1
|
Zhou ZX, Xu LJ, Wang HN, Cheng S, Li F, Miao Y, Lei B, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling mediated downregulation of glutamate transporter GLAST in Müller cells in an experimental glaucoma model. Glia 2023; 71:720-741. [PMID: 36416239 DOI: 10.1002/glia.24307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.
Collapse
Affiliation(s)
- Zhi-Xin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Chan LKY, Lin SS, Chan F, Ng DSC. Optimizing treatment for diabetic macular edema during cataract surgery. Front Endocrinol (Lausanne) 2023; 14:1106706. [PMID: 36761187 PMCID: PMC9905225 DOI: 10.3389/fendo.2023.1106706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic macular edema (DME) causes visual impairment in diabetic retinopathy (DR). Diabetes mellitus is a global epidemic and diabetic individuals are at risk of developing DR. Approximately 1 in 10 diabetic patients suffers from DME, which is the commonest cause of vision-threatening DR at primary-care screening. Furthermore, diabetes predisposes to a higher frequency and a younger onset of cataract, which further threatens vision in DME patients. Although cataract extraction is an effective cure, vision may still deteriorate following cataract surgery due to DME progression or recurrence, of which the risks are significantly higher than for patients without concurrent or previous history of DME at the time of operation. The management of pre-existing DME with visually significant cataract is a clinical conundrum. Deferring cataract surgery until DME is adequately treated is not ideal because of prolonged visual impairment and maturation of cataract jeopardizing surgical safety and monitoring of DR. On the other hand, the progression or recurrence of DME following prompt cataract surgery is a profound disappointment for patients and ophthalmic surgeons who had high expectations for postoperative visual improvement. Prescription of perioperative anti-inflammatory eye drops is effective in lowering the risk of new-onset DME after cataract surgery. However, management of concurrent DME at the time of cataract surgery is much more challenging because DME is unlikely to resolve spontaneously even with the aid of anti-inflammatory non-steroidal or steroid eye drops. A number of clinical trials using intravitreal injection of corticosteroids and anti-vascular endothelial growth factor (anti-VEGF) as first-line therapy have demonstrated safety and efficacy to treat DME. These drugs have also been administered perioperatively for the prevention of DME worsening in patients undergoing cataract surgery. This article reviews the scientific evidence to guide ophthalmologists on the efficacy and safety of various therapies for managing patients with DME who are particularly vulnerable to cataract surgery-induced inflammation, which disintegrates the blood-retinal barrier and egression of fluid in macular edema.
Collapse
Affiliation(s)
- Leo Ka Yu Chan
- Hong Kong Eye Hospital, Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sui Sum Lin
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Counselling and Psychology, Faculty of Social Sciences, Hong Kong Shue Yan University, Hong Kong, Hong Kong SAR, China
| | - Fiona Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Danny Siu-Chun Ng
- Hong Kong Eye Hospital, Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Danny Siu-Chun Ng,
| |
Collapse
|
3
|
Zhou J, Ma H, Zhou X, Wang Q, Li W, Luo S, Cai C, Li Z, Liu D. Two-Week Central Macular Thickness Reduction Rate >37% Predicts the Long-Term Efficacy of Anti-vascular Endothelial Growth Factor Treatment for Macular Edema Secondary to Retinal Vein Occlusion. Front Med (Lausanne) 2022; 9:851238. [PMID: 35355596 PMCID: PMC8959117 DOI: 10.3389/fmed.2022.851238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo determine if the early response assessments can predict the long-term efficacy of anti-vascular endothelial growth factor (VEGF) treatment for macular edema secondary to retinal vein occlusion (RVO-ME).MethodsA retrospective study of patients with diagnosis of RVO-ME and intravitreal anti-VEGF treatment was conducted. Clinical characteristics including age, gender, disease subtype and disease duration were recorded at baseline. The best corrected visual acuity (BCVA and logMAR), intraocular pressure (IOP), and central macular thickness (CMT) were recorded at baseline, 2 weeks, and every month (months 1–6) after injection. Further, we compared the early response assessments between the cured group (6-month CMT ≤ 250 μm) and the uncured group (6-month CMT > 250 μm).ResultsA total of 164 eyes in 164 patients (77 male and 87 female) were included. At each post-injection time point, both BCVA and CMT are significantly decreased from baseline (all P < 0.001). Spearman’s test showed that 2-week CMT reduction rate after the first injection was negatively correlated with BCVA at 6 months (r = −0.359, P < 0.001). Compared with the uncured group (47 cases), the cured group (117 cases) was younger (59.53 ± 11.68 vs. 65.19 ± 13.10 years old, P < 0.01), had more BRVO patients (76.1% vs. 44.7%, P < 0.01), a shorter disease duration (1.92 ± 2.43 vs. 5.05 ± 4.32 months, P < 0.01), lower baseline CMT (527.09 ± 154.95 vs. 768.96 ± 287.75 μm, P < 0.01), and lower baseline BCVA (0.86 ± 0.44 vs. 1.31 ± 0.51, P < 0.01). At each post-injection time point, the cured group had lower CMT and BCVA values when compared to the uncured group (all P < 0.01), and the 2-week CMT reduction rate was identified as the earliest response time to predict the long-term treatment efficacy. Moreover, ROC curve analysis indicated that a 2-week CMT reduction rate >37% yielded the best cut-off point for predicting the long-term cure of anti-VEGF treatment at 6 months (P < 0.001). Multivariable logistic regression confirmed that the 2-week CMT reduction rate >37% was independently associated with the 6-month cured rate (OR = 9.639, 95% Cl = 1.030–90.227, P = 0.047).ConclusionAge, disease duration, baseline CMT, and baseline BCVA are associated with visual outcomes at 6-month of anti-VEGF treatment for RVO-ME. The “2-week CMT reduction rate >37%” after the first injection is an independent factor to predict better long-term outcomes.
Collapse
Affiliation(s)
- Jialin Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huafeng Ma
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyu Wang
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihou Li
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Luo
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Cai
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zefeng Li
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Danning Liu
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Yang P, Cao Q, Liu Y, Wang K, Zhu W. Small‐molecule‐driven direct reprogramming of Müller cells into bipolar‐like cells. Cell Prolif 2022; 55:e13184. [PMID: 35043487 PMCID: PMC8828256 DOI: 10.1111/cpr.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Pang Yang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd Qingdao China
| | - Yani Liu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - KeWei Wang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Institute of Innovative Drugs Qingdao University Qingdao China
| | - Wei Zhu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine Shen Zhen China
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine Beihang University & Capital Medical University Beijing China
| |
Collapse
|
5
|
Marchese NA, Ríos MN, Guido ME. The Intrinsic Blue Light Responses of Avian Müller Glial Cells Imply Calcium Release from Internal Stores. ASN Neuro 2022; 14:17590914221076698. [PMID: 35103506 PMCID: PMC8814826 DOI: 10.1177/17590914221076698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The retina of vertebrates is responsible for capturing light through visual
(cones and rods) and non-visual photoreceptors (intrinsically photosensitive
retinal ganglion cells and horizontal cells) triggering a number of essential
activities associated to image- and non-image forming functions (photic
entrainment of daily rhythms, pupillary light reflexes, pineal melatonin
inhibition, among others). Although the retina contains diverse types of
neuronal based-photoreceptors cells, originally classified as ciliary- or
rhabdomeric-like types, in recent years, it has been shown that the major glial
cell type of the retina, the Müller glial cells (MC), express blue photopigments
as Opn3 (encephalopsin) and Opn5 (neuropsin) and display light responses
associated to intracellular Ca2 + mobilization. These findings strongly propose
MC as novel retinal photodetectors (Rios et al., 2019). Herein, we further
investigated the intrinsic light responses of primary cultures of MC from
embryonic chicken retinas specially focused on Ca2 + mobilization by
fluorescence imaging and the identity of the internal Ca2 + stores responsible
for blue light responses. Results clearly demonstrated that light responses were
specific to blue light of long time exposure, and that the main Ca2 + reservoir
to trigger downstream responses came from intracellular stores localized in the
endoplasmic reticulum These observations bring more complexity to the intrinsic
photosensitivity of retinal cells, particularly with regard to the detection of
light in the blue range of visible spectra, and add novel functions to glial
cells cooperating with other photoreceptors to detect and integrate ambient
light in the retinal circuit and participate in cell to cell communication.
Summary statement:
Non-neuronal cells in the vertebrate retina, Muller glial cells, express
non-canonical photopigments and sense blue light causing calcium release from
intracellular stores strongly suggesting a novel intrinsic photosensitivity and
new regulatory events mediating light-driven processes with yet unknown
physiological implications.
Collapse
Affiliation(s)
- Natalia A Marchese
- 373607CIQUIBIC-CONICET, Facultad de Ciencias Químicas, 28217Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maximiliano N Ríos
- 373607CIQUIBIC-CONICET, Facultad de Ciencias Químicas, 28217Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- 373607CIQUIBIC-CONICET, Facultad de Ciencias Químicas, 28217Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
7
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol 2020; 528:1523-1534. [PMID: 31811648 DOI: 10.1002/cne.24835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
Abstract
The teleost Astyanax mexicanus is one species extant in two readily available forms. One that lives in Mexican rivers and various convergent forms that live in nearby caves. These fish are born with eyes but in the cavefish, they degenerate during development. It is known that the lens of cavefish undergoes apoptosis and that some cells in the neuroretina also die. It has not been described, however, if glia and various components of the neuroretina form before complete eye degeneration. Here we examined the development of the retina of the closest living ancestor that lives in the rivers and two independently adapted of cavefish. We report that although the neuroretina is smaller and more compact, it has all cell types and layers including amacrine cells and Müller glia. While various makers for photoreceptors are present in the cavefish inner segments, the outer segments of the photoreceptors in cavefish are missing from the earliest stages examined. This shows that the machinery for visual transducing discs might still be present but not organized in one part of the cell. It is interesting to note that the deficiencies in Astyanax cavefish resemble retinal diseases, such as retinitis pigmentosa.
Collapse
Affiliation(s)
- Amany Emam
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Marina Yoffe
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Henry Cardona
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Daphne Soares
- Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
9
|
Barboni MTS, Vaillend C, Joachimsthaler A, Liber AMP, Khabou H, Roux MJ, Vacca O, Vignaud L, Dalkara D, Guillonneau X, Ventura DF, Rendon A, Kremers J. Rescue of Defective Electroretinographic Responses in Dp71-Null Mice With AAV-Mediated Reexpression of Dp71. Invest Ophthalmol Vis Sci 2020; 61:11. [PMID: 32049345 PMCID: PMC7326481 DOI: 10.1167/iovs.61.2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To study the potential effect of a gene therapy, designed to rescue the expression of dystrophin Dp71 in the retinas of Dp71-null mice, on retinal physiology. Methods We recorded electroretinograms (ERGs) in Dp71-null and wild-type littermate mice. In dark-adapted eyes, responses to flashes of several strengths were measured. In addition, flash responses on a 25-candela/square meters background were measured. On- and Off-mediated responses to sawtooth stimuli and responses to photopic sine-wave modulation (3–30 Hz) were also recorded. After establishing the ERG phenotype, the ShH10-GFP adeno-associated virus (AAV), which has been previously shown to target specifically Müller glial cells (MGCs), was delivered intravitreously with or without (sham therapy) the Dp71 coding sequence under control of a CBA promoter. ERG recordings were repeated three months after treatment. Real-time quantitative PCR and Western blotting analyses were performed in order to quantify Dp71 expression in the retinas. Results Dp71-null mice displayed reduced b-waves in dark- and light-adapted flash ERGs and smaller response amplitudes to photopic rapid-on sawtooth modulation and to sine-wave stimuli. Three months after intravitreal injections of the ShH10-GFP-2A-Dp71 AAV vector, ERG responses were completely recovered in treated eyes of Dp71-null mice. The functional rescue was associated with an overexpression of Dp71 in treated retinas. Conclusions The present results show successful functional recovery accompanying the reexpression of Dp71. In addition, this experimental model sheds light on MGCs influencing ERG components, since previous reports showed that aquaporin 4 and Kir4.1 channels were mislocated in MGCs of Dp71-null mice, while their distribution could be normalized following intravitreal delivery of the same ShH10-GFP-2A-Dp71 vector.
Collapse
|
10
|
Katoozi S, Rao SB, Skauli N, Froehner SC, Ottersen OP, Adams ME, Amiry-Moghaddam M. Functional specialization of retinal Müller cell endfeet depends on an interplay between two syntrophin isoforms. Mol Brain 2020; 13:40. [PMID: 32178707 PMCID: PMC7074989 DOI: 10.1186/s13041-020-00581-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
Retinal Müller cells are highly polarized macroglial cells with accumulation of the aquaporin-4 (AQP4) water channel and the inwardly rectifying potassium channel Kir4.1 at specialized endfoot membrane domains abutting microvessels and corpus vitreum. Proper water and potassium homeostasis in retina depends on these membrane specializations. Here we show that targeted deletion of β1-syntrophin leads to a partial loss of AQP4 from perivascular Müller cell endfeet and that a concomitant deletion of both α1- and β1-syntrophin causes a near complete loss of AQP4 from both perivascular and subvitreal endfoot membranes. α1-syntrophin is normally very weakly expressed in Müller cell endfeet but β1-syntrophin knockout mice display an increased amount of α1-syntrophin at these sites. We suggest that upregulation of perivascular α1-syntrophin restricts the effect of β1-syntrophin deletion. The present findings indicate that β1-syntrophin plays an important role in maintaining the functional polarity of Müller cells and that α1-syntrophin can partially substitute for β1-syntrophin in AQP4 anchoring. Functional polarization of Müller cells thus depends on an interplay between two syntrophin isoforms.
Collapse
Affiliation(s)
- Shirin Katoozi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7290, USA
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway.,Present Address: President's office, Karolinska Institutet, Nobels väg 6, 171 77, Stockholm, Sweden
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7290, USA
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway.
| |
Collapse
|
11
|
Eastlake K, Luis J, Limb GA. Potential of Müller Glia for Retina Neuroprotection. Curr Eye Res 2020; 45:339-348. [PMID: 31355675 DOI: 10.1080/02713683.2019.1648831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 12/26/2022]
Abstract
Müller glia constitute the main glial cells of the retina. They are spatially distributed along this tissue, facilitating their close membrane interactions with all retinal neurons. Müller glia are characterized by their active metabolic functions, which are neuroprotective in nature. Although they can become reactive under pathological conditions, leading to their production of inflammatory and neurotoxic factors, their main metabolic functions confer neuroprotection to the retina, resulting in the promotion of neural cell repair and survival. In addition to their protective metabolic features, Müller glia release several neurotrophic factors and antioxidants into the retinal microenvironment, which are taken up by retinal neurons for their survival. This review summarizes the Müller glial neuroprotective mechanisms and describes advances made on the clinical application of these factors for the treatment of retinal degenerative diseases. It also discusses prospects for the use of these cells as a vehicle to deliver neuroprotective factors into the retina.
Collapse
Affiliation(s)
- Karen Eastlake
- UCL Institute of Ophthalmology and NIHR Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Joshua Luis
- UCL Institute of Ophthalmology and NIHR Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - G Astrid Limb
- UCL Institute of Ophthalmology and NIHR Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| |
Collapse
|
12
|
Lakk M, Yarishkin O, Baumann JM, Iuso A, Križaj D. Cholesterol regulates polymodal sensory transduction in Müller glia. Glia 2017; 65:2038-2050. [PMID: 28856727 DOI: 10.1002/glia.23213] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Over- and underexposure to cholesterol activates glia in neurodegenerative brain and retinal diseases but the molecular targets of cholesterol in glial cells are not known. Here, we report that disruption of unesterified membrane cholesterol content modulates the transduction of chemical, mechanical and temperature stimuli in mouse Müller cells. Activation of TRPV4 (transient receptor potential vanilloid type 4), a nonselective polymodal cation channel was studied following the removal or supplementation of cholesterol using the methyl-beta cyclodextrin (MβCD) delivery vehicle. Cholesterol extraction disrupted lipid rafts and caveolae without affecting TRPV4 trafficking or membrane localization protein. However, MβCD suppressed agonist (GSK1016790A)- and temperature-evoked elevations in [Ca2+ ]i , and suppressed transcellular propagation of Ca2+ waves. Lowering the free membrane cholesterol content markedly prolonged the time-course of the glial swelling response, whereas MβCD:cholesterol supplementation enhanced agonist- and temperature-induced Ca2+ signals and shortened the swelling response. Taken together, these data show that membrane cholesterol modulates polymodal transduction of agonists, swelling and temperature stimuli in retinal radial glia and suggest that dyslipidemic retinas might be associated with abnormal glial transduction of ambient sensory inputs.
Collapse
Affiliation(s)
- Monika Lakk
- Departments of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - Oleg Yarishkin
- Departments of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | | | - Anthony Iuso
- Departments of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Departments of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
- Bioengineering, University of Utah, Salt Lake City, Utah
- Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
13
|
MacDonald RB, Charlton-Perkins M, Harris WA. Mechanisms of Müller glial cell morphogenesis. Curr Opin Neurobiol 2017; 47:31-37. [PMID: 28850820 DOI: 10.1016/j.conb.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
Müller Glia (MG), the radial glia cells of the retina, have spectacular morphologies subserving their enormous functional complexity. As early as 1892, the great neuroanatomist Santiago Ramon y Cajal studied the morphological development of MG, defining several steps in their morphogenesis [1,2]. However, the molecular cues controlling these developmental steps remain poorly understood. As MG have roles to play in every cellular and plexiform layer, this review discusses our current understanding on how MG morphology may be linked to their function, including the developmental mechanisms involved in MG patterning and morphogenesis. Uncovering the mechanisms governing glial morphogenesis, using transcriptomics and imaging, may provide shed new light on the pathophysiology and treatment of human neurological disorders.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Mark Charlton-Perkins
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
14
|
Kleinwort KJH, Amann B, Hauck SM, Hirmer S, Blutke A, Renner S, Uhl PB, Lutterberg K, Sekundo W, Wolf E, Deeg CA. Retinopathy with central oedema in an INS C94Y transgenic pig model of long-term diabetes. Diabetologia 2017; 60:1541-1549. [PMID: 28480495 DOI: 10.1007/s00125-017-4290-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a severe complication of diabetes mellitus that often leads to blindness. Because the pathophysiology of diabetic retinopathy is not fully understood and novel therapeutic interventions require testing, there is a need for reliable animal models that mimic all the complications of diabetic retinopathy. Pig eyes share important anatomical and physiological similarities with human eyes. Previous studies have demonstrated that INS C94Y transgenic pigs develop a stable diabetic phenotype and ocular alterations such as cataracts. The aim of this study was to conduct an in-depth analysis of pathological changes in retinas from INS C94Y pigs exposed to hyperglycaemia for more than 2 years, representing a chronic diabetic condition. METHODS Eyes from six INS C94Ypigs and six age-matched control littermates were analysed via histology and immunohistochemistry. For histological analyses of retinal (layer) thickness, sections were stained with H&E or Mallory's trichrome. For comparison of protein expression patterns and vessel courses, sections were stained with different antibodies in immunohistochemistry. Observed lesions were compared with reported pathologies in human diabetic retinopathy. RESULTS INS C94Ypigs developed several signs of diabetic retinopathy similar to those seen in humans, such as intraretinal microvascular abnormalities, symptoms of proliferative diabetic retinopathy and central retinal oedema in a region that is cone rich, like the human macula. CONCLUSIONS/INTERPRETATION The INS C94Ypig is an interesting model for studying the pathophysiology of diabetic retinopathy and for testing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Munich, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Sieglinde Hirmer
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Simone Renner
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Gene Centre, LMU Munich, Munich, Germany
| | - Patrizia B Uhl
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Karina Lutterberg
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Walter Sekundo
- Department of Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Eckhard Wolf
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Gene Centre, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Experimental Ophthalmology, Philipps University of Marburg, Baldingerstrasse, D-35033, Marburg, Germany.
| |
Collapse
|
15
|
Charlton-Perkins MA, Sendler ED, Buschbeck EK, Cook TA. Multifunctional glial support by Semper cells in the Drosophila retina. PLoS Genet 2017; 13:e1006782. [PMID: 28562601 PMCID: PMC5470715 DOI: 10.1371/journal.pgen.1006782] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/14/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells) in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission) can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively). Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels) and metabolic homeostatic factors (dLDH and Glut1). These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates. Glia are the caretakers of the nervous system. Like their neighboring neurons, different glial subtypes exist that share many overlapping functions. Despite our recognition of glia as a key component of the brain, the genetic networks that mediate their neuroprotective functions remain relatively poorly understood. Here, using the genetic model Drosophila melanogaster, we identify a new glial cell type in one of the most active tissues in the nervous system—the retina. These cells, called ommatidial cone cells (or Semper cells), were previously recognized for their role in lens formation. Using cell-specific molecular genetic approaches, we demonstrate that cone cells (CCs) also share molecular, functional, and genetic features with both vertebrate and invertebrate glia to prevent light-induced retinal degeneration and provide structural and physiological support for photoreceptors. Further, we demonstrate that three factors associated with gliogenesis in vertebrates—prospero/Prox1, Pax2, and Oli/Olig1,2—control genetically distinct aspects of these support functions. CCs also share molecular and functional features with the three main glial types in the mammalian visual system: Müller glia, astrocytes, and oligodendrocytes. Combined, these studies provide insight into potentially deeply conserved aspects of glial functions in the visual system and introduce a high-throughput system to genetically dissect essential neuroprotective mechanisms.
Collapse
Affiliation(s)
- Mark A. Charlton-Perkins
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Edward D. Sendler
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|