1
|
Allaf A, Victoria B, Rosario R, Misztal C, Humayun Gultekin S, Dinh CT, Fernandez-Valle C. WP1066 induces cell death in a schwannomatosis patient-derived schwannoma cell line. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006178. [PMID: 35732500 PMCID: PMC9235848 DOI: 10.1101/mcs.a006178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Schwannomatosis is a rare genetic disorder that predisposes individuals to development of multiple schwannomas mainly in spinal and peripheral nerves and to debilitating chronic pain often unrelated to any schwannoma. Pathogenic variants of two genes, SMARCB1 and LZTR1, are causal in familial cases. However, many schwannomatosis patients lack mutations in these genes. Surgery is the standard treatment for schwannomas but leaves patients with increasing neurological deficits. Pain management is a daily struggle controlled by the use of multiple analgesic and anti-inflammatory drugs. There is a need for both nonsurgical treatment to manage tumor growth and nonaddictive, nonsedative pain control. Because standard clinical trials are exceedingly difficult for patients with rare disorders, precision medicine approaches offer the possibility of bespoke therapeutic regimens to control tumor growth. As a proof of principle, we obtained a bio-specimen of paraspinal schwannoma from a schwannomatosis patient with a germline point mutation in the SMARCB1/INI gene. We created an hTERT immortalized cell line and tested the ability of targeted small molecules with efficacy in neurofibromatosis type 2-related schwannomas to reduce cell viability and induce cell death. We identified WP1066, a STAT3 inhibitor, currently in phase 2 clinical trials for pediatric and adult brain tumors as a lead compound. It reduced cell viability and STAT-3 phosphorylation and induced expression of markers for both necroptosis and caspase-dependent cell death. The results demonstrate feasibility in creating patient-derived cell lines for use in precision medicine studies.
Collapse
Affiliation(s)
- Abdulrahman Allaf
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Carly Misztal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Sakir Humayun Gultekin
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| |
Collapse
|
2
|
Analysis of Signal Transduction Pathways Downstream M2 Receptor Activation: Effects on Schwann Cell Migration and Morphology. Life (Basel) 2022; 12:life12020211. [PMID: 35207498 PMCID: PMC8875146 DOI: 10.3390/life12020211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Schwann cells (SCs) express cholinergic receptors, suggesting a role of cholinergic signaling in the control of SC proliferation, differentiation and/or myelination. Our previous studies largely demonstrated that the pharmacological activation of the M2 muscarinic receptor subtype caused an inhibition of cell proliferation and promoted the expression of pro-myelinating differentiation genes. In order to elucidate the molecular signaling activated downstream the M2 receptor activation, in the present study we investigated the signal transduction pathways activated by the M2 orthosteric agonist arecaidine propargyl ester (APE) in SCs. Methods: Using Western blot we analyzed some components of the noncanonical pathways involving β1-arrestin and PI3K/AKT/mTORC1 signaling. A wound healing assay was used to evaluate SC migration. Results: Our results demonstrated that M2 receptor activation negatively modulated the PI3K/Akt/mTORC1 axis, possibly through β1-arrestin downregulation. The involvement of the mTORC1 complex was also supported by the decreased expression of its specific target p-p70 S6KThr389. Then, we also analyzed the expression of p-AMPKαthr172, a negative regulator of myelination that resulted in reduced levels after M2 agonist treatment. The analysis of cell migration and morphology allowed us to demonstrate that M2 receptor activation caused an arrest of SC migration and modified cell morphology probably by the modulation of β1-arrestin/cofilin-1 and PKCα expression, respectively. Conclusions: The data obtained demonstrated that M2 receptor activation in addition to the canonical Gi protein-coupled pathway modulates noncanonical pathways involving the mTORC1 complex and other kinases whose activation may contribute to the inhibition of SC proliferation and migration and address SC differentiation.
Collapse
|
3
|
Picocci S, Bizzoca A, Corsi P, Magrone T, Jirillo E, Gennarini G. Modulation of Nerve Cell Differentiation: Role of Polyphenols and of Contactin Family Components. Front Cell Dev Biol 2019; 7:119. [PMID: 31380366 PMCID: PMC6656924 DOI: 10.3389/fcell.2019.00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
In this study the mechanisms are explored, which modulate expression and function of cell surface adhesive glycoproteins of the Immunoglobulin Supergene Family (IgSF), and in particular of its Contactin subset, during neuronal precursor developmental events. In this context, a specific topic concerns the significance of the expression profile of such molecules and their ability to modulate signaling pathways activated through nutraceuticals, in particular polyphenols, administration. Both in vitro and in vivo approaches are chosen. As for the former, by using as a model the human SH-SY5Y neuroblastoma line, the effects of grape seed polyphenols are evaluated on proliferation and commitment/differentiation events along the neuronal lineage. In SH-SY5Y cell cultures, polyphenols were found to counteract precursor proliferation while promoting their differentiation, as deduced by studying their developmental parameters through the expression of cell cycle and neuronal commitment/differentiation markers as well as by measuring neurite growth. In such cultures, Cyclin E expression and BrdU incorporation were downregulated, indicating reduced precursor proliferation while increased neuronal differentiation was inferred from upregulation of cell cycle exit (p27–Kip) and neuronal commitment (NeuN) markers as well as by measuring neurite length through morphometric analysis. The polyphenol effects on developmental parameters were also explored in vivo, in cerebellar cortex, by using as a model the TAG/F3 transgenic line, which undergoes delayed neural development as a consequence of Contactin1 adhesive glycoprotein upregulation and premature expression under control of the Contactin2 gene (Cntn-2) promoter. In this transgenic line, a Notch pathway activation is known to occur and polyphenol treatment was found to counteract such an effect, demonstrated through downregulation of the Hes-1 transcription factor. Polyphenols also downregulated the expression of adhesive glycoproteins of the Contactin family themselves, demonstrated for both Contactin1 and Contactin2, indicating the involvement of changes in the expression of the underlying genes in the observed phenotype. These data support the hypothesis that the complex control exerted by polyphenols on neural development involves modulation of expression and function of the genes encoding cell adhesion molecules of the Contactin family and of the associated signaling pathways, indicating potential mechanisms whereby such compounds may control neurogenesis.
Collapse
Affiliation(s)
- Sabrina Picocci
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Bizzoca
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Corsi
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Thea Magrone
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Gennarini
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Transforming Growth Factor Beta 1 Regulates Fibroblast Growth Factor 7 Expression in Schwann Cells. Ochsner J 2019; 19:7-12. [PMID: 30983895 DOI: 10.31486/toj.18.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Our previous work demonstrated that application of transforming growth factor beta 1 (TGF-β1) and forskolin to the repair site after chronic denervation and axotomy has a mitogenic effect, reactivates Schwann cells (SCs), and supports axonal regeneration. We found decreased expression of fibroblast growth factor 7 (FGF-7), a factor involved in synaptic organization and maintenance. Using an in vitro system, we examined the molecular mechanism of TGF-β1 and forskolin on the regulation of FGF-7 expression in SCs. Methods: SCs were prepared from the sciatic nerve and stimulated with forskolin (0.5 μM), TGF-β1 (1 ng/mL), or TGF-β1 + forskolin for 6 or 24 hours. SCs were also pretreated with LY2109761 (0.5 μM), a TGF-β receptor inhibitor, prior to stimulation with TGF-β1 + forskolin for 6 hours. Real-time TaqMan quantitative polymerase chain reaction analyses for FGF-7, myelin basic protein, and peripheral myelin protein 22 expression were performed. Cycle threshold (Ct) data were normalized to a reference gene, and fold changes relative to untreated SCs were determined using the 2-ΔΔCt method. Statistical analysis was done using t test (P<0.05). Results: TGF-β1 alone or in combination with forskolin for 24 hours resulted in a 3.3- and 2.8-fold decrease in FGF-7 expression in SCs, respectively. No change in FGF-7 expression was found with forskolin alone. TGF-β1 + forskolin treatment for 6 hours resulted in a 4.0-fold decrease in FGF-7 expression, while the addition of LY2109761 resulted in a 2.7-fold decrease in FGF-7 expression. Conclusion: We showed that SC expression of FGF-7 is regulated by TGF-β1. The positive effect of TGF-β1 and forskolin on SC reactivation and axonal regeneration may involve modulation of FGF-7 expression and activity in SCs.
Collapse
|
5
|
Zhu D, Zhou J, Zhao J, Jiang G, Zhang X, Zhang Y, Dong M. ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras–ERK signaling. J Cell Physiol 2018; 234:8899-8907. [PMID: 30311220 DOI: 10.1002/jcp.27551] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Dehua Zhu
- Department of General Surgery, Gastrointestinal Surgery The First Hospital, China Medical University Shenyang China
- Department of General Surgery, Gastrointestinal Surgery The Subsidiary Hospital of Hebei University Baoding China
| | - Jianping Zhou
- Department of General Surgery, Gastrointestinal Surgery The First Hospital, China Medical University Shenyang China
| | - Jinbo Zhao
- Department of General Surgery, Gastrointestinal Surgery The First Hospital, China Medical University Shenyang China
| | - Guiyang Jiang
- Department of Pathology First Affiliated Hospital and College of Basic Medical Sciences, China Medical University Shenyang China
| | - Xiupeng Zhang
- Department of Pathology First Affiliated Hospital and College of Basic Medical Sciences, China Medical University Shenyang China
| | - Yong Zhang
- Department of Pathology Liaoning Cancer Hospital and Institute, Tumor Hospital of China Medical University Shenyang China
| | - Ming Dong
- Department of General Surgery, Gastrointestinal Surgery The First Hospital, China Medical University Shenyang China
| |
Collapse
|
6
|
Faroni A, Melfi S, Castelnovo LF, Bonalume V, Colleoni D, Magni P, Araúzo-Bravo MJ, Reinbold R, Magnaghi V. GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Mol Neurobiol 2018; 56:1461-1474. [PMID: 29948947 DOI: 10.1007/s12035-018-1158-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
GABA-B receptors are important for Schwann cell (SC) commitment to a non-myelinating phenotype during development. However, the P0-GABA-B1fl/fl conditional knockout mice, lacking the GABA-B1 receptor specifically in SCs, also presented axon modifications, suggesting SC non-autonomous effects through the neuronal compartment. In this in vitro study, we evaluated whether the specific deletion of the GABA-B1 receptor in SCs may induce autonomous or non-autonomous cross-changes in sensory dorsal root ganglia (DRG) neurons. To this end, we performed an in vitro biomolecular and transcriptomic analysis of SC and DRG neuron primary cultures from P0-GABA-B1fl/fl mice. We found that cells from conditional P0-GABA-B1fl/fl mice exhibited proliferative, migratory and myelinating alterations. Moreover, we found transcriptomic changes in novel molecules that are involved in peripheral neuron-SC interaction.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simona Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Luca Franco Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Deborah Colleoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
7
|
Sulaiman W, Dreesen T, Nguyen D. Single Local Application of TGF-β Promotes a Proregenerative State Throughout a Chronically Injured Nerve. Neurosurgery 2018; 82:894-902. [PMID: 28973496 DOI: 10.1093/neuros/nyx362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The lack of nerve regeneration and functional recovery occurs frequently when injuries involve large nerve trunks because insufficient mature axons reach their targets in the distal stump and because of the loss of neurotrophic support, primarily from Schwann cells (SCs). OBJECTIVE To investigate whether a single application of transforming growth factor-beta (TGF-β) plus forskolin or forskolin alone can promote and support axonal regeneration through the distal nerve stump. METHODS Using a delayed repair rat model of nerve injury, we transected the tibial nerve. After 8 wk, end-to-end repair was done and the repair site was treated with saline, forskolin, or TGF- β plus forskolin. After 6 wk, nerve sections consisting of the proximal stump, distal to the site of repair, and the most distal part of the nerve stump were removed for nerve histology, axon counts, and immunohistochemistry for activated SCs (S100), macrophages (CD68), cell proliferation (Ki67), p75NGFR, and apoptosis (activated caspase-3). RESULTS TGF-β plus forskolin significantly increased the numbers of axons regenerated distal to the repair site and the most distal nerve sections. Both treatments significantly increased the numbers of axons regenerated in the most distal nerve sections compared to saline treated. Both treatments exhibited extended expression of regeneration-associated marker proteins. CONCLUSION TGF-β plus forskolin treatment of chronically injured nerve improved axonal regeneration and increased expression of regeneration-associated proteins beyond the repair site. This suggests that a single application at the site of repair has mitogenic effects that extended distally and may potentially overcome the decrease in regenerated axon over long distance.
Collapse
Affiliation(s)
- Wale Sulaiman
- Department of Neurosurgery, Back and Spine Center, Ochsner Neuroscience Institute, Ochsner Health System, and Tulane University Medical Center, New Orleans, Louisiana.,Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| | - Thomas Dreesen
- Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| | - Doan Nguyen
- Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| |
Collapse
|
8
|
Palomo-Guerrero M, Cosgaya JM, Gella A, Casals N, Grijota-Martinez C. Uridine-5'-Triphosphate Partially Blocks Differentiation Signals and Favors a more Repair State in Cultured rat Schwann Cells. Neuroscience 2018; 372:255-265. [PMID: 29337237 DOI: 10.1016/j.neuroscience.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
Schwann cells (SCs) play a key role in peripheral nerve regeneration. After damage, they respond acquiring a repair phenotype that allows them to proliferate, migrate and redirect axonal growth. Previous studies have shown that Uridine-5'-Triphosphate (UTP) and its purinergic receptors participate in several pathophysiological responses in the nervous system. Our group has previously described how UTP induces the migration of a Schwannoma cell line and promotes wound healing. These data suggest that UTP participates in the signaling involved in the regeneration process. In the present study we evaluated UTP effects in isolated rat SCs and cocultures of SCs and dorsal root ganglia neurons. UTP reduced cAMP-dependent Krox-20 induction in SCs. UTP also reduced the N-cadherin re-expression that occurs when SCs and axons make contact. In myelinating cocultures, a non-significant tendency to a lower expression of P0 and MAG proteins in presence of UTP was observed. We also demonstrated that UTP induced SC migration without affecting cell proliferation. Interestingly, UTP was found to block neuregulin-induced phosphorylation of the ErbB3 receptor, a pathway involved in the regeneration process. These results indicate that UTP could acts as a brake to the differentiation signals, promoting a more migratory state in the repair-SCs.
Collapse
Affiliation(s)
- Marta Palomo-Guerrero
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| | - Jose Miguel Cosgaya
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alejandro Gella
- Instituto de Neurociencias, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carmen Grijota-Martinez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
9
|
Luo J, Chen G, Liang M, Xie A, Li Q, Guo Q, Sharma R, Cheng J. Reduced Expression of Glutathione S-Transferase α 4 Promotes Vascular Neointimal Hyperplasia in CKD. J Am Soc Nephrol 2017; 29:505-517. [PMID: 29127112 DOI: 10.1681/asn.2017030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Neointima formation is the leading cause of arteriovenous fistula (AVF) failure. We have shown that CKD accelerates this process by transforming the vascular smooth muscle cells (SMCs) lining the AVF from a contractile to the synthetic phenotype. However, the underlying mechanisms affecting this transformation are not clear. Previous studies have shown that the α-class glutathione transferase isozymes have an important role in regulating 4-hydroxynonenal (4-HNE)-mediated proliferative signaling of cells. Here, using both the loss- and gain-of-function approaches, we investigated the role of glutathione S-transferase α4 (GSTA4) in modulating cellular 4-HNE levels for the transformation and proliferation of SMCs. Compared with non-CKD controls, mice with CKD had downregulated expression of GSTA4 at the mRNA and protein levels, with concomitant increase in 4-HNE in arteries and veins. This effect was associated with upregulated phosphorylation of MAPK signaling pathway proteins in proliferating SMCs. Overexpressing GSTA4 blocked 4-HNE-induced SMC proliferation. Additionally, inhibitors of MAPK signaling inhibited the 4-HNE-induced responses. Compared with wild-type mice, mice lacking GSTA4 exhibited increased CKD-induced neointima formation in AVF. Transient expression of an activated form of GSTA4, achieved using a combined Tet-On/Cre induction system in mice, lowered levels of 4-HNE and reduced the proliferation of SMCs. Together, these results demonstrate the critical role of GSTA4 in blocking CKD-induced neointima formation and AVF failure.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Emergency, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guang Chen
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Ming Liang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, China
| | - Aini Xie
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajendra Sharma
- Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
10
|
Li X, Wang X, Jiang H, Zhang G, Tan R, Sun Y, Wu X, Tan R, Xu Q. Herpetol ameliorates allergic contact dermatitis through regulating T-lymphocytes. Int Immunopharmacol 2016; 40:131-138. [DOI: 10.1016/j.intimp.2016.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/16/2023]
|
11
|
Up-Regulation of NF45 Correlates with Schwann Cell Proliferation After Sciatic Nerve Crush. J Mol Neurosci 2015; 56:216-27. [DOI: 10.1007/s12031-014-0484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
12
|
Petrilli A, Bott M, Fernández-Valle C. Inhibition of SIRT2 in merlin/NF2-mutant Schwann cells triggers necrosis. Oncotarget 2014; 4:2354-65. [PMID: 24259290 PMCID: PMC3926832 DOI: 10.18632/oncotarget.1422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in the NF2 gene cause Neurofibromatosis Type 2 (NF2), a disorder characterized by the development of schwannomas, meningiomas and ependymomas in the nervous system. Merlin, a tumor suppressor encoded by the NF2 gene, modulates activity of many essential signaling pathways. Yet despite increasing knowledge of merlin function, there are no NF2 drug therapies. In a pilot high-throughput screen of the Library of Pharmacologically Active Compounds, we assayed for compounds capable of reducing viability of mouse Schwann cells (MSC) with Nf2 inactivation as a cellular model for human NF2 schwannomas. AGK2, a SIRT2 (sirtuin 2) inhibitor, was identified as a candidate compound. SIRT2 is one of seven mammalian sirtuins that are NAD+ -dependent protein deacetylases. We show that merlin-mutant MSC have higher expression levels of SIRT2 and lower levels of overall lysine acetylation than wild-type control MSC. Pharmacological inhibition of SIRT2 decreases merlin-mutant MSC viability in a dose dependent manner without substantially reducing wild-type MSC viability. Inhibition of SIRT2 activity in merlin-mutant MSC is accompanied by release of lactate dehydrogenase and high mobility group box 1 protein into the medium in the absence of significant apoptosis, autophagy, or cell cycle arrest. These findings suggest that SIRT2 inhibition triggers necrosis of merlin-mutant MSCs and that SIRT2 is a potential NF2 drug target.
Collapse
Affiliation(s)
- Alejandra Petrilli
- Department of Biomedical Science, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, USA
| | | | | |
Collapse
|
13
|
Trichomide A, a Natural Cyclodepsipeptide, Exerts Immunosuppressive Activity against Activated T Lymphocytes by Upregulating SHP2 Activation to Overcome Contact Dermatitis. J Invest Dermatol 2014; 134:2737-2746. [DOI: 10.1038/jid.2014.252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
14
|
Sulaiman W, Dreesen TD. Effect of local application of transforming growth factor-β at the nerve repair site following chronic axotomy and denervation on the expression of regeneration-associated genes. Laboratory investigation. J Neurosurg 2014; 121:859-74. [PMID: 25036208 DOI: 10.3171/2014.4.jns131251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Although peripheral nerves can regenerate after traumatic injury, functional recovery is often suboptimal, especially after injuries to large nerve trunks such as the sciatic nerve or brachial plexus. Current research with animal models suggests that the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets due to the loss of neurotrophic support by Schwann cells in the distal stump of injured nerves. This study was designed to investigate the effect of one-time application of transforming growth factor-β (TGF-β) at the repair site of chronically injured nerve. METHODS The authors used the rat tibial nerve injury and repair model to investigate the effects of application of physiological concentrations of TGF-β plus forskolin or forskolin alone in vivo at the repair site on gene and protein expression and axon regeneration at 6 weeks after nerve repair. They used gene expression profiling and immunohistochemical analysis of indicative activated proteins in Schwann cells to evaluate the effects of treatments on the delayed repair. They also quantified the regenerated axons distal to the repair site by microscopy of paraffin sections. RESULTS Both treatment with forskolin only and treatment with TGF-β plus forskolin resulted in increased numbers of axons regenerated compared with saline-only control. There was robust activation and proliferation of both Schwann cells and macrophages reminiscent of the processes during Wallerian degeneration. The treatment also induced upregulation of genes implicated in cellular activation and growth as detected by gene array. CONCLUSIONS Addition of TGF-β plus forskolin to the repair after chronic nerve injury improved axonal regeneration, probably via upregulation of required genes, expression of growth-associated protein, and reactivation of Schwann cells and macrophages. Further studies are required to better understand the mechanism of the positive effect of TGF-β treatment on old nerve injuries.
Collapse
|
15
|
Petrilli A, Copik A, Posadas M, Chang LS, Welling DB, Giovannini M, Fernández-Valle C. LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene 2014; 33:3571-82. [PMID: 23934191 PMCID: PMC4016185 DOI: 10.1038/onc.2013.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 2 (NF2) is caused by mutations in the NF2 gene that encodes a tumor-suppressor protein called merlin. NF2 is characterized by formation of multiple schwannomas, meningiomas and ependymomas. Merlin loss-of-function is associated with increased activity of Rac and p21-activated kinases (PAKs) and deregulation of cytoskeletal organization. LIM domain kinases (LIMK1 and 2) are substrate for Cdc42/Rac-PAK and modulate actin dynamics by phosphorylating cofilin at serine-3. This modification inactivates the actin severing and depolymerizing activity of cofilin. LIMKs also translocate into the nucleus and regulate cell cycle progression. Significantly, LIMKs are overexpressed in several tumor types, including skin, breast, lung, liver and prostate. Here we report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of Nf2 exon2 deletion (Nf2(ΔEx2)) exhibited increased levels of LIMK1, LIMK2 and active phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared with wild-type normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated forms were elevated in human vestibular schwannomas compared with normal human Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2(ΔEx2) MSC reduced LIMK1 and LIMK2 levels. We show that pharmacological inhibition of LIMK with BMS-5 decreased the viability of Nf2(ΔEx2) MSCs in a dose-dependent manner, but did not affect viability of control MSCs. Similarly, LIMK knockdown decreased viability of Nf2(ΔEx2) MSCs. The decreased viability of Nf2(ΔEx2) MSCs was not due to caspase-dependent or -independent apoptosis, but rather due to inhibition of cell cycle progression as evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrests cells in early mitosis by decreasing aurora A activation. Our results suggest that LIMKs are potential drug targets for NF2 and tumors associated with merlin deficiency.
Collapse
Affiliation(s)
- Alejandra Petrilli
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alicja Copik
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michelle Posadas
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - D. Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Marco Giovannini
- House Research Institute, Division of Clinical and Translational Research, Los Angeles, CA 90057, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
16
|
Stettner M, Wolffram K, Mausberg AK, Wolf C, Heikaus S, Derksen A, Dehmel T, Kieseier BC. A reliable in vitro model for studying peripheral nerve myelination in mouse. J Neurosci Methods 2013; 214:69-79. [PMID: 23348045 DOI: 10.1016/j.jneumeth.2013.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/16/2022]
Abstract
The rat dorsal root ganglia (DRG) model is a long-standing in vitro model for analysis of myelination in the peripheral nervous system. For performing systematic, high throughput analysis with transgenic animals, a simplified BL6 mouse protocol is indispensable. Here we present a stable and reliable protocol for myelinating co-cultures producing a high myelin ratio using cells from C57BL/6 mice. As an easy accessible and operable method, Sudan staining proved to be efficient in myelin detection for fixed cultures. Green fatty acid stain turned out to be highly reliable for analysis of the dynamic biological processes of myelination in vital cultures. Once myelinated we were able to induce demyelination by the addition of forskolin into the model system. In addition, we provide an optimised rat DRG protocol with significantly improved myelin ratio and a comparison of the protocols presented. Our results strengthen the value of ex vivo myelination models in neurobiology.
Collapse
Affiliation(s)
- Mark Stettner
- Department of Neurology, Medical Faculty, Research Group for Clinical and Experimental Neuroimmunology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Negative Regulators of Schwann Cell Differentiation—Novel Targets for Peripheral Nerve Therapies? J Clin Immunol 2012; 33 Suppl 1:S18-26. [DOI: 10.1007/s10875-012-9786-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
|
18
|
Cheng J, Wang Y, Ma Y, Chan BTY, Yang M, Liang A, Zhang L, Li H, Du J. The Mechanical Stress–Activated Serum-, Glucocorticoid-Regulated Kinase 1 Contributes to Neointima Formation in Vein Grafts. Circ Res 2010; 107:1265-74. [DOI: 10.1161/circresaha.110.222588] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Mechanical stress plays an important role in proliferation of venous smooth muscle cells (SMCs) in neointima, a process of formation that contributes to failure of vein grafts. However, it is unknown what intracellular growth signal leads to proliferation of venous SMCs.
Objective:
The objective of this study is to identify mechanisms of mechanical stretch on neointima formation.
Methods and Results:
By a microarray analysis, we found that mechanical cyclic stretch (15% elongation) stimulated the transcription of SGK-1 (serum-, glucocorticoid-regulated kinase-1). Mechanical stretch–induced SGK-1 mRNA expression was blocked by actinomycin D. The mechanism for the SGK-1 expression involved MEK1 but not p38 or JNK signaling pathway. SGK-1 activation in response to stretch is blocked by insulin-like growth factor (IGF)-1 receptor inhibitor and mammalian target of rapamycin complex (mTORC)2 inhibitor (Ku-0063794) but not mTORC1 inhibitor (rapamycin). Mechanical stretch–induced bromodeoxyuridine incorporation was reduced by 83.5% in venous SMCs isolated from SGK-1 knockout mice. In contrast, inhibition of Akt, another downstream signal of PI3K resulted in only partial inhibition of mechanical stretch–induced proliferation of venous SMCs. Mechanical stretch also induced phosphorylation and nuclear exportation of p27
kip1
, whereas knockout of SGK-1 attenuated this effect of mechanical stretch on p27
kip1
. In vivo, we found that placement of a vein graft into artery increased SGK-1 expression. Knockout of SGK-1 effectively prevented neointima formation in vein graft. There is significant lower level of p27
kip1
located in the nucleus of neointima cells in SGK-1 knockout mice compared with that of wild-type vein graft. In addition, we also found that wire injury of artery or growth factors in vitro increased expression of SGK-1.
Conclusions:
These results suggest that SGK-1 is an injury-responsive kinase that could mediate mechanical stretch–induced proliferation of vascular cells in vein graft, leading to neointima formation.
Collapse
Affiliation(s)
- Jizhong Cheng
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Ying Wang
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Yewei Ma
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Bonita Tak-yee Chan
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Min Yang
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Anlin Liang
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Liping Zhang
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Huihua Li
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| | - Jie Du
- From the Department of Medicine (J.C., Y.M., B.T.-y.C., A.L., L.Z.), Baylor College of Medicine, Houston, Tex; and Key Laboratory of Remodeling-Related Cardiovascular Diseases (Y.W., M.Y., H.L., J.D.), Capital Medical University, Ministry of Education, and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, China
| |
Collapse
|
19
|
Hilton DA, Ristic N, Hanemann CO. Activation of ERK, AKT and JNK signalling pathways in human schwannomasin situ. Histopathology 2009; 55:744-9. [DOI: 10.1111/j.1365-2559.2009.03440.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
SSeCKS is a suppressor in Schwann cell differentiation and myelination. Neurochem Res 2009; 35:219-26. [PMID: 19757038 DOI: 10.1007/s11064-009-0045-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 08/08/2009] [Indexed: 12/14/2022]
Abstract
Src-suppressed protein kinase C substrate (SSeCKS) plays an important role in the differentiation process. In regeneration of sciatic nerve injury, expression of SSeCKS decreases, mainly in Schwann cells. However, the function of SSeCKS in Schwann cells differentiation remains unclear. We observed that SSeCKS was decreased in differentiated Schwann cells. In long-term SSeCKS-reduced Schwann cells, cell morphology changed and myelin gene expression induced by cAMP was accelerated. Myelination was also enhanced in SSeCKS-suppressed Schwann cells co-culture with dorsal root ganglion (DRG). In addition, we found suppression of SSeCKS expression promoted Akt serine 473 phosphorylation in cAMP-treated Schwann cells. In summary, our data indicated that SSeCKS was a negative regulator of myelinating glia differentiation.
Collapse
|
21
|
Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T, Takamatsu T. Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 2009; 41:232-9. [PMID: 19291756 DOI: 10.1002/lsm.20750] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-energy laser irradiation (low-level laser therapy) (LELI/LLLT/photobiomodulation) has been found to modulate various biological effects, especially those involved in promoting cell proliferation. Synovial fibroblasts are important in maintaining the homeostasis of articular joints and have strong chondrogenetic capacity. Here, we investigated the effect and molecular basis of LELI on synovial fibroblast proliferation. STUDY DESIGN/MATERIALS AND METHODS HIG-82 rabbit synovial fibroblasts were cultured, and laser irradiation (660 nm) was applied at the power density of 40 mW/cm(2) for 2 minutes, corresponding to laser fluence of 4.8 J/cm(2). The effect of LELI on cell proliferation, cell cycle progression, and expression of cyclin-dependent kinase inhibitors (CKIs) were investigated. We also examined whether the effects of LELI on HIG-82 cell proliferation were affected by cAMP content, which is known to influence the cell cycle via inducing CKIs. RESULTS LELI promoted HIG-82 synovial fibroblast proliferation and induced cytoplasmic localization of cyclin-dependent kinase inhibitor p15 (INK4B/CDKN2B). Moreover, the proliferation of HIG-82 synovial fibroblasts was reduced by cAMP, while cAMP inhibitor, SQ22536, induced p15 cytoplasmic localization and as a result, elevated synovial fibroblast proliferation was observed. In addition, the promotive effect of LELI-induced HIG-82 synovial fibroblast proliferation was abolished by cAMP treatment. Our findings suggest that cAMP may be involved in the effect of LELI on synovial fibroblast proliferation. CONCLUSION We revealed the effect and molecular link involved in synovial fibroblast proliferation induced by 660-nm LELI. Our study provides new insights into the mechanisms by which LELI has biological effects on synovial fibroblast proliferation. These insights may contribute to further investigation on biological effects and application of LELI in regenerative medicine.
Collapse
Affiliation(s)
- Daigo Taniguchi
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Larocque D, Fragoso G, Huang J, Mushynski WE, Loignon M, Richard S, Almazan G. The QKI-6 and QKI-7 RNA binding proteins block proliferation and promote Schwann cell myelination. PLoS One 2009; 4:e5867. [PMID: 19517016 PMCID: PMC2690695 DOI: 10.1371/journal.pone.0005867] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 05/05/2009] [Indexed: 11/29/2022] Open
Abstract
Background The quaking viable (qkv) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qkv mice harbor an enhancer/promoter deletion that prevents the expression of isoforms QKI-6 and QKI-7 in myelinating cells resulting in a dysmyelination phenotype. It was shown that QKI regulates the differentiation of oligodendrocytes, the myelinating cells of the CNS, however, little is known about the role of the QKI proteins, or RNA binding proteins in PNS myelination. Methodology/Principal Findings To define the role of the QKI proteins in PNS myelination, we ectopically expressed QKI-6 and QKI-7 in primary rat Schwann cell/neuron from dorsal root ganglia cocultures. We show that the QKI isoforms blocked proliferation and promoted Schwann cell differentiation and myelination. In addition, these events were coordinated with elevated proteins levels of p27KIP1 and myelin basic protein (MBP), markers of Schwann cell differentiation. QKI-6 and QKI-7 expressing co-cultures contained myelinated fibers that had directionality and contained significantly thicker myelin, as assessed by electron microscopy. Moreover, QKI-deficient Schwann cells had reduced levels of MBP, p27KIP1 and Krox-20 mRNAs, as assessed by quantitative RT-PCR. Conclusions/Significance Our findings suggest that the QKI-6 and QKI-7 RNA binding proteins are positive regulators of PNS myelination and show that the QKI RNA binding proteins play a key role in Schwann cell differentiation and myelination.
Collapse
Affiliation(s)
- Daniel Larocque
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - Gabriela Fragoso
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jinghan Huang
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | | | - Martin Loignon
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology and Medicine, McGill University, Montréal, Québec, Canada
- * E-mail: (SR); (GA)
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- * E-mail: (SR); (GA)
| |
Collapse
|
23
|
Liang WJ, Ma YJ, Yan X, Zhang WD, Luo RC. Expression of transforming growth factor α and Cyclin E and their correlation in chronic gastric lesion tissues from patients with different TCM types. Shijie Huaren Xiaohua Zazhi 2008; 16:1355-1358. [DOI: 10.11569/wcjd.v16.i12.1355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression of transforming growth factor α (TGF-α) and Cyclin E in chronic gastric lesion tissues from patients with different types of traditional Chinese medicine (TCM), and analyze the correlation between TGF-α and Cyclin E expression.
METHODS: The patients (n = 135) with chronic gastric diseases were classified to 4 groups according to different TCM types such as disharmony between liver and stomach (group A), spleen-stomach cold deficiency (group B), stomach-yin deficiency (group C), and mixed cold and heat (group D). Immunohistochemical staining was used to examine the expression of TGF-α and Cyclin E in the lesion tissues and the correlation between TGF-α and Cyclin E expression was also ssessed.
RESULTS: The positive rates of TGF-α expression in the lesion tissues of group A, B, C and D were 25.0%, 18.6%, 47.1% and 42.1%, respectively, and there was significant difference between group B and C (P < 0.05). The positive rates of Cyclin E expression were 20.0%, 7.0%, 26.5% and 31.6%, respectively, and there was marked difference between group B and D (P < 0.05). Both TGF-α and Cyclin E expression were the lowest in group B, and there existed a positive correlation between the expression of TGF-α and Cyclin E.
CONCLUSION: TGF-α and Cyclin E are differentially expressed in chronic gastric lesion tissues of patients with different TCM types, and the expression of TGF-α and Cyclin E are positively correlated.
Collapse
|
24
|
Yoon C, Korade Z, Carter BD. Protein kinase A-induced phosphorylation of the p65 subunit of nuclear factor-kappaB promotes Schwann cell differentiation into a myelinating phenotype. J Neurosci 2008; 28:3738-46. [PMID: 18385332 PMCID: PMC6671072 DOI: 10.1523/jneurosci.4439-07.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/29/2008] [Accepted: 03/01/2008] [Indexed: 11/21/2022] Open
Abstract
Axon-Schwann cell interactions are critical for myelin formation during peripheral nerve development and regeneration. Axonal contact promotes Schwann cell precursors to differentiate into a myelinating phenotype, and cAMP-elevating agents can mimic this; however, the mechanisms underlying this differentiation are poorly understood. We demonstrated previously that the transcription factor nuclear factor-kappaB (NF-kappaB) is required for myelin formation by Schwann cells (Nickols et al., 2003), although how it is activated during this process remained to be determined. Here, we report that culturing Schwann cells with sensory neurons results in the activation of cAMP-dependent protein kinase (PKA), and this kinase phosphorylates the p65 subunit of NF-kappaB at S276. The phosphorylation was also induced in cultured Schwann cells by treatment with forskolin, dibutyryl-cAMP, or by overexpression of a catalytic subunit of PKA, and this increased the transcriptional activity of NF-kappaB. In developing perinatal rat sciatic nerve, the kinetics of p65 phosphorylation at S276 paralleled that of PKA and NF-kappaB activation. To elucidate the role of p65 phosphorylation in myelin formation, we overexpressed an S276A mutant of p65 in cultured Schwann cells, which blocked PKA-mediated transcriptional activation of NF-kappaB. When the Schwann cells expressing the mutant were cocultured with sensory neurons, there was a 45% reduction in the number of myelinated fibers relative to controls, demonstrating a requirement for p65 phosphorylation by PKA during myelin formation.
Collapse
Affiliation(s)
- Choya Yoon
- Department of Biochemistry
- Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| | - Zeljka Korade
- Department of Biochemistry
- Vanderbilt Kennedy Center, and
| | - Bruce D. Carter
- Department of Biochemistry
- Vanderbilt Kennedy Center, and
- Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232
| |
Collapse
|
25
|
Zhu TS, Glaser M. Neuroprotection and enhancement of remyelination by estradiol and dexamethasone in cocultures of rat DRG neurons and Schwann cells. Brain Res 2008; 1206:20-32. [DOI: 10.1016/j.brainres.2008.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 02/07/2023]
|
26
|
Abstract
AIM: To detect the expression of P27 and cyclin D1 and E expression in gastric cancer, and to provide a new way to diagnose and treat gastric cancer.
METHODS: Immunohistochemistry was used to examine the expression of P27, cyclin D1 and cyclin E proteins in gastric carcinoma (n = 54) and normal gastric mucosa (n = 15).
RESULTS: Positive immunohistochemistry was seen in 20 of 54 gastric cancer cases and in 11 of 15 normal gastric tissues. P27 expression differed significantly between gastric cancer and normal gastric tissue (P < 0.05), had no relation with sex, age, tumor size, invasive depth and differentiation, but had a significant relationship with TNM staging and lymph node metastasis (P < 0.05). P27 expression had a negative correlation with cyclin D1 (r = -0.332) and no relationship with cyclin E.
CONCLUSION: The difference in P27 expression in gastric cancer and normal gastric tissue is remarkable. The expression has a significant relationship with TNM staging and lymph node metastasis. P27 expression has a negative correlation with cyclin D1 and no relationship with cyclin E expression.
Collapse
|
27
|
Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways. Oncogene 2007; 27:2705-15. [PMID: 17998937 DOI: 10.1038/sj.onc.1210923] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the neurofibromatosis type 2 (NF2) gene cause formation of schwannomas and other tumors in the nervous system. The NF2 protein, Schwannomin/Merlin, is a cytoskeleton-associated tumor suppressor regulated by phosphorylation at serine 518 (S518). Unphosphorylated Schwannomin restricts cell proliferation in part by inhibiting Rac- and p21-activated kinase (Pak). In a negative-feedback loop, Pak phosphorylates Schwannomin inactivating its ability to inhibit Pak. Little is known about receptor mechanisms that promote Pak activity and Schwannomin phosphorylation. Here we demonstrate in primary Schwann cells (SCs) that Schwannomin is rapidly phosphorylated on S518 by Pak following laminin-1 binding to beta1 integrin, and by protein kinase A following neuregulin-1beta (NRG1beta) binding to ErbB2/ErbB3 receptors. These receptors, together with phosphorylated Schwannomin, P-Pak, Cdc42 and paxillin are enriched at the distal tips of SC processes, and can be isolated as a complex using beta1 integrin antibody. Dual stimulation with laminin-1 and NRG1beta does not synergistically increase Schwannomin phosphorylation because ErbB2 kinase partially antagonizes integrin-dependent activation of Pak. These results identify two parallel, but interactive pathways that inactivate the tumor suppressor activity of Schwannomin to allow proliferation of subconfluent SCs. Moreover, they identify ErbB2, ErbB3 and beta1 integrins as potential therapeutic targets for NF2.
Collapse
|