1
|
Lei Z, Lin W. Mechanisms Governing Oligodendrocyte Viability in Multiple Sclerosis and Its Animal Models. Cells 2024; 13:116. [PMID: 38247808 PMCID: PMC10814231 DOI: 10.3390/cells13020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disease of the central nervous system (CNS), which is triggered by an autoimmune assault targeting oligodendrocytes and myelin. Recent research indicates that the demise of oligodendrocytes due to an autoimmune attack contributes significantly to the pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE). A key challenge in MS research lies in comprehending the mechanisms governing oligodendrocyte viability and devising therapeutic approaches to enhance oligodendrocyte survival. Here, we provide an overview of recent findings that highlight the contributions of oligodendrocyte death to the development of MS and EAE and summarize the current literature on the mechanisms governing oligodendrocyte viability in these diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Steudler J, Ecott T, Ivan DC, Bouillet E, Walthert S, Berve K, Dick TP, Engelhardt B, Locatelli G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia 2022; 70:2045-2061. [PMID: 35762739 PMCID: PMC9546135 DOI: 10.1002/glia.24235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.
Collapse
Affiliation(s)
- Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Timothy Ecott
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
3
|
Ayed-Boussema I, Hamdi H, Chaabani H, M’nassri A, Mokni M, Abid S. Fenpyroximate induced cytotoxicity and genotoxicity in Wistar rat brain and in human neuroblastoma (SH-SY5Y) cells: involvement of oxidative stress and apoptosis. Neurotoxicology 2022; 91:177-187. [DOI: 10.1016/j.neuro.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
|
4
|
Alpha B-Crystallin Overexpression Protects Oligodendrocyte Precursor Cells Against Oxidative Stress-Induced Apoptosis Through the Akt Pathway. J Mol Neurosci 2020; 70:751-758. [PMID: 31970633 DOI: 10.1007/s12031-020-01485-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Alpha B-crystallin (aBC), a member of the small heat shock protein family, is expressed in mature oligodendrocytes (mOLs), but not in oligodendrocyte precursor cells (OPCs). Our previous study found that the survival rate of OPCs was lower than that of mOLs under oxidative stress, suggesting that aBC may play a protective role in mOLs. In the present study, we investigated the effects of aBC overexpression on oxidative stress-induced cell injury in OPCs and examined the underlying mechanisms. We observed that the survival rates of aBC-overexpressed OPCs were significantly higher than those of control cells under oxidative stress induced by hydrogen peroxide. Akt activities were significantly suppressed by oxidative stress in control OPCs, but not in aBC-overexpressed OPCs. The expressions of Bax and cleaved caspase-3 were decreased, whereas Bcl-2 expression was increased in aBC-overexpressed OPCs under oxidative stress. These findings suggest that low Akt activity in OPCs due to aBC deficiency may cause high susceptibility of OPCs to oxidative stress. The findings may provide new insights into the implication of OPCs in demyelinating diseases.
Collapse
|
5
|
Vargas-Medrano J, Segura-Ulate I, Yang B, Chinnasamy R, Arterburn JB, Perez RG. FTY720-Mitoxy reduces toxicity associated with MSA-like α-synuclein and oxidative stress by increasing trophic factor expression and myelin protein in OLN-93 oligodendroglia cell cultures. Neuropharmacology 2019; 158:107701. [PMID: 31291595 DOI: 10.1016/j.neuropharm.2019.107701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a fatal demyelinating disorder lacking any disease-modifying therapies. MSA pathology stems from aggregated α-synuclein (aSyn) accumulation in glial cytosolic inclusions of oligodendroglial cell (OLGs), the myelinating cells of brain. In MSA brains and in MSA animal models with aSyn accumulation in OLGs, aberrant expression of brain-derived neurotrophic factor (BDNF) and glial-cell-line-derived neurotrophic factor (GDNF) occur. Nerve growth factor (NGF) expression can also be altered in neurodegenerative diseases. It is unclear if oxidative stress impacts the viability of aSyn-accumulating OLG cells. Here, we show that OLN-93 cells stably expressing human wild type aSyn or the MSA-associated-aSyn-mutants G51D or A53E, are more vulnerable to oxidative stress. In dose response studies we found that OLN-93 cells treated 48 h with 160 nM FTY720 or our new non-immunosuppressive FTY720-C2 or FTY720-Mitoxy derivatives sustained normal viability. Also, FTY720, FTY720-C2, and FTY720-Mitoxy all stimulated NGF expression at 24 h. However only FTY720-Mitoxy also increased BDNF and GDNF mRNA at 24 h, an effect paralleled by increases in histone 3 acetylation and ERK1/2 phosphorylation. Myelin associated glycoprotein (MAG) levels were also increased in OLN-93 cells after 48 h treatment with FTY720-Mitoxy. FTY720, FTY720-C2, and FTY720-Mitoxy all prevented oxidative-stress-associated-cell-death of OLN-93 cells that lack any aSyn expression. However, only FTY720-Mitoxy protected MSA-like aSyn-expressing-OLN-93-cells against oxidative-cell-death. These data identify potent protective effects for FTY720-Mitoxy with regard to trophic factors as well as MAG expression by OLG cells. Testing of FTY720-Mitoxy in mice is thus a judicious next step for neuropharmacological preclinical development.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Ismael Segura-Ulate
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Barbara Yang
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Ramesh Chinnasamy
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jeffrey B Arterburn
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruth G Perez
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA.
| |
Collapse
|
6
|
Sun JY, Hou YJ, Fu XY, Fu XT, Ma JK, Yang MF, Sun BL, Fan CD, Oh J. Selenium-Containing Protein From Selenium-Enriched Spirulina platensis Attenuates Cisplatin-Induced Apoptosis in MC3T3-E1 Mouse Preosteoblast by Inhibiting Mitochondrial Dysfunction and ROS-Mediated Oxidative Damage. Front Physiol 2019; 9:1907. [PMID: 30687122 PMCID: PMC6333850 DOI: 10.3389/fphys.2018.01907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023] Open
Abstract
Accumulated evidences have verified that cancer chemotherapy may increase the risk of osteoporosis and severely affected the life quality. Osteoclasts hyperactivation was commonly accepted as the major pathogenesis of osteoporosis. However, the role of osteoblasts dysfunction in osteoporosis was little investigated. Our previous study has confirmed that selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) exhibited enhanced hepatoprotective potential through inhibiting oxidative damage. Herein, the protective effect of Se-SP against cisplatin-induced osteoblasts dysfunction in MC3T3-E1 mouse preosteoblast was investigated, and the underlying mechanism was evaluated. The results indicated that cisplatin dramatically decreased cell viability of preosteoblast by triggering mitochondria-mediated apoptosis pathway. Cisplatin treatment also caused mitochondrial dysfunction and reactive oxide species (ROS)-mediated oxidative damage. However, Se-SP pre-treatment effectively prevented MC3T3-E1 cells from cisplatin-induced mitochondrial dysfunction by balancing Bcl-2 family expression and regulating the opening of mitochondrial permeability transition pore (MPTP), attenuated cisplatin-induced oxidative damage through inhibiting the overproduction of ROS and superoxide anion, and eventually reversed cisplating-induced early and late apoptosis by inhibiting PARP cleavage and caspases activation. Our findings validated that Se-SP as a promising Se species could be a highly effective way in the chemoprevention and chemotherapy of oxidative damage-mediated bone diseases.
Collapse
Affiliation(s)
- Jing-yi Sun
- Department of Orthopedic Surgery, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Ya-jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Xiao-yan Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Xiao-ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Jin-kui Ma
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Ming-feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Bao-liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Cun-dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Jinrok Oh
- Department of Orthopedic Surgery, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| |
Collapse
|
7
|
Misslin C, Velasco-Estevez M, Albert M, O’Sullivan SA, Dev KK. Phospholipase A2 is involved in galactosylsphingosine-induced astrocyte toxicity, neuronal damage and demyelination. PLoS One 2017; 12:e0187217. [PMID: 29095858 PMCID: PMC5667767 DOI: 10.1371/journal.pone.0187217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022] Open
Abstract
Krabbe disease is a fatal rare inherited lipid storage disorder affecting 1:100,000 births. This illness is caused by mutations in the galc gene encoding for the enzyme galactosylceramidase (GALC). Dysfunction of GALC has been linked to the toxic build-up of the galactolipid, galactosylsphingosine (psychosine), which induces cell death of oligodendrocytes. Previous studies show that phospholipase A2 (PLA2) may play a role in psychosine induce cell death. Here, we demonstrate that non-selective inhibition of cPLA2/sPLA2 and selective inhibition of cPLA2, but not sPLA2, also attenuates psychosine-induced cell death of human astrocytes. This study shows that extracellular calcium is required for psychosine induced cell death, but intracellular calcium release, reactive oxygen species or release of soluble factors are not involved. These findings suggest a cell autonomous effect, at least in human astrocytes. Supporting a role for PLA2 in psychosine-induced cell death of oligodendrocytes and astrocytes, the results show inhibition of PLA2 attenuates psychosine-induced decrease in the expression of astrocyte marker vimentin as well as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and the neuronal marker SMI-32 in organotypic slice cultures. These findings provide further mechanistic details of psychosine-induced death of glia and suggest a role for PLA2 in the process. This work also supports the proposal that novel drugs for Krabbe disease may require testing on astrocytes as well as oligodendrocytes for more holistic prediction of pre-clinical and clinical efficacy.
Collapse
Affiliation(s)
- Cedric Misslin
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Marie Albert
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Kumlesh K. Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
8
|
Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, Rodríguez-Castro E, López-Dequidt I, Rodríguez-Yáñez M, Piñeiro Y, Sobrino T, Campos F, Rivas J, Castillo J. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology 2017; 15:30. [PMID: 28399863 PMCID: PMC5387212 DOI: 10.1186/s12951-017-0264-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Neurological diseases of diverse aetiologies have significant effects on the quality of life of patients. The limited self-repairing capacity of the brain is considered to be the origin of the irreversible and progressive nature of many neurological diseases. Therefore, neuroprotection is an important goal shared by many clinical neurologists and neuroscientists. In this review, we discuss the main obstacles that have prevented the implementation of experimental neuroprotective strategies in humans and propose alternative avenues for the use of neuroprotection as a feasible therapeutic approach. Special attention is devoted to nanotechnology, which is a new approach for developing highly specific and localized biomedical solutions for the study of the multiple mechanisms involved in stroke. Nanotechnology is contributing to personalized neuroprotection by allowing us to identify mechanisms, determine optimal therapeutic windows, and protect patients from brain damage. In summary, multiple aspects of these new players in biomedicine should be considered in future in vivo and in vitro studies with the aim of improving their applicability to clinical studies.
Collapse
Affiliation(s)
- Andrés Da Silva-Candal
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Bárbara Argibay
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Zulema Vargas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - José Rivas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain.
| | - José Castillo
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Sohn EJ, Shin MJ, Eum WS, Kim DW, Yong JI, Ryu EJ, Park JH, Cho SB, Cha HJ, Kim SJ, Yeo HJ, Yeo EJ, Choi YJ, Im SK, Kweon HY, Kim DS, Yu YH, Cho SW, Park M, Park J, Cho YJ, Choi SY. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways. Int J Mol Med 2016; 38:225-35. [PMID: 27221790 DOI: 10.3892/ijmm.2016.2596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/28/2016] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress-induced apoptosis is associated with neuronal cell death and ischemia. The NOL3 [nucleolar protein 3 (apoptosis repressor with CARD domain)] protein protects against oxidative stress-induced cell death. However, the protective mechanism responsible for this effect as well as the effects of NOL3 against oxidative stress in ischemia remain unclear. Thus, we examined the protective effects of NOL3 protein on hydrogen peroxide (H2O2)-induced oxidative stress and the mechanism responsible for these effects in hippocampal neuronal HT22 cells and in an animal model of forebrain ischemia using Tat-fused NOL3 protein (Tat-NOL3). Purified Tat-NOL3 protein transduced into the H2O2-exposed HT22 cells and inhibited the production of reactive oxygen species (ROS), DNA fragmentation and reduced mitochondrial membrane potential (ΔΨm). In addition, Tat-NOL3 prevented neuronal cell death through the regulation of apoptotic signaling pathways including Bax, Bcl-2, caspase-2, -3 and -8, PARP and p53. In addition, Tat-NOL3 protein transduced into the animal brains and significantly protected against neuronal cell death in the CA1 region of the hippocampus by regulating the activation of microglia and astrocytes. Taken together, these findings demonstrate that Tat-NOL3 protein protects against oxidative stress-induced neuronal cell death by regulating oxidative stress and by acting as an anti-apoptotic protein. Thus, we suggest that Tat-NOL3 represents a potential therapeutic agent for protection against ischemic brain injury.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Ji In Yong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Seung Kwon Im
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hae Young Kweon
- Department of Agricultural Biology, National Academy of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si, Chungnam 31538, Republic of Korea
| | - Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si, Chungnam 31538, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Meeyoung Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24253, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| |
Collapse
|
10
|
Takarada T, Kou M, Hida M, Fukumori R, Nakamura S, Kutsukake T, Kuramoto N, Hinoi E, Yoneda Y. Protective upregulation of activating transcription factor-3 against glutamate neurotoxicity in neuronal cells under ischemia. J Neurosci Res 2016; 94:378-88. [PMID: 26900013 DOI: 10.1002/jnr.23723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
Abstract
This study evaluates the pathological role of the stress sensor activating transcription factor-3 (ATF3) in ischemic neurotoxicity. Upregulation of the transcript and protein for ATF3 was seen 2-10 hr after reperfusion in the ipsilateral cerebral hemisphere of mice with transient middle cerebral artery occlusion for 2 hr. Immunohistochemical analysis confirmed the expression of ATF3 by cells immunoreactive for a neuronal marker in neocortex, hippocampus, and striatum within 2 hr after reperfusion. In murine neocortical neurons previously cultured under ischemic conditions for 2 hr, transient upregulation of both Atf3 and ATF3 expression was similarly found during subsequent culture for 2-24 hr under normoxia. Lentiviral overexpression of ATF3 ameliorated the neurotoxicity of glutamate (Glu) in cultured murine neurons along with a slight but statistically significant inhibition of both Fluo-3 and rhodamine-2 fluorescence increases by N-methyl-D-aspartate. Similarly, transient upregulation was seen in Atf3 and ATF3 expression during the culture for 48 hr in neuronal Neuro2A cells previously cultured under ischemic conditions for 2 hr. Luciferase reporter analysis with ATF3 promoter together with immunoblotting revealed the possible involvement of several transcription factors responsive to extracellular and intracellular stressors in the transactivation of the Atf3 gene in Neuro2A cells. ATF3 could be upregulated to play a role in mechanisms underlying mitigation of the neurotoxicity mediated by the endogenous neurotoxin Glu at an early stage after ischemic signal inputs.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Miki Kou
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Miho Hida
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Saki Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Takaya Kutsukake
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Nobuyuki Kuramoto
- Department of Toxicology, Setsunan University, Hirakata, Osaka, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical, and Health Sciences, Kanazawa, Ishikawa, Japan
| |
Collapse
|
11
|
Stratakos AC, Delgado-Pando G, Linton M, Patterson MF, Koidis A. Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke. Transl Stroke Res 2015; 7:33-41. [PMID: 26670926 DOI: 10.1007/s12975-015-0438-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Abstract
Neurovascular unit (NVU) is considered as a conceptual framework for investigating the mechanisms as well as developing therapeutic targets for ischemic and hemorrhagic stroke. From a molecular perspective, oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier are broad pathophysiological frameworks on the basis on which potential therapeutic candidates for ischemic and hemorrhagic stroke could be discussed. Cofilin is a potent actin-binding protein that severs and depolymerizes actin filaments in order to generate the dynamics of the actin cytoskeleton. Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in different molecular pathways are expanding beyond its primary role in actin cytoskeleton. This review focuses on the role of cofilin in oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier in the context of NVU as well as how and why cofilin could be studied further as a potential target for ischemic and hemorrhagic stroke.
Collapse
|
13
|
Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin. Mar Drugs 2015; 13:7113-23. [PMID: 26633426 PMCID: PMC4699232 DOI: 10.3390/md13127058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/07/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3–0.5 µg/mL (1.4–2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca2+-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death.
Collapse
|
14
|
Zhou Q, Zhang C, Cheng S, Wei B, Liu X, Ji S. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature. Food Chem 2014; 164:493-501. [DOI: 10.1016/j.foodchem.2014.05.063] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
|
15
|
Namekata K, Kimura A, Harada C, Yoshida H, Matsumoto Y, Harada T. Dock3 protects myelin in the cuprizone model for demyelination. Cell Death Dis 2014; 5:e1395. [PMID: 25165881 PMCID: PMC4454328 DOI: 10.1038/cddis.2014.357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
Abstract
Dedicator of cytokinesis 3 (Dock3) belongs to an atypical family of the guanine nucleotide exchange factors. It is predominantly expressed in the neural tissues and causes cellular morphological changes by activating the small GTPase Rac1. We previously reported that Dock3 overexpression protects retinal ganglion cells from excitotoxic cell death. Oligodendrocytes are the myelinating cells of axons in the central nervous system and these cells are damaged in demyelinating disorders including multiple sclerosis (MS) and optic neuritis. In this study, we examined if Dock3 is expressed in oligodendrocytes and if increasing Dock3 signals can suppress demyelination in a cuprizone-induced demyelination model, an animal model of MS. We demonstrate that Dock3 is expressed in oligodendrocytes and Dock3 overexpression protects myelin in the corpus callosum following cuprizone treatment. Furthermore, we show that cuprizone demyelinates optic nerves and the extent of demyelination is ameliorated in mice overexpressing Dock3. Cuprizone treatment impairs visual function, which was demonstrated by multifocal electroretinograms, an established non-invasive method, and Dock3 overexpression prevented this effect. In mice overexpressing Dock3, Erk activation is increased, suggesting this may at least partly explain the observed protective effects. Our findings suggest that Dock3 may be a therapeutic target for demyelinating disorders including optic neuritis.
Collapse
Affiliation(s)
- K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Yoshida
- Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Y Matsumoto
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Harada
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 2014; 20:603-12. [PMID: 24703424 DOI: 10.1111/cns.12263] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
Collapse
Affiliation(s)
- Gabriella Mifsud
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | | | |
Collapse
|
17
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
18
|
Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:218145. [PMID: 24386502 PMCID: PMC3872098 DOI: 10.1155/2013/218145] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- I. Villanueva
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - C. Alva-Sánchez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - J. Pacheco-Rosado
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| |
Collapse
|
19
|
Lapp DW, Zhang SS, Barnstable CJ. Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool. Glia 2013; 62:159-70. [DOI: 10.1002/glia.22594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/12/2013] [Accepted: 10/16/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel W. Lapp
- Department of Neural and Behavioral Sciences; Penn State College of Medicine; Hershey Pennsylvania
| | - Samuel S. Zhang
- Department of Neural and Behavioral Sciences; Penn State College of Medicine; Hershey Pennsylvania
- Penn State Hershey Eye Center; Penn State College of Medicine; Hershey Pennsylvania
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences; Penn State College of Medicine; Hershey Pennsylvania
- Penn State Hershey Eye Center; Penn State College of Medicine; Hershey Pennsylvania
| |
Collapse
|
20
|
Siddiqui MA, Ahmad J, Farshori NN, Saquib Q, Jahan S, Kashyap MP, Ahamed M, Musarrat J, Al-Khedhairy AA. Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells. Mol Cell Biochem 2013; 384:59-69. [PMID: 23963993 DOI: 10.1007/s11010-013-1781-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023]
Abstract
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5-250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.
Collapse
Affiliation(s)
- M A Siddiqui
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Azzam S, Broadwater L, Li S, Freeman EJ, McDonough J, Gregory RB. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns. Proteome Sci 2013; 11:19. [PMID: 23635033 PMCID: PMC3682907 DOI: 10.1186/1477-5956-11-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. Conclusions SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.
Collapse
Affiliation(s)
- Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Juan-García A, Manyes L, Ruiz MJ, Font G. Involvement of enniatins-induced cytotoxicity in human HepG2 cells. Toxicol Lett 2013; 218:166-73. [PMID: 23370383 DOI: 10.1016/j.toxlet.2013.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 01/29/2023]
Abstract
Enniatins (ENNs) are mycotoxins found in Fusarium fungi and they appear in nature as mixtures of cyclic depsipeptides. The ability to form ionophores in the cell membrane is related to their cytotoxicity. Changes in ion distribution between inner and outer phases of the mitochondria affect to their metabolism, proton gradient, and chemiosmotic coupling, so a mitochondrial toxicity analysis of enniatins is highly recommended because they host the homeostasis required for cellular survival. Two ENNs, ENN A and ENN B on hepatocarcinoma cells (HepG2) at 1.5 and 3 μM and three exposure times (24, 48 and 72 h) were studied. Flow cytometry was used to examine their effects on cell proliferation, to characterize at which phase of the cell cycle progression the cells were blocked and to study the role of the mitochondrial in ENNs-induced apoptosis. In conclusion, apoptosis induction on HepG2 cells allowed to compare cytotoxic effects caused by both ENNs, A and B. It is reported the possible mechanism observed in MMP changes, cell cycle analysis and apoptosis/necrosis, identifying ENN B more toxic than ENN A.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | | | | | | |
Collapse
|
23
|
Kallenborn-Gerhardt W, Schröder K, Geisslinger G, Schmidtko A. NOXious signaling in pain processing. Pharmacol Ther 2012; 137:309-17. [PMID: 23146925 DOI: 10.1016/j.pharmthera.2012.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Chronic pain affects millions of people and often causes major health problems. Accumulating evidence indicates that the production of reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, is increased in the nociceptive system during chronic inflammatory and neuropathic pain, and that ROS can act as specific signaling molecules in pain processing. Reduction of ROS levels by administration of scavengers or antioxidant compounds attenuated the nociceptive behavior in various animal models of chronic pain. However, the sources of increased ROS production during chronic pain and the role of ROS in pain processing are poorly understood. Current work revealed pain-relevant functions of the Nox family of NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. In particular, significant expression of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system has been discovered. Studies using knockout mice suggest that these Nox enzymes specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. Accordingly, targeting Nox1, Nox2, and Nox4 could be a novel strategy for the treatment of chronic pain. Currently selective inhibitors of Nox enzymes are being developed. Here, we introduce the distinct roles of Nox enzymes in pain processing, we summarize recent findings in the understanding of ROS-dependent signaling pathways in the nociceptive system, and we discuss potential analgesic properties of currently available Nox inhibitors.
Collapse
Affiliation(s)
- Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Reactive oxygen species (ROS) contribute to sensitization of pain pathways during neuropathic pain, but little is known about the primary sources of ROS production and how ROS mediate pain sensitization. Here, we show that the NADPH oxidase isoform Nox4, a major ROS source in somatic cells, is expressed in a subset of nonpeptidergic nociceptors and myelinated dorsal root ganglia neurons. Mice lacking Nox4 demonstrated a substantially reduced late-phase neuropathic pain behavior after peripheral nerve injury. The loss of Nox4 markedly attenuated injury-induced ROS production and dysmyelination processes of peripheral nerves. Moreover, persisting neuropathic pain behavior was inhibited after tamoxifen-induced deletion of Nox4 in adult transgenic mice. Our results suggest that Nox4 essentially contributes to nociceptive processing in neuropathic pain states. Accordingly, inhibition of Nox4 may provide a novel therapeutic modality for the treatment of neuropathic pain.
Collapse
|
25
|
Fernández-Gamba A, Leal MC, Maarouf CL, Richter-Landsberg C, Wu T, Morelli L, Roher AE, Castaño EM. Collapsin response mediator protein-2 phosphorylation promotes the reversible retraction of oligodendrocyte processes in response to non-lethal oxidative stress. J Neurochem 2012; 121:985-95. [PMID: 22443207 DOI: 10.1111/j.1471-4159.2012.07742.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extension of processes of oligodendrocyte (OLG) and their precursor cells are crucial for migration, axonal contact and myelination. Here we show that a non-lethal oxidative stress induced by 3-nitropropionic acid (3-NP) elicited a rapid shortening of processes (~24%) in primary OLGs and in oligodendroglial cell line (OLN-93) cells (~36%) as compared with vehicle-exposed cells. This was reversible and prevented by antioxidants. Proteomics of OLG lysates with and without 3-NP treatment yielded collapsin response mediator protein 2 (CRMP-2) as a candidate effector molecule. Inhibition of rho kinase was sufficient to prevent process retraction in both OLGs and OLN-93 cells. Oxidative stress increased phosphorylation of CRMP-2 at T555 that was completely prevented by Y27632. Moreover, transfection of OLN-93 cells with the mutant CRMP-2 T555A which cannot be phosphorylated by rho kinase, prevented process shortening induced by 3-NP as compared with wild-type CRMP-2. Our results suggest a role for endogenous reactive oxygen species in a pathway that regulates OLG process extension. The vulnerability of late myelinated neurons in the adult brain and the presence of white matter pathology in human dementias warrant the study of this oligodendroglial pathway in the early stages of neurodegenerative conditions characterized by oxidative stress.
Collapse
Affiliation(s)
- Agata Fernández-Gamba
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.10.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Watzlawik J, Holicky E, Edberg DD, Marks DL, Warrington AE, Wright BR, Pagano RE, Rodriguez M. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 2011; 58:1782-93. [PMID: 20645409 DOI: 10.1002/glia.21048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Human remyelination promoting IgM mAbs target oligodendrocytes (OLs) and function in animal models of multiple sclerosis (MS). However, their mechanism of action is unknown. This study seeks to identify the cellular mechanism of action of a recombinant human IgM on OL survival. METHODS Binding of rHIgM22 to the surface of rat OLs was studied by co-localization with various markers. RHIgM22-mediated effects on apoptotic signaling in OLs, differentiation markers, and signaling molecules were detected by Western blotting and immunoprecipitation. RESULTS RHIgM22 co-localized with integrin β3 but not other integrin β-chains in OLs. Downstream of integrin β3 we identified Src family kinase (SFK) Lyn as a key player of rHIgM22-mediated actions in OLs. Lyn immunoprecipitated in a complex together with integrin αvβ3 and PDGFαR. Lyn expression was 9-fold up-regulated and Lyn activation was 3-fold higher inrHIgM22-treated OL cultures compared with controls. RHIgM22 inhibited apoptotic signaling by greater than 10-fold reduction of caspase-3 and capsase-9 cleavage and reduced by 4-fold expression of differentiation markers MBP and MOG in OLs. SFK inhibitors PP2 and SU6656 inhibited Lyn activity and restored caspase-cleavage in OLs. A human IgM that did not promote remyelination and medium wereused as controls. CONCLUSIONS rHIgM22 prevented apoptotic signaling andinhibited OL differentiation by Lyn implying thatIgM-mediated remyelination is due toprotection of OPC and OLs rather than promotion of OPC differentiation.
Collapse
Affiliation(s)
- J Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Suwantong O, Ruktanonchai U, Supaphol P. In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res A 2010; 94:1216-25. [PMID: 20694988 DOI: 10.1002/jbm.a.32797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ultra-fine cellulose acetate (CA; M(w) approximately 30,000 Da; degree of acetyl substitution approximately 2.4) fiber mats containing either asiaticoside [from the plant Centella asiatica (L.); either in the form of a crude extract (CACE) or pure substance (PAC)] or curcumin (CM; from the plant Curcuma longa L.) were successfully prepared. The proposed use of these materials is as topical/transdermal patches or wound dressings. Here, the potential for use of these herb-loaded CA fiber mats as wound dressings was evaluated in terms of the stability and the antioxidant activity of the as-loaded herbal substances, the ability to support both the attachment and the proliferation of fibroblasts and the ability of the cultured fibroblasts to synthesize collagen. Normal human dermal fibroblasts (NHDF) were used as the reference fibroblastic cells. The results showed that the as-loaded herbal substances were stable even after the herb-loaded CA fiber mats had been aged either at room temperature or at 40 degrees C for a period of up to 4 months. The inclusion of asiaticoside [either 2% (w/w) CACE or 40% (w/w) PAC] rendered the resulting CA fiber mats their superiority in supporting the attachment, promoting the proliferation, and upregulating the production of collagen of the seeded and/or the cultured NHDF to the corresponding solvent-cast films and the neat CA fiber mats. On the other hand, the presence of CM imparted the antioxidant activity to the resulting CA fiber mats.
Collapse
Affiliation(s)
- Orawan Suwantong
- The Petroleum and Petrochemical College, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | |
Collapse
|
29
|
Nakamichi N, Fukumori R, Takarada T, Kambe Y, Yamamoto T, Matsushima N, Moriguchi N, Yoneda Y. Preferential inhibition by antidiarrheic 2-methoxy-4-methylphenol of Ca(2+) influx across acquired N-methyl-D-aspartate receptor channels composed of NR1/NR2B subunit assembly. J Neurosci Res 2010; 88:2483-93. [PMID: 20623618 DOI: 10.1002/jnr.22399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our previous studies, particular phenolic ingredients, such as 2-methoxy-4-methylphenol (2M4MP), of the antidiarrheic drug wood creosote significantly prevented cell death by both hydrogen peroxide and glutamate in cultured rat hippocampal neurons. In this study, we further evaluated the pharmacological properties of 2M4MP on Ca(2+) influx across native and acquired N-methyl-D-aspartate (NMDA) receptor (NMDAR) channels. The addition of 2M4MP significantly prevented the loss of cellular viability and the increase in intracellular free Ca(2+) levels as determined by Fluo-3 in cultured rat hippocampal neurons briefly exposed to NMDA. Brief exposure to NMDA also led to a marked increase in mitochondrial free Ca(2+) levels determined by Rhod-2, in addition to intracellular free Ca(2+) levels, in HEK293 cells expressing either NR1/NR2A or NR1/NR2B subunit channels. The further addition of the general NMDAR channel blocker dizocilpine similarly inhibited the increase of intracellular Ca(2+) levels by NMDA in both types of acquired NMDAR channels, whereas the NR2B subunit selective antagonist ifenprodil drastically inhibited the increase by NMDA in HEK293 cells expressing NR1/NR2B, but not NR1/NR2A, subunits. Similarly, 2M4MP significantly and selectively inhibited the NMDA-induced influx of Ca(2+) across acquired NR1/NR2B channels in a concentration-dependent manner. Moreover, prior daily oral administration of 2M4MP significantly reduced the infarct volume in the ipsilateral cerebral hemisphere in rats with middle cerebral artery occlusion 1 day after reperfusion. These results suggest that 2M4MP may protect neurons from excitotoxicity through preferential inhibition of Ca(2+) influx across NMDAR channels composed of NR1/NR2B subunits.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Snyder AM, Neely EB, Levi S, Arosio P, Connor JR. Regional and cellular distribution of mitochondrial ferritin in the mouse brain. J Neurosci Res 2010; 88:3133-43. [DOI: 10.1002/jnr.22462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev Neurother 2010; 10:441-57. [PMID: 20187865 DOI: 10.1586/ern.10.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS. A better understanding of why remyelination fails in MS is necessary to improve remyelination strategies. Remyelination is mediated by oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, it is still unclear whether OPCs detectable in MS lesions survive the inflammatory response but are unable to myelinate or whether OPC and oligodendrocyte death is primarily responsible for remyelination failure and detectable OPCs enter demyelinated areas from adjacent tissue as the lesion evolves. Remyelination strategies should, therefore, focus on stimulation of differentiation or prevention of apoptosis, as well as establishment of a supportive environment for OPC-mediated remyelination, which may be especially important in chronically demyelinated lesions.
Collapse
Affiliation(s)
- Jens Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
32
|
Fukumori R, Nakamichi N, Takarada T, Kambe Y, Matsushima N, Moriguchi N, Yoneda Y. Inhibition by 2-Methoxy-4-ethylphenol of Ca2+ Influx Through Acquired and Native N-Methyl-D-aspartate–Receptor Channels. J Pharmacol Sci 2010; 112:273-81. [DOI: 10.1254/jphs.09294fp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
33
|
Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM. Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 2009; 57:1521-37. [PMID: 19306380 DOI: 10.1002/glia.20867] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the initial mechanical insult of spinal cord injury (SCI), secondary mediators propagate a massive loss of oligodendrocytes. We previously showed that following SCI both the total phospholipase activity and cytosolic PLA(2)-IV alpha protein expression increased. However, the expression of secreted isoforms of PLA(2) (sPLA(2)) and their possible roles in oligodendrocyte death following SCI remained unclear. Here we report that mRNAs extracted 15 min, 4 h, 1 day, or 1 month after cervical SCI show marked upregulation of sPLA(2)-IIA and IIE at 4 h after injury. In contrast, SCI induced down regulation of sPLA(2)-X, and no change in sPLA(2)-IB, IIC, V, and XIIA expression. At the lesion site, sPLA(2)-IIA and IIE expression were localized to oligodendrocytes. Recombinant human sPLA(2)-IIA (0.01, 0.1, or 2 microM) induced a dose-dependent cytotoxicity in differentiated adult oligodendrocyte precursor cells but not primary astrocytes or Schwann cells in vitro. Most importantly, pretreatment with S3319, a sPLA(2)-IIA inhibitor, before a 30 min H(2)O(2) injury (1 or 10 mM) significantly reduced oligodendrocyte cell death at 48 h. Similarly, pretreatment with S3319 before injury with IL-1 beta and TNFalpha prevented cell death and loss of oligodendrocyte processes at 72 h. Collectively, these findings suggest that sPLA(2)-IIA and IIE are increased following SCI, that increased sPLA(2)-IIA can be cytotoxic to oligodendrocytes, and that in vitro blockade of sPLA(2) can create sparing of oligodendrocytes in two distinct injury models. Therefore, sPLA(2)-IIA may be an important mediator of oligodendrocyte death and a novel target for therapeutic intervention following SCI.
Collapse
Affiliation(s)
- W Lee Titsworth
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perfeito R, Pereira J, Oliveira CR, Bettencourt-Relvas J, Rego AC. Trolox protection of myelin membrane in hydrogen peroxide-treated mature oligodendrocytes. Free Radic Res 2009; 41:444-51. [PMID: 17454126 DOI: 10.1080/10715760601134442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Oligodendrocytes have the highest rate of metabolic activity in the brain and are highly vulnerable to oxidative stress. In this work we determined the protective effect of Trolox, a water-soluble analogue of vitamin E, and insulin, a peptide shown to be neuroprotective, in oligodendrocyte lesion induced by hydrogen peroxide (H(2)O(2)). Exposure of primary cultures of rat oligodendrocytes to H(2)O(2) dose-dependently decreased their reducing capacity, as determined by the MTT assay. H(2)O(2) (100 muM) had no effect on Bax levels, active-caspase-3, DNA fragmentation or lactate dehydrogenase (LDH) leakage. Nevertheless, under these conditions, H(2)O(2) decreased the levels of myelin basic protein (MBP), used as a marker for oligodendrocyte myelin membrane. Treatment with insulin alone increased MBP levels, but no changes were observed in the presence of insulin plus H(2)O(2). In contrast, incubation with Trolox completely prevented H(2)O(2)-induced decrease in MBP expression, suggesting that vitamin E analogues may prevent against oligodendrocyte oxidative damage.
Collapse
Affiliation(s)
- Rita Perfeito
- Faculty of Medicine, Center for Neuroscience and Cell Biology and Institute of Biochemistry, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
35
|
van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 2008; 45:1729-37. [PMID: 18930811 DOI: 10.1016/j.freeradbiomed.2008.09.023] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) and subsequent oxidative damage may contribute to the formation and persistence of multiple sclerosis (MS) lesions by acting on distinct pathological processes. ROS initiate lesion formation by inducing blood-brain barrier disruption, enhance leukocyte migration and myelin phagocytosis, and contribute to lesion persistence by mediating cellular damage to essential biological macromolecules of vulnerable CNS cells. Relatively little is known about which CNS cell types are affected by oxidative injury in MS lesions. Here, we show the presence of extensive oxidative damage to proteins, lipids, and nucleotides occurring in active demyelinating MS lesions, predominantly in reactive astrocytes and myelin-laden macrophages. Oxidative stress can be counteracted by endogenous antioxidant enzymes that confer protection against oxidative damage. Here, we show that antioxidant enzymes, including superoxide dismutase 1 and 2, catalase, and heme oxygenase 1, are markedly upregulated in active demyelinating MS lesions compared to normal-appearing white matter and white matter tissue from nonneurological control brains. Particularly, hypertrophic astrocytes and myelin-laden macrophages expressed an array of antioxidant enzymes. Enhanced antioxidant enzyme production in inflammatory MS lesions may reflect an adaptive defense mechanism to reduce ROS-induced cellular damage.
Collapse
Affiliation(s)
- J van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
36
|
Perrone S, Turrisi G, Buonocore G. Antioxidant therapy and neuroprotection in the newborn. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17455111.2.6.715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Injury to the perinatal brain is a leading cause of childhood mortality and lifelong disability. Despite recent improvements in neonatal care, no effective treatment for perinatal brain lesions is available. The newborn, especially if preterm, is highly prone to oxidative stress (OS) and to the toxic effect of free radicals (FRs). At birth, the newborn is exposed to a relatively hyperoxic environment caused by an increased oxygen bioavailability with greatly enhanced generation of FRs. Additional sources (e.g., inflammation, hypoxia, ischemia, glutamate and free iron release) occur, magnifying OS. In the preterm baby, the perinatal transition is accompanied by the immaturity of the antioxidant systems and the reduced ability to induce efficient homeostatic mechanisms designed to control overproduction of cell-damaging FRs. Improved understanding of the pathophysiological mechanism involved in perinatal brain lesions helps to identify potential targets for neuroprotective interventions, and the knowledge of these mechanisms has enabled scientists to develop new therapeutic strategies that have confirmed their neuroprotective effects in animal studies. Considering the growing role of OS in preterm newborn morbidity in respect to the higher risk of FR damage in these babies, erythropoietin, allopurinol, melatonin and hypothermia demonstrate great promise as potential neuroprotectans. This article provides an overview of the pathogenesis of FR-mediated diseases of the newborn and the antioxidant strategies now tested in order to reduce OS and its damaging effects.
Collapse
Affiliation(s)
| | | | - Giuseppe Buonocore
- Professor of Paediatrics, Department of Pediatrics, Obstetrics & Reproductive Medicine, University of Siena, Italy
| |
Collapse
|
37
|
Titsworth WL, Liu NK, Xu XM. Role of secretory phospholipase a(2) in CNS inflammation: implications in traumatic spinal cord injury. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2008; 7:254-69. [PMID: 18673210 DOI: 10.2174/187152708784936671] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA(2) is a rate-limiting step for generation of eicosanoids and PAF. To date, more than 10 isozymes of sPLA(2) have been found in the mammalian central nervous system (CNS). Under physiological conditions, sPLA(2)s are involved in diverse cellular responses, including host defense, phospholipid digestion and metabolism. However, under pathological situations, increased sPLA(2) activity and excessive production of free fatty acids and their metabolites may lead to inflammation, loss of membrane integrity, oxidative stress, and subsequent tissue injury. Emerging evidence suggests that sPLA(2) plays a role in the secondary injury process after traumatic or ischemic injuries in the brain and spinal cord. Importantly, sPLA(2) may act as a convergence molecule that mediates multiple key mechanisms involved in the secondary injury since it can be induced by multiple toxic factors such as inflammatory cytokines, free radicals, and excitatory amino acids, and its activation and metabolites can exacerbate the secondary injury. Blocking sPLA(2) action may represent a novel and efficient strategy to block multiple injury pathways associated with the CNS secondary injury. This review outlines the current knowledge of sPLA(2) in the CNS with emphasis placed on the possible roles of sPLA(2) in mediating CNS injuries, particularly the traumatic and ischemic injuries in the brain and spinal cord.
Collapse
Affiliation(s)
- W Lee Titsworth
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | |
Collapse
|
38
|
Laparra J, Alegría A, Barberá R, Farré R. Antioxidant effect of casein phosphopeptides compared with fruit beverages supplemented with skimmed milk against H2O2-induced oxidative stress in Caco-2 cells. Food Res Int 2008. [DOI: 10.1016/j.foodres.2008.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Felitsyn N, McLeod C, Shroads AL, Stacpoole PW, Notterpek L. The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J Neurochem 2008; 106:2068-79. [PMID: 18665889 DOI: 10.1111/j.1471-4159.2008.05552.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Delta-aminolevulinic acid (delta-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that delta-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to delta-ALA (0.1-1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to delta-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with delta-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of delta-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells.
Collapse
Affiliation(s)
- Natalia Felitsyn
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA
| | | | | | | | | |
Collapse
|
40
|
Slaets H, Dumont D, Vanderlocht J, Noben JP, Leprince P, Robben J, Hendriks J, Stinissen P, Hellings N. Leukemia inhibitory factor induces an antiapoptotic response in oligodendrocytes through Akt-phosphorylation and up-regulation of 14-3-3. Proteomics 2008; 8:1237-47. [PMID: 18338825 DOI: 10.1002/pmic.200700641] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leukemia inhibitory factor (LIF) promotes the survival of oligodendrocytes (OLG) both in vitro and in an animal model of multiple sclerosis. Here, we show that LIF protects mature rat OLG cultures selectively against the combined insult of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, but it does not protect against oxidative stress nor against staurosporine induced apoptosis. We further demonstrate that LIF activates the janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) and the phosphatidylinositol 3 kinase/Akt pathway in mature OLG. We show that LIF protection is independent of suppressors of cytokine signaling and Bcl-2 mRNA expression levels. To gain further insight into the protective mechanism, a quantitative proteomic approach (DIGE) was applied to identify differentially expressed proteins in LIF-treated OLG. Our results indicate that LIF induces a shift in the cellular machinery toward a prosurvival execution program, illustrated by an enhanced expression of isoforms of the antiapoptotic molecule 14-3-3. These data provide further insight into the mechanisms of LIF-mediated protection of mature OLGs.
Collapse
Affiliation(s)
- Helena Slaets
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cilla A, Laparra JM, Alegria A, Barbera R, Farre R. Antioxidant effect derived from bioaccessible fractions of fruit beverages against H2O2-induced oxidative stress in Caco-2 cells. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.07.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Matsushima N, Nakamichi N, Kambe Y, Takano K, Moriguchi N, Yoneda Y. Cytoprotective properties of phenolic antidiarrheic ingredients in cultured astrocytes and neurons of rat brains. Eur J Pharmacol 2007; 567:59-66. [PMID: 17475240 DOI: 10.1016/j.ejphar.2007.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
We have previously shown that particular phenolic antidiarrheic ingredients, including 2-methoxy-4-methylphenol (2M4MP) and 2-methoxy-4-ethyphenol (2M4EP), but not 2-methoxyphenol (2MP), significantly inhibit cellular maturation and differentiation of the bone-resorbing osteoclasts with concomitant protection of the bone-forming osteoblasts against oxidative stress by hydrogen peroxide (H(2)O(2)). In the present study, we evaluated the pharmacological actions of these three major phenolic antidiarrheic ingredients on the cellular viability in cultured astrocytes and neurons of the rat brain in vitro. Both 2M4MP and 2M4EP induced more efficient prevention of cell death induced by the brief exposure to 0.1 mM H(2)O(2) for 2 h than 2MP upon simultaneous exposure in cultured rat cortical astrocytes. Similarly, both 2M4MP and 2M4EP were more effective than 2MP in significantly protecting the cytotoxicity by brief exposure to 0.1 mM H(2)O(2) for 6 h in cultured rat hippocampal neurons, with concomitant suppression of the generation of intracellular reactive oxygen species in neurons exposed to H(2)O(2). Moreover, the three ingredients not only significantly prevented cell death in hippocampal neurons exposed to 0.1 mM glutamate for 1 h when determined 48 h after the brief exposure, but also inhibited the generation of intracellular reactive oxygen species and the elevation of intracellular Ca(2+) ions in neurons exposed to glutamate. These results suggest that particular phenolic antidiarrheic ingredients may prevent cell death through a mechanism related to diminution of the neurotoxicity of glutamate in neurons, in addition to eliciting cytoprotection against oxidative stress in astrocytes and neurons, in the rat brain.
Collapse
Affiliation(s)
- Nobuyuki Matsushima
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Stahnke T, Stadelmann C, Netzler A, Brück W, Richter-Landsberg C. Differential upregulation of heme oxygenase-1 (HSP32) in glial cells after oxidative stress and in demyelinating disorders. J Mol Neurosci 2007; 32:25-37. [PMID: 17873285 DOI: 10.1007/s12031-007-0005-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 11/30/1999] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of demyelinating disorders and inflammatory responses. Heme oxygenase-1 (HO-1; HSP32) is a small heat shock protein (HSP) with enzymatic activity, which is inducible by oxidative stress. In this study we analyzed autopsy and biopsy brain samples of patients with multiple sclerosis (MS) and ADEM (acute disseminated leucoencephalomyelits) and spinal cord lesions of mouse EAE (experimental autoimmune encephalomyelitis), which was actively induced by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) peptide, for the presence of HO-1. HO-1 was observed in glial cells during different stages: (1) during acute phases of mainly inflammatory diseases (EAE and ADEM) expression of HO-1 was prominent in microglia/macrophages and astrocytes, and upregulation correlated with inflammation, and (2) in early MS lesions HO-1 was expressed in oligodendrocytes. Furthermore, in glial cell cultures, we can show that upregulation of HO-1 in oligodendrocytes was paralleled by severe morphological damage. Oligodendrocytes underwent apoptotic cell death at a concentration of hydrogen peroxide (50-200 microM) which did not affect astrocytes or microglia. Using oligodendroglial OLN-93 cells, we demonstrate that oxidative stress led to mitochondrial impairment and the disorganization of the microtubule network. Zinc protoporphyrin, an inhibitor of HO-1, augmented the cytotoxic consequences of hydrogen peroxide in OLN-93 cells. Hence, the presence of HO-1 in EAE, ADEM, and MS points to the involvement of oxidative stress and a role of HO-1 in the pathogenesis of the diseases. The data suggest that stress-induced HO-1 initially plays a protective role, while its chronic upregulation, might contribute to oligodendroglial cell death rather than providing protection.
Collapse
Affiliation(s)
- Thomas Stahnke
- Department of Biology, Molecular Neurobiology, University of Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Abstract
Survivors of premature birth have a predilection for perinatal brain injury, especially to periventricular cerebral white matter. Periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia) and diffuse myelination disturbances. Recent neuroimaging studies support that the incidence of periventricular leukomalacia is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical-mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary but not sufficient to generate the initial injury that leads to PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. There has been substantial recent progress in the understanding of the cellular and molecular pathogenesis of PWMI. The oligodendrocyte progenitor is a key target for preventive strategies to reduce ischemic cerebral white matter injury in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
45
|
Masuda T, Hida H, Kanda Y, Aihara N, Ohta K, Yamada K, Nishino H. Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. J Neurosci Res 2007; 85:213-22. [PMID: 17061255 DOI: 10.1002/jnr.21089] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cerebral hemorrhage leads to local production of free iron, radicals, cytokines, etc. To investigate whether a decrease of iron-mediated radical production influences functional recovery after intracerebral hemorrhage (ICH), a modified ICH rat model with a small hemorrhage near the internal capsule (IC) accompanied with relatively severe motor dysfunction was first developed. Then clioquinol (CQ), an iron chelator that reduces hydroxyl radical production, was orally administrated. Injection of different doses of Type IV collagenase (1.4 mul 1-200 U/ml) into the left striatum near the IC in Wistar rats showed that injection of 7.5 U/ml collagenase resulted in a small hemorrhoidal lesion near the IC with relatively severe motor dysfunction (IC model). Retrograde labeling of neurons in the sensory-motor cortex and axons in the corticospinal tract using Fluoro-gold (FG) injection into the spinal cord (C3-C4) showed that few labeled neurons in the sensory-motor cortex were detected in the IC model, FG-labeled axons disappeared, and FG-including ED-1-positive cells appeared within 24 hr in the IC. Assessments of behavior and histologic analysis after oral administration of CQ in the IC model indicated that oral administration of CQ prevented a decrease of FG-labeled neurons, and resulted in better motor-function recovery. CQ inhibited hydrogen peroxide-induced cell toxicity in oligodendrocytes in vitro, but not in neurons. Our data suggests that CQ ameliorated motor dysfunction after a small hemorrhage near the IC by a mechanism that is related to reduction of chain-reactive hydroxyl radical production in oligodendrocytes.
Collapse
Affiliation(s)
- Tadashi Masuda
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Jana A, Pahan K. Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis. J Neuroimmune Pharmacol 2007; 2:184-93. [PMID: 18040843 DOI: 10.1007/s11481-007-9066-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system where oxidative stress has been proposed to play an important role in oligodendroglial death. However, molecular mechanisms that couple oxidative stress to the loss of oligodendrocytes are poorly understood. This study underlines the importance of neutral sphingomyelinase-ceramide pathway in mediating oxidative stress-induced apoptosis and cell death of human primary oligodendrocytes. Various oxidative stress-inducing agents, such as, superoxide radical produced by hypoxanthine and xanthine oxidase, hydrogen peroxide, aminotriazole capable of inhibiting catalase and increasing intracellular level of H2O2, or reduced glutathione-depleting diamide induced the activation of neutral sphingomyelinase and the production of ceramide. It is interesting to note that antisense knockdown of neutral but not acidic sphingomyelinase ablated oxidative stress-induced apoptosis and cell death in human primary oligodendrocytes. This study identifies neutral but not acidic sphingomyelinase as a target for possible therapeutic intervention in MS.
Collapse
Affiliation(s)
- Arundhati Jana
- Division of Neuroscience, Department of Neurological Sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St, Chicago, IL 60612, USA
| | | |
Collapse
|
47
|
Zhang YQ, Herman B. ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway. J Cell Biochem 2006; 99:575-88. [PMID: 16639714 DOI: 10.1002/jcb.20946] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2.
Collapse
Affiliation(s)
- Yi-Qiang Zhang
- Department of Cellular and Structural Biology, University of Texas HSC at San Antonio, San Antonio, Texas 78249, USA
| | | |
Collapse
|
48
|
Goldbaum O, Vollmer G, Richter-Landsberg C. Proteasome inhibition by MG-132 induces apoptotic cell death and mitochondrial dysfunction in cultured rat brain oligodendrocytes but not in astrocytes. Glia 2006; 53:891-901. [PMID: 16609961 DOI: 10.1002/glia.20348] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteasomal dysfunction has been implicated in neurodegenerative disorders and during aging processes. In frontotemporal dementias, corticobasal degeneration, and progressive supranuclear palsy, oligodendrocytes are specifically damaged. Application of proteasomal inhibitors to cultured oligodendrocytes is associated with apoptotic cell death. The present study was undertaken to investigate the death pathway activated in oligodendrocytes by proteasomal inhibition. Our data show that the proteasomal inhibitor MG-132 causes oxidative stress, as indicated by the upregulation of the small heat shock protein heme oxygenase-1 (HO-1) and the appearance of oxidized proteins. Activation of the mitochondrial pathway was involved in the apoptotic process. Mitochondrial membrane potential was disturbed, and cytochrome c was released from the mitochondria. Concomitantly, death-related caspases 3 and 9 were activated and poly(ADP-ribose)-polymerase cleavage occurred. MG-132-induced cell death, DNA-fragmentation, and caspase activation could be prevented by the broad caspase inhibitor zVAD-fmk. In contrast to oligodendrocytes, cultured astrocytes showed resistance to the treatment with proteasomal inhibitors and did not reveal cytotoxic responses. This was also observed in astrocytes differentiated in the presence of dibutyryl cyclic AMP. Hence, individual cells respond differently to proteasomal inhibition and the therapeutic use of proteasomal inhibitors, e.g. for the treatment of cancer or inflammatory diseases, needs to be carefully evaluated.
Collapse
Affiliation(s)
- Olaf Goldbaum
- Department of Biology, Molecular Neurobiology, University of Oldenburg, Oldenburg, Germany
| | | | | |
Collapse
|
49
|
Chen HB, Chan YT, Hung AC, Tsai YC, Sun SH. Elucidation of ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes: ATP potentiate HSP60 and Cu/Zn SOD expression and stimulates pI shift of peroxiredoxin II. J Cell Biochem 2006; 97:314-26. [PMID: 16178011 DOI: 10.1002/jcb.20547] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATP has been shown to mediate stress responses in the brain. The present study examined the ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes. Our results revealed that ATP stimulated HSP60 expression in a dose- and time-dependent manner. The stimulation requires a minimal ATP concentration of 500 microM and high concentration of extracellular ATP (1 mM) stimulated a significant increase of HSP60 expression from 2 to 24 h. In addition, the ATP-stimulated HSP60 expressions were inhibited by inhibitors for protein kinase C (PKC) and phospholipase D (PLD), and by antioxidants, resveratrol, and catalase. Furthermore, ATP stimulated the expression of Cu/Zn superoxide dismutase (SOD). In addition, ATP and P2X7 receptor selective agonist BzATP also decreased mitochondria membrane potential measured by flow cytometry. To further examine the proteins involving in ATP-mediated stress responses, we conducted proteomic analysis. We found that RBA-2 astrocytes possess abundant peroxiredoxin II (Prx II), an antioxidant enzyme. ATP and exogenous H2O2 stimulated Prx II shifting from oxidized form to reduced form. Thus, we concluded that ATP potentiated the expression of HSP60 and Cu/Zn SOD, and decreased mitochondria membrane potential. In addition, RBA-2 astrocytes expressed Prx II that might also serve as a protective mechanism to control the concentration of reactive oxygen species.
Collapse
Affiliation(s)
- Hammer B Chen
- Institute of Neuroscience, National Yang Ming University and Brain Research Center, University System of Taiwan, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
50
|
Mogford JE, Liu WR, Reid R, Chiu CP, Said H, Chen SJ, Harley CB, Mustoe TA. Adenoviral Human Telomerase Reverse Transcriptase Dramatically Improves Ischemic Wound Healing Without Detrimental Immune Response in an Aged Rabbit Model. Hum Gene Ther 2006; 17:651-60. [PMID: 16776573 DOI: 10.1089/hum.2006.17.651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic ischemic wounds are major clinical problems, and are especially prevalent in elderly patients. Management of these wounds costs billions of dollars annually in the United States. Because of the severe impairment in tissue repair, ischemic wounds among the aged are major challenges for physicians. For example, transforming growth factor-beta1 stimulates healing of young patients' ischemic wounds, but it is totally ineffective in treating the ischemic wounds of aged patients. Therefore, our goal is to develop a better therapeutic strategy for elderly patient ischemic wounds. Because human telomerase reverse transcriptase (hTERT) has emerged as having a role in promoting cell proliferation, we hypothesized that hTERT overexpression may improve ischemic wound healing in the elderly. We successfully tested this hypothesis by demonstrating for the first time that gene delivery of hTERT by adenovirus (Ad-hTERT) dramatically improved ischemic wound healing in an aged rabbit model. Importantly, our histological data indicate that no deleterious immune response was induced in the aged rabbits. This finding has broad implications for the field of gene therapy because the foremost obstacle in the use of adenoviral vectors for gene therapy is that they provoke strong innate and adaptive immune responses in the host. Moreover, Ad-hTERT significantly improved survival of primary rabbit dermal fibroblasts that were treated with hypoxia and hydrogen peroxide (oxidative stress). This model is clinically relevant because it simulates the ischemia cycle of an ischemia-reperfusion injury, which can lead to stroke, myocardial infarction, and other tissue injuries. We conclude that Ad-hTERT is an effective and novel approach to treating the ischemic wounds of elderly patients.
Collapse
Affiliation(s)
- Jon E Mogford
- Wound Healing Research Laboratory, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|