Subsequently, we demonstrate that miR-17-5p exhibits high expression level in the developing cerebellum and that transfection of a synthetic miR-17-5p mimic downregulates p21 protein expression in GNPs and promotes proliferation of GNPs in culture. Therefore, Dicer1 ablation impairs Shh-induced GNP proliferation by disrupting the expression of distinct cell cycle regulator genes that are targets of miR-17∼92 cluster members. This study establishes a molecular link between miRNAs and cell cycle progression in the proliferating GNPs during normal cerebellar development and may facilitate miRNA application in treating medulloblastoma.
Collapse
Affiliation(s)
- Qian Liu
- West China Developmental & Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mei Jiang
- West China Developmental & Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yi Kuang
- West China Developmental & Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,School of Life Science, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoqiong Shu
- West China Developmental & Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Li
- West China Developmental & Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Matthew W Li
- QSI International School of Chengdu, Chengdu, 610041, People's Republic of China
| | - Hedong Li
- West China Developmental & Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Obstetric & Gynecologic and Pediatric, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Sun D, Zhou X, Yu HL, He XX, Guo WX, Xiong WC, Zhu XJ. Regulation of neural stem cell proliferation and differentiation by Kinesin family member 2a. PLoS One 2017; 12:e0179047. [PMID: 28591194 PMCID: PMC5462413 DOI: 10.1371/journal.pone.0179047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/23/2017] [Indexed: 12/03/2022] Open
Abstract
In the developing neocortex, cells in the ventricular/subventricular zone are largely multipotent neural stem cells and neural progenitor cells. These cells undergo self-renewal at the early stage of embryonic development to amplify the progenitor pool and subsequently differentiate into neurons. It is thus of considerable interest to investigate mechanisms controlling the switch from neural stem cells or neural progenitor cells to neurons. Here, we present evidence that Kif2a, a member of the Kinesin-13 family, plays a role in regulating the proliferation and differentiation of neural stem cells or neural progenitor cells at embryonic day 13.5. Silencing Kif2a by use of in utero electroporation of Kif2a shRNA reduced neural stem cells proliferation or self-renewal but increased neuronal differentiation. We further found that knockdown of Kif2a decreased the protein level of β-catenin, which is a critical molecule for neocortical neurogenesis. Together, these results reveal an important function of Kif2a in embryonic neocortical neurogenesis.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Xue Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (X-JZ); (W-CX)
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- * E-mail: (X-JZ); (W-CX)
| |
Collapse
|
7
|
Nulty J, Alsaffar M, Barry D. Radial glial cells organize the central nervous system via microtubule dependant processes. Brain Res 2015; 1625:171-9. [DOI: 10.1016/j.brainres.2015.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 11/16/2022]
|
8
|
Xie YJ, Zhou L, Jiang N, Zhang N, Zou N, Zhou L, Wang Y, Cowell JK, Shen Y. Essential roles of leucine-rich glioma inactivated 1 in the development of embryonic and postnatal cerebellum. Sci Rep 2015; 5:7827. [PMID: 25591666 PMCID: PMC4296302 DOI: 10.1038/srep07827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
Leucine-rich glioma inactivated 1 (LGI1) is a secreted protein that interacts with ADAM transmembrane proteins, and its mutations are linked to human epilepsy. The function of LGI1 in CNS development remains undefined. Here, we report novel functions of LGI1 in the generation of cerebellar granule precursors (CGPs) and differentiation of radial glial cells (RGCs) in the cerebellum. A reduction in external granule layer thickness and defects in foliation were seen in embryonic and new-born LGI1 knockout (KO) mice. BrdU staining showed an inhibited proliferation of CGPs in KO embryos, which might be explained by the reduced Sonic hedgehog in embryos. In addition, the differentiation of RGCs into Bergmann glias was suppressed in KO mice. Enhanced Jagged1-Notch1 signaling in KO mice via reduced β-secretase proteolysis suggests that altered phenotype of RGCs is due to abnormal Notch1 signaling. Together, our results demonstrate that LGI1 is an essential player in the cerebellar development.
Collapse
Affiliation(s)
- Ya-Jun Xie
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Nanwei Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Nan Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Na Zou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - John K Cowell
- Georgia Regents University, Cancer Center, Augusta, GA, USA
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Schmid MT, Weinandy F, Wilsch-Bräuninger M, Huttner WB, Cappello S, Götz M. The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Front Cell Neurosci 2014; 8:215. [PMID: 25147501 PMCID: PMC4124588 DOI: 10.3389/fncel.2014.00215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/16/2014] [Indexed: 12/02/2022] Open
Abstract
During brain development, radial glial cells possess an apico-basal polarity and are coupled by adherens junctions (AJs) to an F-actin belt. To elucidate the role of the actin, we conditionally deleted the key component α-E-catenin in the developing cerebral cortex. Deletion at early stages resulted in severe disruption of tissue polarity due to uncoupling of AJs with the intracellular actin fibers leading to the formation of subcortical band heterotopia. Interestingly, this phenotype closely resembled the phenotype obtained by conditional RhoA deletion, both in regard to the macroscopic subcortical band heterotopia and the subcellular increase in G-actin/F-actin ratio. These data therefore together corroborate the role of the actin cytoskeleton and its anchoring to the AJs for neuronal migration disorders.
Collapse
Affiliation(s)
- Marie-Theres Schmid
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany
| | - Franziska Weinandy
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany
| | | | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Silvia Cappello
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany ; Department of Physiological Genomics, Institute of Physiology, University of Munich Munich, Germany
| | - Magdalena Götz
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany ; Department of Physiological Genomics, Institute of Physiology, University of Munich Munich, Germany
| |
Collapse
|
10
|
Kuribayashi H, Baba Y, Watanabe S. BMP signaling participates in late phase differentiation of the retina, partly via upregulation of Hey2. Dev Neurobiol 2014; 74:1172-83. [PMID: 24890415 DOI: 10.1002/dneu.22196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/25/2014] [Accepted: 05/24/2014] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic protein (BMP) plays pivotal roles in early retinal development. However, its roles in the late phase of retinal development remain unclear. We found that BMP receptors and ligands were expressed in the postnatal mouse retina. Furthermore, immunostaining revealed that phosphorylated Smads were enriched in various cells types in the inner nuclear layer postnatally. However, phosphorylated Smads were not detected in photoreceptors, suggesting that BMP may play roles in retinal cells in the inner nuclear layer. Forced expression of constitutively active BMP receptors during retinal development resulted in an increased number of bipolar cells and Müller glia and a decreased number of rod photoreceptors; however, proliferation was not perturbed. The expression of dominant negative BMP receptors resulted in a decreased number of Müller glia and bipolar cells. In addition, inhibiting BMP signaling in retinal monolayer cultures abrogated Müller glial process extension, suggesting that BMP signaling also plays a role in the maturation of Müller glia. The expression of the basic helix-loop-helix transcription factor Hey2 was induced by BMP signaling in retinas. The coexpression of sh-Hey2 with constitutively active BMP receptors suggested that the effects of BMP signaling on retinal differentiation could be attributed partly to the induction of Hey2 by BMP. We propose that BMP signaling plays pivotal roles in the differentiation of retinal progenitor cells into late differentiating retinal cell types and in the maturation of Müller glia; these effects were mediated, at least in part, by Hey2.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Li H, Hader AT, Han YR, Wong JA, Babiarz J, Ricupero CL, Godfrey SB, Corradi JP, Fennell M, Hart RP, Plummer MR, Grumet M. Isolation of a novel rat neural progenitor clone that expresses Dlx family transcription factors and gives rise to functional GABAergic neurons in culture. Dev Neurobiol 2012; 72:805-20. [PMID: 21913335 DOI: 10.1002/dneu.20977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gamma-aminobutyric acid (GABA) ergic interneurons are lost in conditions including epilepsy and central nervous system injury, but there are few culture models available to study their function. Toward the goal of obtaining renewable sources of GABAergic neurons, we used the molecular profile of a functionally incomplete GABAergic precursor clone to screen 17 new clones isolated from GFP(+) rat E14.5 cortex and ganglionic eminence (GE) that were generated by viral introduction of v-myc. The clones grow as neurospheres in medium with FGF2, and after withdrawal of FGF2, they exhibit varying patterns of differentiation. Transcriptional profiling and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that one clone (GE6) expresses high levels of mRNAs encoding Dlx1, 2, 5, and 6, glutamate decarboxylases, and presynaptic proteins including neuropeptide Y and somatostatin. Protein expression confirmed that GE6 is a progenitor with restricted differentiation giving rise mostly to neurons with GABAergic markers. In cocultures with hippocampal neurons, GE6 neurons became electrically excitable and received both inhibitory and excitatory synapses. After withdrawal of FGF2 in cultures of GE6 alone, neurons matured to express βIII-tubulin, and staining for synaptophysin and vesicular GABA transporter were robust after 1-2 weeks of differentiation. GE6 neurons also became electrically excitable and displayed synaptic activity, but synaptic currents were carried by chloride and were blocked by bicuculline. The results suggest that the GE6 clone, which is ventrally derived from the GE, resembles GABAergic interneuron progenitors that migrate into the developing forebrain. This is the first report of a relatively stable fetal clone that can be differentiated into GABAergic interneurons with functional synapses.
Collapse
Affiliation(s)
- Hedong Li
- W.M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, Jiang M, Li H. Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia 2012; 60:1734-46. [PMID: 22836445 DOI: 10.1002/glia.22392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) have important roles in the development of the central nervous system (CNS). Several reports indicate that tissue development and cellular differentiation in the developing forebrain are disrupted in the absence of miRNAs. However, the functions of miRNAs during cerebellar development have not been systematically characterized. Here, we conditionally knocked out the Dicer1 gene under the control of the human glial fibrillary acidic protein (hGFAP) promoter to examine the effect of miRNAs in the developing cerebellum. We particularly focused on the phenotype of Bergmann glia (BG). The hGFAP-Cre activity was detected as early as embryonic day 13.5 (E13.5) at the rhombic lip (RL) in the cerebellar plate, and later in several postnatal cerebellar cell types, including BG. Dicer1 ablation induces a smaller and less developed cerebellum, accompanied by aberrant BG morphology. Notch1 signaling appears to be blocked in Dicer1-ablated BG, with reduced expression of the Notch1 target gene, brain lipid binding protein (BLBP). Using neuronal co-culture assays, we showed an intrinsic effect of Dicer1 on BG morphology and Notch1 target gene expression. We further identified miR-9 as being differentially expressed in BG and showed that miR-9 is a critical, but not the only, miRNA component of the Notch1 signaling pathway in cultured BG cells.
Collapse
Affiliation(s)
- Yi Kuang
- West China Developmental and Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hatanaka Y, Yamauchi K. Excitatory cortical neurons with multipolar shape establish neuronal polarity by forming a tangentially oriented axon in the intermediate zone. ACTA ACUST UNITED AC 2012; 23:105-13. [PMID: 22267309 DOI: 10.1093/cercor/bhr383] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The formation of axon-dendrite polarity is crucial for neuron to make the proper information flow within the brain. Although the processes of neuronal polarity formation have been extensively studied using neurons in dissociated culture, the corresponding developmental processes in vivo are still unclear. Here, we illuminate the initial steps of morphological polarization of excitatory cortical neurons in situ, by sparsely labeling their neuroepithelial progenitors using in utero electroporation and then examining their neuronal progeny in brain sections and in slice cultures. Morphological analysis showed that an axon-like long tangential process formed in progeny cells in the intermediate zone (IZ). Time-lapse imaging analysis using slice culture revealed that progeny cells with multipolar shape, after alternately extending and retracting their short processes for several hours, suddenly elongated a long process tangentially. These cells then transformed into a bipolar shape, extending a pia-directed leading process, and migrated radially leaving the tangential process behind, which gave rise to an "L-shaped" axon. Our findings suggest that neuronal polarity in these cells is established de novo from a nonpolarized stage in vivo and indicate that excitatory cortical neurons with multipolar shape in the IZ initiate axon outgrowth before radial migration into the cortical plate.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | |
Collapse
|
14
|
Wang X, Imura T, Sofroniew MV, Fushiki S. Loss of adenomatous polyposis coli in Bergmann glia disrupts their unique architecture and leads to cell nonautonomous neurodegeneration of cerebellar Purkinje neurons. Glia 2011; 59:857-68. [PMID: 21381115 DOI: 10.1002/glia.21154] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/13/2011] [Indexed: 01/24/2023]
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that inhibits the Wnt/beta-catenin signaling pathway and regulates the microtubule and actin cytoskeletons. Using conditional knockout (CKO) mice in which the APC gene is inactivated in glial fibrillary acidic protein (GFAP)-expressing cells, we show a selective and critical role for APC in maintaining the morphology and function of cerebellar Bergmann glia, which are specialized astroglia that extend polarized radial processes from the Purkinje cell layer to the pial surface. APC-CKO mice developed Bergmann glia normally until the accumulation of beta-catenin started around postnatal day 10 (P10). Their radial fibers then became shortened with a marked reduction of branching collaterals and their cell bodies translocated into the molecular layer followed by loss of their pial contact and transformation into stellate-shaped cells by P21. Purkinje neurons were normal in appearance and number at P21, but there was significant loss of Purkinje neurons and cerebellar atrophy by middle age. Outside the cerebellum, neither beta-catenin accumulation nor morphological changes were identified in GFAP-expressing astroglia, indicating region-specific effects of APC deletion and an essential role for APC in maintaining the unique morphology of Bergmann glia as compared with other astroglia. These results demonstrate that loss of APC selectively disrupts the Bergmann glial scaffold in late postnatal development and leads to cerebellar degeneration with loss of Purkinje neurons in adults, providing another potential mechanism for region-specific non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
15
|
Yokota Y, Eom TY, Stanco A, Kim WY, Rao S, Snider WD, Anton ES. Cdc42 and Gsk3 modulate the dynamics of radial glial growth, inter-radial glial interactions and polarity in the developing cerebral cortex. Development 2010; 137:4101-10. [PMID: 21062867 DOI: 10.1242/dev.048637] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polarized radial glia are crucial to the formation of the cerebral cortex. They serve as neural progenitors and as guides for neuronal placement in the developing cerebral cortex. The maintenance of polarized morphology is essential for radial glial functions, but the extent to which the polarized radial glial scaffold is static or dynamic during corticogenesis remains an open question. The developmental dynamics of radial glial morphology, inter-radial glial interactions during corticogenesis, and the role of the cell polarity complexes in these activities remain undefined. Here, using real-time imaging of cohorts of mouse radial glia cells, we show that the radial glial scaffold, upon which the cortex is constructed, is highly dynamic. Radial glial cells within the scaffold constantly interact with one another. These interactions are mediated by growth cone-like endfeet and filopodia-like protrusions. Polarized expression of the cell polarity regulator Cdc42 in radial glia regulates glial endfeet activities and inter-radial glial interactions. Furthermore, appropriate regulation of Gsk3 activity is required to maintain the overall polarity of the radial glia scaffold. These findings reveal dynamism and interactions among radial glia that appear to be crucial contributors to the formation of the cerebral cortex. Related cell polarity determinants (Cdc42, Gsk3) differentially influence radial glial activities within the evolving radial glia scaffold to coordinate the formation of cerebral cortex.
Collapse
Affiliation(s)
- Yukako Yokota
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Léon C, de Nijs L, Chanas G, Delgado-Escueta AV, Grisar T, Lakaye B. Distribution of EFHC1 or Myoclonin 1 in mouse neural structures. Epilepsy Res 2009; 88:196-207. [PMID: 20015616 DOI: 10.1016/j.eplepsyres.2009.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/16/2009] [Accepted: 11/15/2009] [Indexed: 01/29/2023]
Abstract
EFHC1, a gene mutated in juvenile myoclonic epilepsy, encodes EFHC1, a protein with three DM10 domains and one EF-hand motif. We recently demonstrated that this molecule is a microtubule-associated protein (MAP) implicated in neuronal migration. Because some controversies persist about the precise localization in the CNS, we studied the neuroanatomical distribution of EFHC1 in mature and developing mouse brain. In the adult, low mRNA expression was detected in several brain structures such as cortex, striatum, hippocampus and cerebellum. At E16, EFHC1 mRNA was shown to be expressed in cortex and not only in cells lining ventricles. Using a purified polyclonal antibody, EFHC1 staining was observed in all cortical layers, in piriform cortex, in hippocampus and in Purkinje cells of cerebellum. In the cortex, the majority of EFHC1 positive cells correspond to neurons, however some glial cells were also stained. In agreement with a previous study, we demonstrated strong EFHC1 expression in cilia of ependymal cells lining cerebral ventricles. Moreover, at E16, the protein was observed at the borders of brain ventricles, in choroid plexus, but also, although to a lesser extent, in piriform and neocortex. In these latter structures, the pattern of expression seems to correspond to the extensions of the radial glia fibers as demonstrated by BLBP immunostaining. Finally, we confirmed that EFHC1 was also expressed and co-localized with the mitotic spindle of neural stem cells. These results confirm that EFHC1 is a protein with a likely low expression level in mouse brain but detectable both in adult and embryonic brain supporting our previous data and hypothesis that EFHC1 could play an important role during brain development. As discussed, this opens the door to a new conceptual approach viewing some idiopathic generalized epilepsies as developmental diseases instead of classical channelopathies.
Collapse
Affiliation(s)
- Christine Léon
- GIGA-Neurosciences, University of Liège, Avenue de l'Hopital 1, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Jaglin XH, Chelly J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 2009; 25:555-66. [PMID: 19864038 DOI: 10.1016/j.tig.2009.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 01/14/2023]
Abstract
The fine tuning of proliferation and neurogenesis, neuronal migration and differentiation and connectivity underlies the proper development of the cerebral cortex. Mutations in genes involved in these processes are responsible for neurodevelopmental disorders, such as cortical dysgeneses, which are usually associated with severe mental retardation and epilepsy. Over the past few years, the importance of cytoskeleton components in cellular processes crucial for cortical development has emerged from a body of functional data. This was reinforced by the association of mutations in the LIS1 and DCX genes, which both encode proteins involved in microtubule (MT) homeostasis, with cerebral cortex developmental disorders. The recent discovery of patients with lissencephaly and bilateral asymmetrical polymicrogyria (PMG) carrying mutations in the alpha- and beta-tubulin-encoding genes TUBA1A and TUBB2B further supports this view, and also raises interesting questions about the specific roles played by certain tubulin isotypes during the development of the cortex.
Collapse
Affiliation(s)
- Xavier H Jaglin
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | |
Collapse
|
18
|
Li H, Han YR, Bi C, Davila J, Goff LA, Thompson K, Swerdel M, Camarillo C, Ricupero CL, Hart RP, Plummer MR, Grumet M. Functional differentiation of a clone resembling embryonic cortical interneuron progenitors. Dev Neurobiol 2009; 68:1549-64. [PMID: 18814314 DOI: 10.1002/dneu.20679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have generated clones (L2.3 and RG3.6) of neural progenitors with radial glial properties from rat E14.5 cortex that differentiate into astrocytes, neurons, and oligodendrocytes. Here, we describe a different clone (L2.2) that gives rise exclusively to neurons, but not to glia. Neuronal differentiation of L2.2 cells was inhibited by bone morphogenic protein 2 (BMP2) and enhanced by Sonic Hedgehog (SHH) similar to cortical interneuron progenitors. Compared with L2.3, differentiating L2.2 cells expressed significantly higher levels of mRNAs for glutamate decarboxylases (GADs), DLX transcription factors, calretinin, calbindin, neuropeptide Y (NPY), and somatostatin. Increased levels of DLX-2, GADs, and calretinin proteins were confirmed upon differentiation. L2.2 cells differentiated into neurons that fired action potentials in vitro, and their electrophysiological differentiation was accelerated and more complete when cocultured with developing astroglial cells but not with conditioned medium from these cells. The combined results suggest that clone L2.2 resembles GABAergic interneuron progenitors in the developing forebrain.
Collapse
Affiliation(s)
- Hedong Li
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li H, Chang YW, Mohan K, Su HW, Ricupero CL, Baridi A, Hart RP, Grumet M. Activated Notch1 maintains the phenotype of radial glial cells and promotes their adhesion to laminin by upregulating nidogen. Glia 2008; 56:646-58. [PMID: 18286610 DOI: 10.1002/glia.20643] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radial glia are neural stem cells that exist only transiently during central nervous system (CNS) development, where they serve as scaffolds for neuronal migration. Their instability makes them difficult to study, and therefore we have isolated stabilized radial glial clones from E14.5 cortical progenitors (e.g., L2.3) after expression of v-myc. Activated Notch1 intracellular region (actNotch1) promotes radial glia in the embryonic mouse forebrain (Gaiano et al., (2000), and when it was introduced into E14.5 cortical progenitors or radial glial clone L2.3, the cells exhibited enhanced radial morphology and increased expression of the radial glial marker BLBP. A representative clone of L2.3 cells expressing actNotch1 called NL2.3-4 migrated more extensively than L2.3 cells in culture and in white matter of the adult rat spinal cord. Microarray and RT-PCR comparisons of mRNAs expressed in these closely related clones showed extensive similarities, but differed significantly for certain mRNAs including several cell adhesion molecules. Cell adhesion assays demonstrated significantly enhanced adhesion to laminin of NL2.3-4 by comparison to L2.3 cells. The laminin binding protein nidogen was the most highly induced adhesion molecule in NL2.3-4, and immunological analyses indicated that radial glia synthesize and secrete nidogen. Adhesion of NL2.3-4 cells to laminin was inhibited by anti-nidogen antibodies and required the nidogen binding region in laminin, indicating that nidogen promotes cell adhesion to laminin. The combined results indicate that persistent expression of activated Notch1 maintains the phenotype of radial glial cells, inhibits their differentiation, and promotes their adhesion and migration on a laminin/nidogen complex.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vreugdenhil E, Kolk SM, Boekhoorn K, Fitzsimons CP, Schaaf M, Schouten T, Sarabdjitsingh A, Sibug R, Lucassen PJ. Doublecortin-like, a microtubule-associated protein expressed in radial glia, is crucial for neuronal precursor division and radial process stability. Eur J Neurosci 2007; 25:635-48. [PMID: 17313568 DOI: 10.1111/j.1460-9568.2007.05318.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During corticogenesis, progenitors divide within the ventricular zone where they rely on radial process extensions, formed by radial glial cell (RG) scaffolds, along which they migrate to the proper layers of the cerebral cortex. Although the microtubule-associated proteins doublecortin (DCX) and doublecortin-like kinase (DCLK) are critically involved in dynamic rearrangement of the cytoskeletal machinery that allow migration, little is known about their role in early corticogenesis. Here we have functionally characterized a mouse splice-variant of DCLK, doublecortin-like (DCL), exhibiting 73% amino acid sequence identity with DCX over its entire length. Unlike DCX, DCL is expressed from embryonic day 8 onwards throughout the early neuroepithelium. It is localized in mitotic cells, RGs and radial processes. DCL knockdown using siRNA in vitro induces spindle collapse in dividing neuroblastoma cells, whereas overexpression results in elongated and asymmetrical mitotic spindles. In vivo knockdown of the DCLK gene by in utero electroporation significantly reduced cell numbers in the inner proliferative zones and dramatically disrupted most radial processes. Our data emphasize the unique role of the DCLK gene in mitotic spindle integrity during early neurogenesis. In addition, they indicate crucial involvement of DCLK in RG proliferation and their radial process stability, a finding that has thus far not been attributed to DCX or DCLK.
Collapse
Affiliation(s)
- Erno Vreugdenhil
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tochio N, Koshiba S, Kobayashi N, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Motoda Y, Kobayashi A, Tanaka A, Hayashizaki Y, Terada T, Shirouzu M, Kigawa T, Yokoyama S. Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Sci 2007; 15:2534-43. [PMID: 17075132 PMCID: PMC2242405 DOI: 10.1110/ps.062391106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Microtubule-associated protein/microtubule affinity-regulating kinases (MARKs)/PAR-1 are common regulators of cell polarity that are conserved from nematode to human. All of these kinases have a highly conserved C-terminal domain, which is termed the kinase-associated domain 1 (KA1), although its function is unknown. In this study, we determined the solution structure of the KA1 domain of mouse MARK3 by NMR spectroscopy. We found that approximately 50 additional residues preceding the previously defined KA1 domain are required for its proper folding. The newly defined KA1 domain adopts a compact alpha+beta structure with a betaalphabetabetabetabetaalpha topology. We also found a characteristic hydrophobic, concave surface surrounded by positively charged residues. This concave surface includes the highly conserved Glu-Leu-Lys-Leu motif at the C terminus, indicating that it is important for the function of the KA1 domain.
Collapse
Affiliation(s)
- Naoya Tochio
- RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li H, Grumet M. BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain. Glia 2007; 55:24-35. [PMID: 17001659 DOI: 10.1002/glia.20434] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The earliest radial glia are neural stem cells that guide neural cell migration away from ventricular zones. Subsequently, radial glia become lineage restricted during development before they differentiate into more mature cell types in the CNS. We have previously shown that subpopulations of radial glial cells express markers for glial and neuronal restricted precursors (GRPs and NRPs) in expression patterns that are temporally and spatially regulated during CNS development. To characterize further the mechanism of this regulation in rat forebrain, we tested whether secreted factors that are present during development effect lineage restriction of radial glia. We show here that in radial glial cultures LIF/CNTF up-regulates, whereas BMP2 down-regulates GRP antigens recognized by monoclonal antibodies A2B5/4D4. These activities combined with secretion of BMPs dorsally and LIF/CNTF from the choroid plexus provide an explanation for the graded distribution pattern of A2B5/4D4 in dorso-lateral ventricular regions in vivo. The regulation by LIF/CNTF of A2B5/4D4 is mediated through the JAK-STAT pathway. BMP2 promotes expression on radial glial cells of the NRP marker polysialic acid most likely by regulating N-CAM expression itself, as well as at least one polysialyl transferase responsible for synthesis of polysialic acid on N-CAM. Taken together, these results suggest that generation of lineage-restricted precursors is coordinately regulated by gradients of the secreted factors BMPs and LIF/CNTF during development of dorsal forebrain.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
23
|
Szabó B, Környei Z, Zách J, Selmeczi D, Csúcs G, Czirók A, Vicsek T. Auto-reverse nuclear migration in bipolar mammalian cells on micropatterned surfaces. ACTA ACUST UNITED AC 2005; 59:38-49. [PMID: 15259054 DOI: 10.1002/cm.20022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel assay based on micropatterning and time-lapse microscopy has been developed for the study of nuclear migration dynamics in cultured mammalian cells. When cultured on 10-20-microm wide adhesive stripes, the motility of C6 glioma and primary mouse fibroblast cells is diminished. Nevertheless, nuclei perform an unexpected auto-reverse motion: when a migrating nucleus approaches the leading edge, it decelerates, changes the direction of motion, and accelerates to move toward the other end of the elongated cell. During this process, cells show signs of polarization closely following the direction of nuclear movement. The observed nuclear movement requires a functioning microtubular system, as revealed by experiments disrupting the main cytoskeletal components with specific drugs. On the basis of our results, we argue that auto-reverse nuclear migration is due to forces determined by the interplay of microtubule dynamics and the changing position of the microtubule organizing center as the nucleus reaches the leading edge. Our assay recapitulates specific features of nuclear migration (cell polarization, oscillatory nuclear movement), while it allows the systematic study of a large number of individual cells. In particular, our experiments yielded the first direct evidence of reversive nuclear motion in mammalian cells, induced by attachment constraints.
Collapse
Affiliation(s)
- B Szabó
- Research Group for Biological Physics, HAS, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
24
|
Li H, Babiarz J, Woodbury J, Kane-Goldsmith N, Grumet M. Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Dev Biol 2004; 271:225-38. [PMID: 15223331 DOI: 10.1016/j.ydbio.2004.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 02/24/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Radial glia are among the first cells that develop in the embryonic central nervous system. They are progenitors of glia and neurons but their relationship with restricted precursors that are also derived from neuroepithelia is unclear. To clarify this issue, we analyzed expression of cell type specific markers (BLBP for radial glia, 5A5/E-NCAM for neuronal precursors and A2B5 for glial precursors) on cortical radial glia in vivo and their progeny in vitro. Clones of cortical cells initially expressing only BLBP gave rise to cells that were A2B5+ and eventually lost BLBP expression in vitro. BLBP is expressed in the rat neuroepithelium as early as E12.5 when there is little or no staining for A2B5 and 5A5. In E13.5-15.5 forebrain, A2B5 is spatially restricted co-localizing with a subset of the BLBP+ radial glia. Analysis of cells isolated acutely from embryonic cortices confirmed that BLBP expression could appear without, or together with, A2B5 or 5A5. The numbers of BLBP+/5A5+ cells decreased during neurogenesis while the numbers of BLBP+/A2B5+ cells remained high through the beginning of gliogenesis. The combined results demonstrate that spatially restricted subpopulations of radial glia along the dorsal-ventral axis acquire different markers for neuronal or glial precursors during CNS development.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, and W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | | | | | | | | |
Collapse
|