1
|
Terroba-Navajas P, Spatola M, Chuquisana O, Joubert B, de Vries JM, Dik A, Marmolejo L, Jönsson F, Lauc G, Kovac S, Prüss H, Wiendl H, Titulaer MJ, Honnorat J, Lünemann JD. Humoral signatures of Caspr2-antibody spectrum disorder track with clinical phenotypes and outcomes. MED 2024:S2666-6340(24)00371-4. [PMID: 39393351 DOI: 10.1016/j.medj.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Immunoglobulin (Ig) G4 auto-antibodies (Abs) against contactin-associated protein-like 2 (Caspr2), a transmembrane cell adhesion protein expressed in the central and peripheral nervous system, are found in patients with a broad spectrum of neurological symptoms. While the adoptive transfer of Caspr2-specific IgG induces brain pathology in susceptible rodents, the mechanisms by which Caspr2-Abs mediate neuronal dysfunction and translate into clinical syndromes are incompletely understood. METHODS We use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral biosignatures in patients with Caspr2-Ab-associated neurological syndromes. FINDINGS We identify two signatures strongly associated with two major clinical phenotypes, limbic encephalitis (LE) and predominant peripheral nerve hyperexcitability without LE (non-LE). Caspr2-IgG Fc-driven pro-inflammatory features, characterized by increased binding affinities for activating Fcγ receptors (FcγRs) and C1q, along with a higher prevalence of IgG1-class Abs, in addition to IgG4, are strongly associated with LE. Both the occurrence of Caspr2-specific IgG1 and higher serum levels of interleukin (IL)-6 and IL-15, along with increased concentrations of biomarkers reflecting neuronal damage and glial cell activation, are associated with poorer clinical outcomes at 1-year follow-up. CONCLUSIONS The presence of IgG1 isotypes and Fc-mediated effector functions control the pathogenicity of Caspr2-specific Abs to induce LE. Biologics targeting FcR function might potentially restrain Caspr2-Ab-induced pathology and improve clinical outcomes. FUNDING This study was funded by a German-French joint research program supported by the German Research Foundation (DFG) and the Agence Nationale de la Recherche (ANR) and by the Interdisciplinary Centre for Clinical Research (IZKF) Münster.
Collapse
Affiliation(s)
- Paula Terroba-Navajas
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marianna Spatola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Caixa Research Institute, Barcelona, Spain.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Service de Neurologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Juna M de Vries
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Marmolejo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Friederike Jönsson
- CNRS & Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia; Genos, Ltd., Borongajska Cesta 83H, Zagreb, Croatia
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Koyanagi M, Ogido R, Moriya A, Saigo M, Ihida S, Teranishi T, Kawada J, Katsuno T, Matsubara K, Terada T, Yamashita A, Imai S. Development of a 3-dimensional organotypic model with characteristics of peripheral sensory nerves. CELL REPORTS METHODS 2024; 4:100835. [PMID: 39116883 PMCID: PMC11384078 DOI: 10.1016/j.crmeth.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
We developed a rat dorsal root ganglion (DRG)-derived sensory nerve organotypic model by culturing DRG explants on an organoid culture device. With this method, a large number of organotypic cultures can be produced simultaneously with high reproducibility simply by seeding DRG explants derived from rat embryos. Unlike previous DRG explant models, this organotypic model consists of a ganglion and an axon bundle with myelinated A fibers, unmyelinated C fibers, and stereo-myelin-forming nodes of Ranvier. The model also exhibits Ca2+ signaling in cell bodies in response to application of chemical stimuli to nerve terminals. Further, axonal transection increases the activating transcription factor 3 mRNA level in ganglia. Axons and myelin are shown to regenerate 14 days following transection. Our sensory organotypic model enables analysis of neuronal excitability in response to pain stimuli and tracking of morphological changes in the axon bundle over weeks.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Ryosuke Ogido
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akari Moriya
- Department of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mamiko Saigo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Satoshi Ihida
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Tomoko Teranishi
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Jiro Kawada
- Jiksak Bioengineering, Inc., Kawasaki, Kanagawa 210-0821, Japan
| | - Tatsuya Katsuno
- Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuo Matsubara
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Akira Yamashita
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Satoshi Imai
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan; Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Dustin E, Suarez-Pozos E, Stotesberry C, Qiu S, Palavicini JP, Han X, Dupree JL. Compromised Myelin and Axonal Molecular Organization Following Adult-Onset Sulfatide Depletion. Biomedicines 2023; 11:1431. [PMID: 37239102 PMCID: PMC10216104 DOI: 10.3390/biomedicines11051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
3-O-sulfogalactosylceramide, or sulfatide, is a prominent myelin glycosphingolipid reduced in the normal appearing white matter (NAWM) in Multiple Sclerosis (MS), indicating that sulfatide reduction precedes demyelination. Using a mouse model that is constitutively depleted of sulfatide, we previously demonstrated that sulfatide is essential during development for the establishment and maintenance of myelin and axonal integrity and for the stable tethering of certain myelin proteins in the sheath. Here, using an adult-onset depletion model of sulfatide, we employ a combination of ultrastructural, immunohistochemical and biochemical approaches to analyze the consequence of sulfatide depletion from the adult CNS. Our findings show a progressive loss of axonal protein domain organization, which is accompanied by axonal degeneration, with myelin sparing. Similar to our previous work, we also observe differential myelin protein anchoring stabilities that are both sulfatide dependent and independent. Most notably, stable anchoring of neurofascin155, a myelin paranodal protein that binds the axonal paranodal complex of contactin/Caspr1, requires sulfatide. Together, our findings show that adult-onset sulfatide depletion, independent of demyelination, is sufficient to trigger progressive axonal degeneration. Although the pathologic mechanism is unknown, we propose that sulfatide is required for maintaining myelin organization and subsequent myelin-axon interactions and disruptions in these interactions results in compromised axon structure and function.
Collapse
Affiliation(s)
- Elizabeth Dustin
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Edna Suarez-Pozos
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Camryn Stotesberry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shulan Qiu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juan Pablo Palavicini
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey L. Dupree
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| |
Collapse
|
4
|
Kozar-Gillan N, Velichkova A, Kanatouris G, Eshed-Eisenbach Y, Steel G, Jaegle M, Aunin E, Peles E, Torsney C, Meijer DN. LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period. J Cell Biol 2023; 222:e202211031. [PMID: 36828548 PMCID: PMC9997507 DOI: 10.1083/jcb.202211031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 02/26/2023] Open
Abstract
Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.
Collapse
Affiliation(s)
- Nina Kozar-Gillan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - George Kanatouris
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Gavin Steel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - Eerik Aunin
- Biomedical Sciences, ErasmusMC, Rotterdam, Netherlands
| | - Elior Peles
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carole Torsney
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh. UK
| | - Dies N. Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Qin X, Yang H, Zhu F, Wang Q, Shan W. Clinical Character of CASPR2 Autoimmune Encephalitis: A Multiple Center Retrospective Study. Front Immunol 2021; 12:652864. [PMID: 34054814 PMCID: PMC8159154 DOI: 10.3389/fimmu.2021.652864] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Objective To examine the clinical characteristics of autoimmune encephalitis associated with the contactin-associated protein-2 (CASPR2) antibody. Materials and Methods Medical records of all patients diagnosed with CASPR2 antibody-associated encephalitis were retrospectively analysed. Data regarding demographic features, neurological symptoms and signs, laboratory tests, imaging results, treatments, and prognosis were collected. Results A total of 25 patients aged from 3 to 79 years old were enrolled in this study, with a median age of 43. Eight of 25 (32%) were female, and 17 of 25 (68%) were male. The median age of symptom onset was 42 years old with the course of disease from onset to hospital admission ranging from 2 days to 6 months (median was 17 days). Six patients (6/25) had fever as an onset symptom. During the course of disease, cognitive disturbance was the most common symptom, which was observed in 17 patients (17/25) in total. Eight patients (8/25) met the criteria for limbic encephalitis. Epileptic seizure occurred in six of these eight patients. Four patients (4/25) were diagnosed as Morvan syndrome. All patients were positive for anti-CASPR2 antibody in the serum (1:10-1:300). In six patients, antibodies were detected both in the blood and CSF (1:32-1:100). White blood cell (WBC) counts in the CSF were elevated in eight patients (8/25). The concentration of proteins in CSF increased in 10 patients (ranging from 480 to 1,337.6 mg/dl), decreased in seven patients (ranging from 23.2 to 130.5 mg/dl) and remained at a normal range in the other eight patients (ranging from 150 to 450 mg/dl). Abnormal electroencephalogram (EEG) activities included slow background activity and epileptic patterns. Abnormal signals in the bilateral hippocampus were detected by magnetic resonance imaging (MRI) in three patients presenting cognitive disturbance. In one patient who had limbic encephalitis, increased metabolism of bilateral basal ganglia and the mesial temporal lobe was revealed by PET-CT. Eleven of 15 patients receiving immunotherapy experienced varying degrees of improvement. Relapse occurred in four of 25 patients (4/25) after 2 months. Conclusion CASPR-antibody-mediated autoimmune encephalitis is characterized by diverse clinical manifestations. The most prominent conclusion revealed by this retrospective analysis is the involvement of both central and peripheral nerve systems, as well as a lower relapse rate, a good response to immunotherapy, and favorable short-term prognosis after treatment was also demonstrated. Besides, additional work is necessary to evaluate the long-term prognosis.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huajun Yang
- Neurology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
6
|
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of Contactins in Demyelinating Pathologies. Life (Basel) 2021; 11:life11010051. [PMID: 33451101 PMCID: PMC7828632 DOI: 10.3390/life11010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.
Collapse
|
7
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
8
|
Molecular organization and function of vertebrate septate-like junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183211. [PMID: 32032590 DOI: 10.1016/j.bbamem.2020.183211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Septate-like junctions display characteristic ladder-like ultrastructure reminiscent of the invertebrate epithelial septate junctions and are present at the paranodes of myelinated axons. The paranodal junctions where the myelin loops attach to the axon at the borders of the node of Ranvier provide both a paracellular barrier to ion diffusion and a lateral fence along the axonal membrane. The septate-like junctions constrain the proper distribution of nodal Na+ channels and juxtaparanodal K+ channels, which are required for the safe propagation of the nerve influx and rapid saltatory conduction. The paranodal cell adhesion molecules have been identified as target antigens in peripheral demyelinating autoimmune diseases and the pathogenic mechanisms described. This review aims at presenting the recent knowledge on the molecular and structural organization of septate-like junctions, their formation and stabilization during development, and how they are involved in demyelinating diseases.
Collapse
|
9
|
Bonetto G, Hivert B, Goutebroze L, Karagogeos D, Crépel V, Faivre-Sarrailh C. Selective Axonal Expression of the Kv1 Channel Complex in Pre-myelinated GABAergic Hippocampal Neurons. Front Cell Neurosci 2019; 13:222. [PMID: 31164806 PMCID: PMC6535494 DOI: 10.3389/fncel.2019.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
In myelinated fibers, the voltage-gated sodium channels Nav1 are concentrated at the nodal gap to ensure the saltatory propagation of action potentials. The voltage-gated potassium channels Kv1 are segregated at the juxtaparanodes under the compact myelin sheath and may stabilize axonal conduction. It has been recently reported that hippocampal GABAergic neurons display high density of Nav1 channels remarkably in clusters along the axon before myelination (Freeman et al., 2015). In inhibitory neurons, the Nav1 channels are trapped by the ankyrinG scaffold at the axon initial segment (AIS) as observed in pyramidal and granule neurons, but are also forming “pre-nodes,” which may accelerate conduction velocity in pre-myelinated axons. However, the distribution of the Kv1 channels along the pre-myelinated inhibitory axons is still unknown. In the present study, we show that two subtypes of hippocampal GABAergic neurons, namely the somatostatin and parvalbumin positive cells, display a selective high expression of Kv1 channels at the AIS and all along the unmyelinated axons. These inhibitory axons are also highly enriched in molecules belonging to the juxtaparanodal Kv1 complex, including the cell adhesion molecules (CAMs) TAG-1, Caspr2, and ADAM22 and the scaffolding protein 4.1B. Here, taking advantage of hippocampal cultures from 4.1B and TAG-1 knock-out mice, we observed that 4.1B is required for the proper positioning of Caspr2 and TAG-1 along the distal axon, and that TAG-1 deficiency induces alterations in the axonal distribution of Caspr2. However, the axonal expression of Kv1 channels and clustering of ankyrinG were not modified. In conclusion, this study allowed the analysis of the hierarchy between channels, CAMs and scaffolding proteins for their expression along hippocampal inhibitory axons before myelination. The early steps of channel compartmentalization preceding myelination may be crucial for stabilizing nerve impulses switching from a continuous to saltatory conduction during network development.
Collapse
Affiliation(s)
- Giulia Bonetto
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Bruno Hivert
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Laurence Goutebroze
- INSERM UMR-S 1270, Institut du Fer à Moulin, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Domna Karagogeos
- Department of Basic Sciences, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Crete Medical School - University of Crete, Heraklion, Greece
| | - Valérie Crépel
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Catherine Faivre-Sarrailh
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| |
Collapse
|
10
|
Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia 2017; 66:576-591. [PMID: 29165835 DOI: 10.1002/glia.23266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The oligodendrocyte maturation process and the transition from the pre-myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG-1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin-gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin-regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de- and remyelination. However during remyelination, a novel, CNTN2-independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.
Collapse
Affiliation(s)
- Lida Zoupi
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Katerina Kalemaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Ilias Kalafatakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Kyriaki Sidiropoulou
- Neurophysiology & Behavior Laboratory, Department of Biology, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| |
Collapse
|
11
|
Ishii T, Kawakami E, Endo K, Misawa H, Watabe K. Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells. Neuropathology 2017; 37:475-481. [PMID: 28707715 DOI: 10.1111/neup.12397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022]
Abstract
Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Emiko Kawakami
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kentaro Endo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| |
Collapse
|
12
|
Kleinecke S, Richert S, de Hoz L, Brügger B, Kungl T, Asadollahi E, Quintes S, Blanz J, McGonigal R, Naseri K, Sereda MW, Sachsenheimer T, Lüchtenborg C, Möbius W, Willison H, Baes M, Nave KA, Kassmann CM. Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. eLife 2017; 6. [PMID: 28470148 PMCID: PMC5417850 DOI: 10.7554/elife.23332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels. DOI:http://dx.doi.org/10.7554/eLife.23332.001 Nerve cells transmit messages along their length in the form of electrical signals. Much like an electrical wire, the nerve fiber or axon is coated by a multiple-layered insulation, called the myelin sheath. However, unlike electrical insulation, the myelin sheath is regularly interrupted to expose short regions of the underlying nerve. These exposed regions and the adjacent regions underneath the myelin contain ion channels that help to propagate electrical signals along the axon. Peroxisomes are compartments in animal cells that process fats. Genetic mutations that prevent peroxisomes from working properly can lead to diseases where the nerves cannot transmit signals correctly. This is thought to be because the nerves lose their myelin sheath, which largely consists of fatty molecules. The nerves outside of the brain and spinal cord are known as peripheral nerves. Kleinecke et al. have now analyzed peripheral nerves from mice that had one of three different genetic mutations, preventing their peroxisomes from working correctly. Even in cases where the mutation severely impaired nerve signaling, the peripheral nerves retained their myelin sheath. The peroxisome mutations did affect a particular type of potassium ion channel and the anchor proteins that hold these channels in place. The role of these potassium ion channels is not fully known, but normally they are only found close to regions of the axon that are not coated by myelin. However, the peroxisome mutations meant that the channels and their protein anchors were now also located along the myelinated segments of the nerve’s axons. This redistribution of the potassium ion channels likely contributes to the peripheral nerves being unable to signal properly. In addition, Kleinecke et al. found that disrupting the peroxisomes also affected another cell compartment, called the lysosome, in the nerve cells that insulate axons with myelin sheaths. Lysosomes help to break down unwanted fat molecules. Mutant mice had more lysosomes than normal, but these lysosomes did not work efficiently. This caused the nerve cells to store more of certain types of molecules, including molecules called glycolipids that stabilize protein anchors, which hold the potassium channels in place. A likely result is that protein anchors that would normally be degraded are not, leading to the potassium channels appearing inappropriately throughout the nerve. Future work is now needed to investigate whether peroxisomal diseases cause similar changes in the brain. The results presented by Kleinecke et al. also suggest that targeting the lysosomes or the potassium channels could present new ways to treat disorders of the peroxisomes. DOI:http://dx.doi.org/10.7554/eLife.23332.002
Collapse
Affiliation(s)
- Sandra Kleinecke
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sarah Richert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Britta Brügger
- University of Heidelberg, Biochemistry Center (BZH), Heidelberg, Germany
| | - Theresa Kungl
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Judith Blanz
- Unit of Molecular Cell Biology and Transgenic, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Rhona McGonigal
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kobra Naseri
- Birjand University of Medical Sciences, Birjand, Iran
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Timo Sachsenheimer
- University of Heidelberg, Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hugh Willison
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven- University of Leuven, Leuven, Belgium
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Celia Michèle Kassmann
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
13
|
Zou Y, Zhang WF, Liu HY, Li X, Zhang X, Ma XF, Sun Y, Jiang SY, Ma QH, Xu DE. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases. Neural Regen Res 2017; 12:1551-1558. [PMID: 29090003 PMCID: PMC5649478 DOI: 10.4103/1673-5374.215268] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family–CNTNAP1 (Caspr1), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Caspr1–5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Caspr1 participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.
Collapse
Affiliation(s)
- Yan Zou
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Wei-Feng Zhang
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Hai-Ying Liu
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Xia Li
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Xing Zhang
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Xiao-Fang Ma
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Yang Sun
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Shi-Yi Jiang
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Quan-Hong Ma
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - De-En Xu
- Department of Neurology, The Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| |
Collapse
|
14
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
15
|
Harden N, Wang SJH, Krieger C. Making the connection – shared molecular machinery and evolutionary links underlie the formation and plasticity of occluding junctions and synapses. J Cell Sci 2016; 129:3067-76. [DOI: 10.1242/jcs.186627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
The pleated septate junction (pSJ), an ancient structure for cell–cell contact in invertebrate epithelia, has protein components that are found in three more-recent junctional structures, the neuronal synapse, the paranodal region of the myelinated axon and the vertebrate epithelial tight junction. These more-recent structures appear to have evolved through alterations of the ancestral septate junction. During its formation in the developing animal, the pSJ exhibits plasticity, although the final structure is extremely robust. Similar to the immature pSJ, the synapse and tight junctions both exhibit plasticity, and we consider evidence that this plasticity comes at least in part from the interaction of members of the immunoglobulin cell adhesion molecule superfamily with highly regulated membrane-associated guanylate kinases. This plasticity regulation probably arose in order to modulate the ancestral pSJ and is maintained in the derived structures; we suggest that it would be beneficial when studying plasticity of one of these structures to consider the literature on the others. Finally, looking beyond the junctions, we highlight parallels between epithelial and synaptic membranes, which both show a polarized distribution of many of the same proteins – evidence that determinants of apicobasal polarity in epithelia also participate in patterning of the synapse.
Collapse
Affiliation(s)
- Nicholas Harden
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
| | - Simon Ji Hau Wang
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| | - Charles Krieger
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|