1
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Abdullah bin Ahmed I. A Comprehensive Review on Weight Gain following Discontinuation of Glucagon-Like Peptide-1 Receptor Agonists for Obesity. J Obes 2024; 2024:8056440. [PMID: 38765635 PMCID: PMC11101251 DOI: 10.1155/2024/8056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Obesity is considered the leading public health problem in the medical sector. The phenotype includes overweight conditions that lead to several other comorbidities that drastically decrease health. Glucagon-like receptor agonists (GLP-1RAs) initially designed for treating type 2 diabetes mellitus (T2DM) had demonstrated weight loss benefits in several clinical trials. In vivo studies showed that GLP-1RA encourages reduced food consumption and consequent weight reduction by stimulating brown fat and enhancing energy outlay through the action of the sympathetic nervous system (SNS) pathways. Additionally, GLP-1RAs were found to regulate food intake through stimulation of sensory neurons in the vagus, interaction with the hypothalamus and hindbrain, and through inflammation and intestinal microbiota. However, the main concern with the use of GLP-1RA treatment was weight gain after withdrawal or discontinuation. We could identify three different ways that could lead to weight gain. Potential factors might include temporary hormonal adjustment in response to weight reduction, the central nervous system's (CNS) incompetence in regulating weight augmentation owing to the lack of GLP-1RA, and β-cell malfunction due to sustained exposure to GLP-1RA. Here, we also review the data from clinical studies that reported withdrawal symptoms. Although the use of GLP-1RA could be beneficial in multiple ways, withdrawal after years has the symptoms reversed. Clinical studies should emphasize the downside of these views we highlighted, and mechanistic studies must be carried out for a better outcome with GLP-1RA from the laboratory to the bedside.
Collapse
Affiliation(s)
- Ibrahim Abdullah bin Ahmed
- Department of Family Medicine, Faculty of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Jiang YH, Li T, Liu Y, Liu X, Jia S, Hou C, Chen G, Wang H, Ling S, Gao Q, Wang XR, Wang YF. Contribution of inwardly rectifying K + channel 4.1 of supraoptic astrocytes to the regulation of vasopressin neuronal activity by hypotonicity. Glia 2023; 71:704-719. [PMID: 36408843 DOI: 10.1002/glia.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K+ channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl2 . These results suggest that HOC-evoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Collapse
Affiliation(s)
- Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Neuroelectrophysiology Laboratory, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Alexander AL, Lim SY, Massingham LJ, Phillips O, Chambers MK, Donahue JE. Pathologic Alexander Disease with Normal GFAP Sequencing: An Autopsy Case Report and Literature Review. J Neuropathol Exp Neurol 2022; 81:1033-1036. [PMID: 36137250 DOI: 10.1093/jnen/nlac086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Abigail L Alexander
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Swee Yang Lim
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | | | - Oliver Phillips
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | | | - John E Donahue
- Division of Neuropathology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Heaven MR, Herren AW, Flint DL, Pacheco NL, Li J, Tang A, Khan F, Goldman JE, Phinney BS, Olsen ML. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Mol Cell Proteomics 2022; 21:100180. [PMID: 34808356 PMCID: PMC8717607 DOI: 10.1016/j.mcpro.2021.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.
Collapse
Affiliation(s)
| | - Anthony W Herren
- University of California at Davis Proteomics Core, Davis, California, USA
| | | | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiangtao Li
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Brett S Phinney
- University of California at Davis Proteomics Core, Davis, California, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
6
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
7
|
Li X, Lv J, Li J, Ren X. Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Exp Ther Med 2021; 22:1021. [PMID: 34373707 PMCID: PMC8343704 DOI: 10.3892/etm.2021.10453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
As the major cause of irreversible loss of vision in adults, diabetic retinopathy (DR) is one of the most serious complications of diabetes. The imbalance of the retinal microenvironment and destruction of the blood-retinal barrier have a significant role in the progression of DR. Inward rectifying potassium channel 4.1 (Kir4.1) is located on Müller cells and is closely related to potassium homeostasis, water balance and glutamate clearance in the whole retina. The present review discusses the functions of Kir4.1 in regulating the retinal microenvironment and related biological mechanisms in DR. In the future, Kir4.1 may represent a novel alternative therapeutic target for DR through affecting the retinal microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiajun Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiazhi Li
- Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
8
|
Saito K, Shigetomi E, Koizumi S. [Alexander disease: diversity of cell population and interactions between neuron and glia]. Nihon Yakurigaku Zasshi 2021; 156:239-243. [PMID: 34193704 DOI: 10.1254/fpj.21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder caused by the mutations in glial fibrillary acidic protein (GFAP) gene. Rosenthal fiber formations in astrocytes are the pathological hallmarks of AxD. Astrocyte dysfunction in the AxD brain is considered to be involved in its pathogenesis. We have previously reported that in AxD model mice aberrant Ca2+ signals in astrocytes were associated with the upregulation of reactive phenotype. Reactive astrocytes are conditions that lead to morphological, functional, and molecular changes by responding to various pathological insults (trauma, inflammation, ischemia), and environmental stimuli. Recent technological advances in single-cell gene expression analysis have revealed that astrocytes have heterogeneity by indicating that they form sub population with different characteristics depending on the brain region, the growth development, aging stage, and the pathological condition. AxD astrocytes are also thought to constitute a heterogeneous population with diverse properties and functions. Moreover, it is presumed that AxD pathogenesis occur due to interactions with neurons and other glial cells, as well as the microenvironment in tissues. Research strategies based on these perspectives will help us understand AxD pathology better and may lead to the elucidation of disease modifiers and clinical diversity.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| | - Eiji Shigetomi
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| | - Schuichi Koizumi
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| |
Collapse
|
9
|
Song X, Jiang J, Tian W, Zhan F, Zhu Z, Li B, Tang H, Cao L. A report of two cases of bulbospinal form Alexander disease and preliminary exploration of the disease. Mol Med Rep 2021; 24:572. [PMID: 34109421 PMCID: PMC8201446 DOI: 10.3892/mmr.2021.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 11/05/2022] Open
Abstract
Alexander disease (AxD) is a cerebral white matter disease affecting a wide range of ages, from infants to adults. In the present study, two cases of bulbospinal form AxD were reported, and a preliminary exploration of AxD was conducted thorough clinical, functional magnetic resonance imaging (fMRI) and functional analyses. In total, two de novo mutations in the glial fibrillary acidic protein (GFAP) gene (c.214G>A and c.1235C>T) were identified in unrelated patients (one in each patient). Both patients showed increased regional neural activity and functional connectivity in the cerebellum and posterior parietal cortex according to fMRI analysis. Notably, grey matter atrophy was discovered in the patient with c.214G>A variant. Functional experiments revealed aberrant accumulation of mutant GFAP and decreased solubility of c.1235C>T variant. Under pathological conditions, autophagic flux was activated for GFAP aggregate degradation. Moreover, transcriptional data of AxD and healthy human brain samples were obtained from the Gene Expression Omnibus database. Gene set enrichment analysis revealed an upregulation of immune‑related responses and downregulation of ion transport, synaptic transmission and neurotransmitter homeostasis. Enrichment analysis of cell‑specific differentially expressed genes also indicated a marked inflammatory environment in AxD. Overall, the clinical features of the two patients with bulbospinal form AxD were thoroughly described. To the best of our knowledge, the brain atrophy pattern and spontaneous brain functional network activity of patients with AxD were explored for the first time. Cytological experiments provided evidence of the pathogenicity of the identified variants. Furthermore, bioinformatics analysis found that inflammatory immune‑related reactions may play a critical role in AxD, which may be conducive to the understanding of this disease.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingwen Jiang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wotu Tian
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Feixia Zhan
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zeyu Zhu
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Binyin Li
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Huidong Tang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Li Cao
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
10
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
11
|
Ahmed OG, Shehata GA, Ali RM, Makboul R, Abd Allah ESH, Abd El-Rady NM. Folic acid ameliorates neonatal isolation-induced autistic like behaviors in rats: epigenetic modifications of BDNF and GFAP promotors. Appl Physiol Nutr Metab 2021; 46:964-975. [PMID: 33635721 DOI: 10.1139/apnm-2020-0923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current study investigated the role of epigenetic dysregulation of brain derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP) genes and oxidative stress as possible mechanisms of autistic-like behaviors in neonatal isolation model in rats and the impact of folic acid administration on these parameters. Forty Wistar albino pups were used as follows: control, folic acid administered, isolated, and isolated folic acid treated groups. Isolated pups were separated from their mothers for 90 min daily from postnatal day (PND) 1 to 11. Pups (isolated or control) received either the vehicle or folic acid (4 mg/kg/day) orally from PND 1 to 29. Behavioral tests were done from PND 30 to 35. Oxidative stress markers and antioxidant defense in the frontal cortex homogenate were determined. DNA methylation of BDNF and GFAP genes was determined by qPCR. Histopathological examination was carried out. Neonatal isolation produced autistic-like behaviors that were associated with BDNF and GFAP hypomethylation, increased oxidative stress, increased inflammatory cell infiltration, and structural changes in the frontal cortex. Folic acid administration concurrently with isolation reduced neonatal isolation-induced autistic-like behaviors, decreased oxidative stress, regained BDNF and GFAP gene methylation, and ameliorated structural changes in the frontal cortices of isolated folic acid treated rats. Novelty: Neonatal isolation induces "autistic-like" behavior and these behaviors are reversed by folic acid supplementation. Neonatal isolation induces DNA hypomethylation of BDNF and GFAP, increased oxidative stress markers, and neuroinflammation. All of these changes were reversed by daily folic acid supplementation.
Collapse
Affiliation(s)
- Omyma G Ahmed
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghaydaa A Shehata
- Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt
| | - Rasha M Ali
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rania Makboul
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman S H Abd Allah
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nessren M Abd El-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
13
|
Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochem Int 2019; 133:104628. [PMID: 31825815 PMCID: PMC6957761 DOI: 10.1016/j.neuint.2019.104628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
Unprovoked recurrent seizures are a serious comorbidity affecting most patients who suffer from glioma, a primary brain tumor composed of malignant glial cells. Cellular mechanisms contributing to the development of recurrent spontaneous seizures include the release of the excitatory neurotransmitter glutamate from glioma into extracellular space. Under physiological conditions, astrocytes express two high affinity glutamate transporters, Glt-1 and Glast, which are responsible for the removal of excess extracellular glutamate. In the context of neurological disease or brain injury, astrocytes become reactive which can negatively affect neuronal function, causing hyperexcitability and/or death. Using electrophysiology, immunohistochemistry, fluorescent in situ hybridization, and Western blot analysis in different orthotopic xenograft and allograft models of human and mouse gliomas, we find that peritumoral astrocytes exhibit astrocyte scar formation characterized by proliferation, cellular hypertrophy, process elongation, and increased GFAP and pSTAT3. Overall, peritumoral reactive astrocytes show a significant reduction in glutamate and potassium uptake, as well as decreased glutamine synthetase activity. A subset of peritumoral astrocytes displayed a depolarized resting membrane potential, further contributing to reduced potassium and glutamate homeostasis. These changes may contribute to the propagation of peritumoral neuronal hyperexcitability and excitotoxic death.
Collapse
|
14
|
Yasuda R, Nakano M, Yoshida T, Sato R, Adachi H, Tokuda Y, Mizuta I, Saito K, Matsuura J, Nakagawa M, Tashiro K, Mizuno T. Towards genomic database of Alexander disease to identify variations modifying disease phenotype. Sci Rep 2019; 9:14763. [PMID: 31611638 PMCID: PMC6791890 DOI: 10.1038/s41598-019-51390-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2019] [Indexed: 01/13/2023] Open
Abstract
Alexander disease (AxD) is an extremely rare neurodegenerative disorder caused by glial fibrillary acidic protein (GFAP) gene mutations. Compared with the cerebral type, which is characterized by infantile onset, the bulbospinal type and intermediate form are associated with a late onset, spanning from juveniles to the elderly, and more diverse clinical spectrum, suggesting the existence of factors contributing to phenotypic diversity. To build a foundation for future genetic studies of this rare disease, we obtained genomic data by whole exome-sequencing (WES) and DNA microarray derived from thirty-one AxD patients with the bulbospinal type and intermediate form. Using this data, we aimed to identify genetic variations determining the age at onset (AAO) of AxD. As a result, WES- or microarray-based association studies between younger (<45 years; n = 13)- and older (≥45 years; n = 18)-onset patients considering the predicted GFAP-mutation pathogenicity identified no genome-wide significant variant. The candidate gene approach identified several variants likely correlated with AAO (p < 0.05): GAN, SLC1A2, CASP3, HDACs, and PI3K. Although we need to replicate the results using an independent population, this is the first step towards constructing a database, which may serve as an important tool to advance our understanding of AxD.
Collapse
Affiliation(s)
- Rei Yasuda
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomokatsu Yoshida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ryuichi Sato
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Adachi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kozo Saito
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Matsuura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- Department of Neurology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Sosunov A, Olabarria M, Goldman JE. Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 2019; 28:388-398. [PMID: 29740945 DOI: 10.1111/bpa.12601] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 02/02/2023] Open
Abstract
Alexander Disease (AxD) is a degenerative disorder caused by mutations in the GFAP gene, which encodes the major intermediate filament of astrocytes. As other cells in the CNS do not express GFAP, AxD is a primary astrocyte disease. Astrocytes acquire a large number of pathological features, including changes in morphology, the loss or diminution of a number of critical astrocyte functions and the activation of cell stress and inflammatory pathways. AxD is also characterized by white matter degeneration, a pathology that has led it to be included in the "leukodystrophies." Furthermore, variable degrees of neuronal loss take place. Thus, the astrocyte pathology triggers alterations in other cell types. Here, we will review the neuropathology of AxD and discuss how a disease of astrocytes can lead to severe pathologies in non-astrocytic cells. Our knowledge of the pathophysiology of AxD will also lead to a better understanding of how astrocytes interact with other CNS cells and how astrocytes in the gliosis that accompanies many neurological disorders can damage the function and survival of other cells.
Collapse
Affiliation(s)
| | - Markel Olabarria
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| | - James E Goldman
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
16
|
Abstract
Due to strong electrical coupling, syncytial isopotentiality emerges as a physiological mechanism that coordinates astrocytes into a highly efficient system in brain homeostasis. Although this electrophysiological phenomenon has now been observed in astrocyte networks established by different astrocyte subtypes, the spinal cord remains a brain region that is still unexplored. In ALDH1L1-eGFP transgenic mice, astrocytes can be visualized by confocal microscopy and the spinal cord astrocytes in grey matter are organized in a distinctive pattern. Namely, each astrocyte resides with more directly coupled neighbors at shorter interastrocytic distances compared to protoplasmic astrocytes in the hippocampal CA1 region. In whole-cell patch clamp recording, the spinal cord grey matter astrocytes exhibit passive K+ conductance and a highly hyperpolarized membrane potential of −80 mV. To answer whether syncytial isopotentiality is a shared feature of astrocyte networks in the spinal cord, the K+ content in a physiological recording solution was substituted by equimolar Na+ for whole-cell recording in spinal cord slices. In uncoupled single astrocytes, this substitution of endogenous K+ with Na+ is known to depolarize astrocytes to around 0 mV as predicted by Goldman–Hodgkin–Katz (GHK) equation. In contrast, the existence of syncytial isopotentiality is indicated by a disobedience of the GHK predication as the recorded astrocyte’s membrane potential remains at a quasi-physiological level that is comparable to its neighbors due to strong electrical coupling. We showed that the strength of syncytial isopotentiality in spinal cord grey matter is significantly stronger than that of astrocyte network in the hippocampal CA1 region. Thus, this study corroborates the notion that syncytial isopotentiality most likely represents a system-wide electrical feature of astrocytic networks throughout the brain.
Collapse
|
17
|
Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, Monni E, Hansen MG, Hidalgo I, Bryder D, Bengzon J, Ahlenius H. Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat Methods 2018; 15:693-696. [PMID: 30127505 DOI: 10.1038/s41592-018-0103-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/09/2018] [Indexed: 11/09/2022]
Abstract
The derivation of astrocytes from human pluripotent stem cells is currently slow and inefficient. We demonstrate that overexpression of the transcription factors SOX9 and NFIB in human pluripotent stem cells rapidly and efficiently yields homogeneous populations of induced astrocytes. In our study these cells exhibited molecular and functional properties resembling those of adult human astrocytes and were deemed suitable for disease modeling. Our method provides new possibilities for the study of human astrocytes in health and disease.
Collapse
Affiliation(s)
- Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Aurélie Ginisty
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Ella Quist
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Raissa Timmerman
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Jonas Fritze
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden
| | - Giedre Miskinyte
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Emanuela Monni
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund University and Skåne University Hospital, Lund, Sweden
| | | | - Isabel Hidalgo
- Lund Stem Cell Center, Lund, Sweden.,Institution for Laboratory Medicine, Division of Molecular Hematology, Faculty of Medicine, Lund University, Lund, Sweden
| | - David Bryder
- Lund Stem Cell Center, Lund, Sweden.,Institution for Laboratory Medicine, Division of Molecular Hematology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Bengzon
- Lund Stem Cell Center, Lund, Sweden.,Division of Neurosurgery, Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Lund University, Lund, Sweden. .,Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden. .,Lund Stem Cell Center, Lund, Sweden.
| |
Collapse
|
18
|
Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma. Sci Rep 2018; 8:7654. [PMID: 29769580 PMCID: PMC5955950 DOI: 10.1038/s41598-018-25940-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Glial cells actively maintain the homeostasis of brain parenchyma, regulating neuronal excitability and preserving the physiological composition of the extracellular milieu. Under pathological conditions, some functions of glial cells could be compromised, exacerbating the neurotoxic processes. We investigated if the homeostatic activities of astrocytes and microglia could be modulated by the voltage-gated K+ channel Kv1.3. To this end we used in vitro and in vivo systems to model cell-to-cell interactions in tumoral conditions, using a specific inhibitor of Kv1.3 channels, 5-(4-phenoxybutoxy) psoralen (PAP-1). We demonstrated that PAP-1 increases astrocytic glutamate uptake, reduces glioma-induced neurotoxicity, and decreases microglial migration and phagocytosis. We also found in a tumor blood brain barrier model that Kv1.3 activity is required for its integrity. The crucial role of Kv1.3 channels as modulators of glial cell activity was confirmed in a mouse model of glioma, where PAP-1 treatment reduces tumor volume only in the presence of active glutamate transporters GLT-1. In the same mouse model, PAP-1 reduces astrogliosis and microglial infiltration. PAP-1 also reduces tumor cell invasion. All these findings point to Kv1.3 channels as potential targets to re-instruct glial cells toward their homeostatic functions, in the context of brain tumors.
Collapse
|
19
|
McKeon A, Benarroch EE. Glial fibrillary acid protein: Functions and involvement in disease. Neurology 2018; 90:925-930. [PMID: 29653988 DOI: 10.1212/wnl.0000000000005534] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Andrew McKeon
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
20
|
Elevated MeCP2 in Mice Causes Neurodegeneration Involving Tau Dysregulation and Excitotoxicity: Implications for the Understanding and Treatment of MeCP2 Triplication Syndrome. Mol Neurobiol 2018; 55:9057-9074. [PMID: 29637441 DOI: 10.1007/s12035-018-1046-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Expression of MeCP2 must be carefully regulated as a reduction or increase results in serious neurological disorders. We are studying transgenic mice in which the MeCP2 gene is expressed at about three times higher than the normal level. Male MeCP2-Tg mice, but not female mice, suffer motor and cognitive deficits and die at 18-20 weeks of age. MeCP2-Tg mice display elevated GFAP and Tau expression within the hippocampus and cortex followed by neuronal loss in these brain regions. Loss of Purkinje neurons, but not of granule neurons in the cerebellar cortex is also seen. Exposure of cultured cortical neurons to either conditioned medium from astrocytes (ACM) derived from male MeCP2-Tg mice or normal astrocytes in which MeCP2 is expressed at elevated levels promotes their death. Interestingly, ACM from male, but not female MeCP2-Tg mice, displays this neurotoxicity reflecting the gender selectivity of neurological symptoms in mice. Male ACM, but not female ACM, contains highly elevated levels of glutamate, and its neurotoxicity can be prevented by MK-801, indicating that it is caused by excitotoxicity. Based on the close phenotypic resemblance of MeCP2-Tg mice to patients with MECP2 triplication syndrome, we suggest for the first time that the human syndrome is a neurodegenerative disorder resulting from astrocyte dysfunction that leads to Tau-mediated excitotoxic neurodegeneration. Loss of cortical and hippocampal neurons may explain the mental retardation and epilepsy in patients, whereas ataxia likely results from the loss of Purkinje neurons.
Collapse
|
21
|
Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis 2018; 9:352. [PMID: 29500411 PMCID: PMC5834463 DOI: 10.1038/s41419-018-0381-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Astrocytic JWA exerts neuroprotective roles by alleviating oxidative stress and inhibiting inflammation. However, the molecular mechanisms of how astrocytic JWA is involved in dopaminergic neurodegeneration in Parkinson's disease (PD) remain largely unknown. In this study, we found that astrocyte-specific JWA knockout mice (JWA CKO) exacerbated dopamine (DA) neuronal loss and motor dysfunction, and reduced the levels of DA and its metabolites in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model. Astrocytic JWA deficiency repressed expression of excitatory amino-acid transporter 2 (GLT-1) and glutamate uptake both in vivo and in vitro. Further, the regulation of GLT-1 expression was involved in JWA-triggered activation of the MAPK and PI3K signaling pathways. JWA-increased GLT-1 expression was abolished by inhibitors of MEK and PI3K. Silencing CREB also abrogated JWA-increased GLT-1 expression and glutamate uptake. Additionally, JWA deficiency activated glial fibrillary acidic protein (GFAP), and increased the expression of STAT3. Similarly to the MPTP model, paraquat (PQ) exposure produced PD-like phenotypes in JWA CKO mice. Taken together, our findings provide novel insights into astrocytic JWA function in the pathogenesis of neurotoxin mouse models of PD.
Collapse
|
22
|
Hagemann TL, Powers B, Mazur C, Kim A, Wheeler S, Hung G, Swayze E, Messing A. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol 2018; 83:27-39. [PMID: 29226998 DOI: 10.1002/ana.25118] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Alexander disease is a fatal leukodystrophy caused by autosomal dominant gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament protein primarily expressed in astrocytes of the central nervous system. A key feature of pathogenesis is overexpression and accumulation of GFAP, with formation of characteristic cytoplasmic aggregates known as Rosenthal fibers. Here we investigate whether suppressing GFAP with antisense oligonucleotides could provide a therapeutic strategy for treating Alexander disease. METHODS In this study, we use GFAP mutant mouse models of Alexander disease to test the efficacy of antisense suppression and evaluate the effects on molecular and cellular phenotypes and non-cell-autonomous toxicity. Antisense oligonucleotides were designed to target the murine Gfap transcript, and screened using primary mouse cortical cultures. Lead oligonucleotides were then tested for their ability to reduce GFAP transcripts and protein, first in wild-type mice with normal levels of GFAP, and then in adult mutant mice with established pathology and elevated levels of GFAP. RESULTS Nearly complete and long-lasting elimination of GFAP occurred in brain and spinal cord following single bolus intracerebroventricular injections, with a striking reversal of Rosenthal fibers and downstream markers of microglial and other stress-related responses. GFAP protein was also cleared from cerebrospinal fluid, demonstrating its potential utility as a biomarker in future clinical applications. Finally, treatment led to improved body condition and rescue of hippocampal neurogenesis. INTERPRETATION These results demonstrate the efficacy of antisense suppression for an astrocyte target, and provide a compelling therapeutic approach for Alexander disease. Ann Neurol 2018;83:27-39.
Collapse
Affiliation(s)
| | | | | | | | - Steven Wheeler
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | | | | | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
23
|
Sosunov AA, McKhann GM, Goldman JE. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun 2017; 5:27. [PMID: 28359321 PMCID: PMC5374671 DOI: 10.1186/s40478-017-0425-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/08/2017] [Indexed: 11/27/2022] Open
Abstract
Rosenthal fibers (RFs) are cytoplasmic, proteinaceous aggregates. They are the pathognomonic feature of the astrocyte pathology in Alexander Disease (AxD), a neurodegenerative disorder caused by heterozygous mutations in the GFAP gene, encoding glial fibrillary acidic protein (GFAP). Although RFs have been known for many years their origin and significance remain elusive issues. We have used mouse models of AxD based on the overexpression of human GFAP (transgenic, TG) and a point mutation in mouse GFAP (knock-in, KI) to examine the formation of RFs and to find astrocyte changes that correlate with the appearance of RFs. We found RFs of various sizes and shapes. The smallest ones appear as granular depositions on intermediate filaments. These contain GFAP and the small heat shock protein, alphaB-crystallin. Their aggregation appears to give rise to large RFs. The appearance of new RFs and the growth of previously formed RFs occur over time. We determined that DAPI is a reliable marker of RFs and in parallel with Fluoro-Jade B (FJB) staining defined a high variability in the appearance of RFs, even in neighboring astrocytes. Although many astrocytes in AxD with increased levels of GFAP and with or without RFs change their phenotype, only some cells with large numbers of RFs show a profound reconstruction of cellular processes, with a loss of fine distal processes and the appearance of large, lobulated nuclei, likely due to arrested mitosis. We conclude that 1) RFs appear to originate as small, osmiophilic masses containing both GFAP and alphaB-crystallin deposited on bundles of intermediate filaments. 2) RFs continue to form within AxD astrocytes over time. 3) DAPI is a reliable marker for RFs and can be used with immunolabeling. 4) RFs appear to interfere with the successful completion of astrocyte mitosis and cell division.
Collapse
|
24
|
Abstract
Epilepsy is among the most prevalent chronic neurological diseases and affects an estimated 2.2 million people in the United States alone. About one third of patients are resistant to currently available antiepileptic drugs, which are exclusively targeting neuronal function. Yet, reactive astrocytes have emerged as potential contributors to neuronal hyperexcitability and seizures. Astrocytes react to any kind of CNS insult with a range of cellular adjustments to form a scar and protect uninjured brain regions. This process changes astrocyte physiology and can affect neuronal network function in various ways. Traumatic brain injury and stroke, both conditions that trigger astroglial scar formation, are leading causes of acquired epilepsies and surgical removal of this glial scar in patients with drug-resistant epilepsy can alleviate the seizures. This review will summarize the currently available evidence suggesting that epilepsy is not a disease of neurons alone, but that astrocytes, glial cells in the brain, can be major contributors to the disease, especially when they adopt a reactive state in response to central nervous system insult.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| |
Collapse
|
25
|
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 2016; 132:1-21. [PMID: 26961251 PMCID: PMC6774634 DOI: 10.1007/s00401-016-1553-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Vishnu A Cuddapah
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Kelsey C Patterson
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Anita C Randolph
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK.
| |
Collapse
|