1
|
Shi S, Lu W, Zhou Y, Pang J, Li Y, Li M. Elevated serum IL-36γ levels in patients with ankylosing spondylitis and its association with disease activity. Mol Cell Biochem 2024; 479:2381-2390. [PMID: 37768497 DOI: 10.1007/s11010-023-04855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic autoimmune disease. The purpose of this study was to investigate the levels of serum IL-36γ in AS patients and their association with AS. The study enrolled 131 subjects, including 45 with active AS, 46 with inactive AS, and 40 healthy controls (HCs). The basic clinical information of each participant was obtained through physical examination and relevant clinical medical records. Serum IL-36γ levels were detected through an enzyme-linked immunosorbent assay. Serum IL-36γ levels in the active AS group were significantly higher than those in the HC group (94.72 vs. 65.76 pg/mL, P = 0.0087). The serum IL-36γ concentration in the inactive AS group was increased as compared to that in the HC group (100.90 vs. 65.76 pg/mL, P = 0.0138). Correlation analysis indicated that serum IL-36γ was positively correlated with glutamyl transferase in the active AS group (P = 0.0172), while serum IL-36γ was positively correlated with uric acid in the inactive AS group (P = 0.0151). The area under the curve (AUC) for IL-36γ was 0.6824 (P = 0.0009), and the AUC for IL-36γ combined with the erythrocyte sedimentation rate and C-reactive protein levels was 0.8102 (P < 0.0001), according to receiver operating characteristic curve analysis. This study found that serum IL-36γ levels were elevated in AS patients and correlated with disease activity. Our results suggest that IL-36γ may be involved in the progression of AS disease and is a potential biomarker for AS.
Collapse
Affiliation(s)
- Shanjun Shi
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wubing Lu
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yinxin Zhou
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jieru Pang
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Ningbo No. 6 Hospital Affiliated to Ningbo University, Ningbo, 315040, China
| | - Yan Li
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Mingcai Li
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Pan C, Xu Y, Jiang Z, Fan C, Chi Z, Zhang Y, Miao M, Ren Y, Wu Z, Xu L, Mei C, Chen Q, Xi Y, Chen X. Naringenin relieves paclitaxel-induced pain by suppressing calcitonin gene-related peptide signalling and enhances the anti-tumour action of paclitaxel. Br J Pharmacol 2024; 181:3136-3159. [PMID: 38715438 DOI: 10.1111/bph.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zongsheng Jiang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Chengjiang Fan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhexi Chi
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yu Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuxuan Ren
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Ziyi Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Qingge Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Anesthesiology, The People's Hospital of Bozhou, Bozhou, China
| | - Yang Xi
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Guo H, Hu WC, Xian H, Shi YX, Liu YY, Ma SB, Pan KQ, Wu SX, Xu LY, Luo C, Xie RG. CCL2 Potentiates Inflammation Pain and Related Anxiety-Like Behavior Through NMDA Signaling in Anterior Cingulate Cortex. Mol Neurobiol 2024; 61:4976-4991. [PMID: 38157119 DOI: 10.1007/s12035-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.
Collapse
Affiliation(s)
- Huan Guo
- Department of Basic Medical Sciences, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun-Xin Shi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
| | - Sui-Bin Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun-Qing Pan
- No.19 Cadet Regiment, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Yan Xu
- Department of Basic Medical Sciences, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, China.
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Li Y, Zhang B, Xu J, Jiang X, Jing L, Tian Y, Wang K, Zhang J. Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain. J Mol Neurosci 2024; 74:73. [PMID: 39046556 DOI: 10.1007/s12031-024-02252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Bingyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230000, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
5
|
Tang J, Zhao S, Shi H, Li X, Ran L, Cao J, He Y. Effects on peripheral and central nervous system of key inflammatory intercellular signalling peptides and proteins in psoriasis. Exp Dermatol 2024; 33:e15104. [PMID: 38794817 DOI: 10.1111/exd.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.
Collapse
Affiliation(s)
- Jue Tang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huijuan Shi
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuan Li
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liwei Ran
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiali Cao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Branch in Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
6
|
Hosseindoost S, Inanloo SH, Pestehei SK, Rahimi M, Yekta RA, Khajehnasiri A, Rad MA, Majedi H, Dehpour AR. Cellular and molecular mechanisms involved in the analgesic effects of botulinum neurotoxin: A literature review. Drug Dev Res 2024; 85:e22177. [PMID: 38528637 DOI: 10.1002/ddr.22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Botulinum neurotoxins (BoNTs), derived from Clostridium botulinum, have been employed to treat a range of central and peripheral neurological disease. Some studies indicate that BoNT may be beneficial for pain conditions as well. It has been hypothesized that BoNTs may exert their analgesic effects by preventing the release of pain-related neurotransmitters and neuroinflammatory agents from sensory nerve endings, suppressing glial activation, and inhibiting the transmission of pain-related receptors to the neuronal cell membrane. In addition, there is evidence to suggest that the central analgesic effects of BoNTs are mediated through their retrograde axonal transport. The purpose of this review is to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions. Most of the studies reviewed in this article were conducted using BoNT/A. The PubMed database was searched from 1995 to December 2022 to identify relevant literature.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Atef Yekta
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khajehnasiri
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Li T, Yue Y, Ma Y, Zhong Z, Guo M, Zhang J, Wang Z, Miao C. Fasting-mimicking diet alleviates inflammatory pain by inhibiting neutrophil extracellular traps formation and neuroinflammation in the spinal cord. Cell Commun Signal 2023; 21:250. [PMID: 37735678 PMCID: PMC10512659 DOI: 10.1186/s12964-023-01258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) promote neuroinflammation and, thus, central nervous system (CNS) disease progression. However, it remains unclear whether CNS-associated NETs affect pain outcomes. A fasting-mimicking diet (FMD) alleviates neurological disorders by attenuating neuroinflammation and promoting nerve regeneration. Hence, in this study, we explore the role of NETs in the CNS during acute pain and investigate the role of FMD in inhibiting NETs and relieving pain. METHODS The inflammatory pain model was established by injecting complete Freund's adjuvant (CFA) into the hind paw of mice. The FMD diet regimen was performed during the perioperative period. PAD4 siRNA or CI-amidine (PAD4 inhibitor) was used to inhibit the formation of NETs. Monoamine oxidase-B (MAO-B) knockdown occurred by AAV-GFAP-shRNA or AAV-hSyn-shRNA or was inhibited by selegiline (an MAO-B inhibitor). The changes in NETs, neuroinflammation, and related signaling pathways were examined by western blot, immunofluorescence, ELISA, and flow cytometry. RESULTS In the acute phase of inflammatory pain, NETs accumulate in the spinal cords of mice. This is associated with exacerbated neuroinflammation. Meanwhile, inhibition of NETs formation alleviates allodynia and neuroinflammation in CFA mice. FMD inhibits NETs production and alleviates inflammatory pain, which is enhanced by treatment with the NETs inhibitor CI-amidine, and reversed by treatment with the NETs inducer phorbol 12-myristate 13-acetate (PMA). Mechanistically, the neutrophil-recruiting pathway MAO-B/5-hydroxyindoleacetic acid (5-HIAA) / G-protein-coupled receptor 35 (GPR35) and NETs-inducing pathway MAO-B/ Reactive oxygen species (ROS) are significantly upregulated during the development of inflammatory pain. MAO-B is largely expressed in astrocytes and neurons in the spinal cords of CFA mice. However, knockdown or inhibition of MAO-B effectively attenuates CFA-induced inflammatory pain, NETs formation, and neuroinflammation in the spinal cord. Moreover, within rescue experiments, MAO-B inhibitors synergistically enhance FMD-induced pain relief, NETs inhibition, and neuroinflammation attenuation, whereas supplementation with MAO-B downstream molecules (i.e., 5-HIAA and PMA) abolished this effect. CONCLUSIONS Neutrophil-released NETs in the spinal cord contribute to pain development. FMD inhibits NETs formation and NETs-induced neuroinflammation by inhibiting the MAO-B/5-HIAA/GPR35 and MAO-B/ROS pathways in astrocytes and neurons, thereby relieving pain progression. Video Abstract.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yan Ma
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
8
|
Wang C, Hu J, Shi J. Role of Interleukin-36 in inflammatory joint diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:249-259. [PMID: 37283111 PMCID: PMC10409900 DOI: 10.3724/zdxbyxb-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Collapse
Affiliation(s)
- Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
9
|
Ling Y, Nie D, Huang Y, Deng M, Liu Q, Shi J, Ouyang S, Yang Y, Deng S, Lu Z, Yang J, Wang Y, Huang R, Shi W. Antioxidant Cascade Nanoenzyme Antagonize Inflammatory Pain by Modulating MAPK/p-65 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206934. [PMID: 36808856 PMCID: PMC10131840 DOI: 10.1002/advs.202206934] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic pain has attracted wide interest because it is a major obstacle affecting the quality of life. Consequently, safe, efficient, and low-addictive drugs are highly desirable. Nanoparticles (NPs) with robust anti-oxidative stress and anti-inflammatory properties possess therapeutic possibilities for inflammatory pain. Herein, a bioactive zeolitic imidazolate framework (ZIF)-8-capped superoxide dismutase (SOD) and Fe3 O4 NPs (SOD&Fe3 O4 @ZIF-8, SFZ) is developed to achieve enhanced catalytic, antioxidative activities, and inflammatory environment selectivity, ultimately improving analgesic efficacy. SFZ NPs reduce tert-butyl hydroperoxide (t-BOOH)-induced reactive oxygen species (ROS) overproduction, thereby depressing the oxidative stress and inhibiting the lipopolysaccharide (LPS)-induced inflammatory response in microglia. After intrathecal injection, SFZ NPs efficiently accumulate at the lumbar enlargement of the spinal cord and significantly relieve complete Freund's adjuvant (CFA)-induced inflammatory pain in mice. Moreover, the detailed mechanism of inflammatory pain therapy via SFZ NPs is further studied, where SFZ NPs inhibit the activation of the mitogen-activated protein kinase (MAPK)/p-65 signaling pathway, leading to reductions in phosphorylated protein levels (p-65, p-ERK, p-JNK, and p-p38) and inflammatory factors (tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-1β), thereby preventing microglia and astrocyte activation for acesodyne. This study provides a new cascade nanoenzyme for antioxidant treatments and explores its potential applications as non-opioid analgesics.
Collapse
Affiliation(s)
- Yuejuan Ling
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
- Institute of Pain Medicine and Special Environmental MedicineNantong UniversityNantong226001P. R. China
| | - Dekang Nie
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
- Department of NeurosurgeryYancheng First HospitalAffiliated Hospital of Nanjing University Medical SchoolThe First people's Hospital of Yancheng224001YanchengP. R. China
| | - Yue Huang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Mengyuan Deng
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Qianqian Liu
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Jinlong Shi
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Siguang Ouyang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Yu Yang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Song Deng
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Zhichao Lu
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Junling Yang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Yi Wang
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Rongqin Huang
- Department of PharmaceuticsSchool of PharmacyKey Laboratory of Smart Drug DeliveryMinistry of EducationFudan UniversityShanghai215537P. R. China
| | - Wei Shi
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| |
Collapse
|
10
|
Shi S, Zhou Y, Gong L, Xu J, Li Y, Li M. Clinical significance of elevated serum IL-36γ levels in patients with early-stage Hashimoto's thyroiditis. Clin Biochem 2023; 112:61-66. [PMID: 36470344 DOI: 10.1016/j.clinbiochem.2022.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Hashimoto's thyroiditis (HT) is the predominant cause of primary hypothyroidism. Interleukin (IL)-36γ is a member of the IL-36 family. Recently, IL-36γ was shown to possess proinflammatory properties in autoimmune diseases. However, the role of IL-36γ in HT is insufficiently understood. The purpose of the present study was to investigate the potential relationship between IL-36γ and HT. DESIGN & METHODS We included 100 subjects, among whom, 52 had early-stage HT and 48 were healthy controls (HC). The subjects' basic clinical information was obtained through physical examination and clinical histories of signs and symptoms. Thyroid function and measurements of thyroid-stimulating hormone (TSH), free triiodothyronine 3, free triiodothyronine 4 (FT4), thyroid peroxidase antibody (TPO-Ab), and thyroid globulin antibody were measured using a fully automated chemiluminescent immunoassay analyzer. The expression levels of serum IL-36γ were determined using an enzyme-linked immunosorbent assay. RESULTS The serum IL-36γ level in the HT group was significantly higher compared with that of the HC group [91.91 (67.52, 130.90) pg/mL vs 62.50 (44.61, 91.53) pg/mL, P < 0.0001]. Correlation analysis showed a negative correlation between serum IL-36γ and TPO-Ab titers in the HT group (r = -0.3507, P = 0.0054). According to receiver operating characteristic curve analysis, the area under the curve (AUC) for IL-36γ was 0.7278 (P < 0.0001), and the AUC for IL-36γ combined with TSH and FT4 was 0.8109 (P < 0.0001). CONCLUSIONS The present study indicates that serum IL-36γ expression is increased in patients with HT and negatively correlates with TPO-Ab. Our findings suggest that IL-36γ may be involved in the development of HT and may therefore serve as a potential new diagnostic biomarker for HT.
Collapse
Affiliation(s)
- Shanjun Shi
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yinxin Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Luping Gong
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jialu Xu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P. R. China
| | - Yan Li
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| | - Mingcai Li
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| |
Collapse
|
11
|
Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol 2022; 933:175288. [PMID: 36122757 DOI: 10.1016/j.ejphar.2022.175288] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for many types of malignancies. However, when paclitaxel is used to treat tumors, patients commonly experience severe neuropathic pain that is difficult to manage. The mechanism underlying paclitaxel-induced neuropathic pain remains unclear. Evidence demonstrates correlations between mechanisms of paclitaxel-mediated pain and associated actions of ion channels, neuroinflammation, mitochondrial damage, and other factors. This review provides a comprehensive analysis of paclitaxel-induced neuropathic pain mechanisms and suggestions for effective interventions.
Collapse
|
12
|
Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling. Stem Cell Rev Rep 2022; 18:2494-2512. [PMID: 35488987 PMCID: PMC9489586 DOI: 10.1007/s12015-022-10376-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
The generation of astrocytes from human induced pluripotent stem cells has been hampered by either prolonged differentiation—spanning over two months—or by shorter protocols that generate immature astrocytes, devoid of salient mature astrocytic traits pivotal for central nervous system (CNS) modeling. We directed stable hiPSC-derived neuroepithelial stem cells to human iPSC-derived Astrocytes (hiAstrocytes) with a high percentage of star-shaped cells by orchestrating an astrocytic-tuned culturing environment in 28 days. We employed RT-qPCR and ICC to validate the astrocytic commitment of the neuroepithelial stem cells. To evaluate the inflammatory phenotype, we challenged the hiAstrocytes with the pro-inflammatory cytokine IL-1β (interleukin 1 beta) and quantitatively assessed the secretion profile of astrocyte-associated cytokines and the expression of intercellular adhesion molecule 1 (ICAM-1). Finally, we quantitatively assessed the capacity of hiAstrocytes to synthesize and export the antioxidant glutathione. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of GFAP, AQP4 and ALDH1L1. In addition, the notion of a mature phenotype is reinforced by the expression of both astrocytic glutamate transporters EAAT1 and EAAT2. Thus, hiAstrocytes have a mature phenotype that encompasses traits critical in CNS modeling, including glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile on a par with human fetal astrocytes. This protocol generates a multifaceted astrocytic model suitable for in vitro CNS disease modeling and personalized medicine.
Collapse
|
13
|
Causal biological network models for reactive astrogliosis: a systems approach to neuroinflammation. Sci Rep 2022; 12:4205. [PMID: 35273209 PMCID: PMC8913664 DOI: 10.1038/s41598-022-07651-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
Astrocytes play a central role in the neuroimmune response by responding to CNS pathologies with diverse molecular and morphological changes during the process of reactive astrogliosis. Here, we used a computational biological network model and mathematical algorithms that allow the interpretation of high-throughput transcriptomic datasets in the context of known biology to study reactive astrogliosis. We gathered available mechanistic information from the literature into a comprehensive causal biological network (CBN) model of astrocyte reactivity. The CBN model was built in the Biological Expression Language, which is both human-readable and computable. We characterized the CBN with a network analysis of highly connected nodes and demonstrated that the CBN captures relevant astrocyte biology. Subsequently, we used the CBN and transcriptomic data to identify key molecular pathways driving the astrocyte phenotype in four CNS pathologies: samples from mouse models of lipopolysaccharide-induced endotoxemia, Alzheimer’s disease, and amyotrophic lateral sclerosis; and samples from multiple sclerosis patients. The astrocyte CBN provides a new tool to identify causal mechanisms and quantify astrogliosis based on transcriptomic data.
Collapse
|
14
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
15
|
Combining experiments and in silico modeling to infer the role of adhesion and proliferation on the collective dynamics of cells. Sci Rep 2021; 11:19894. [PMID: 34615941 PMCID: PMC8494750 DOI: 10.1038/s41598-021-99390-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The collective dynamics of cells on surfaces and interfaces poses technological and theoretical challenges in the study of morphogenesis, tissue engineering, and cancer. Different mechanisms are at play, including, cell–cell adhesion, cell motility, and proliferation. However, the relative importance of each one is elusive. Here, experiments with a culture of glioblastoma multiforme cells on a substrate are combined with in silico modeling to infer the rate of each mechanism. By parametrizing these rates, the time-dependence of the spatial correlation observed experimentally is reproduced. The obtained results suggest a reduction in cell–cell adhesion with the density of cells. The reason for such reduction and possible implications for the collective dynamics of cancer cells are discussed.
Collapse
|
16
|
Chen WJ, Yu X, Yuan XR, Chen BJ, Cai N, Zeng S, Sun YS, Li HW. The Role of IL-36 in the Pathophysiological Processes of Autoimmune Diseases. Front Pharmacol 2021; 12:727956. [PMID: 34675805 PMCID: PMC8523922 DOI: 10.3389/fphar.2021.727956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
A member of the interleukin (IL)-1 superfamily was IL-36, which contained IL-36α, IL-36β, IL-36γ, and IL-36Ra. Heterotrimer complexes, consisting of heterodimeric receptor complexes and IL-36 agonist, gave signals through intracellular functional domains, so as to bind to downstream proteins and induce inflammatory response. IL-36 agonists upregulated mature-associated CD80, CD86, MHCII, and inductively produced several pro-inflammatory cytokines through the IL-36R-dependent manner in dendritic cells (DCs). Besides, DCs had the ability to initiate the differentiation of helper T (Th) cells. Up to date, the role of IL-36 in immunity, inflammation and other diseases is of great importance. Additionally, autoimmune diseases were characterized by excessive immune response, resulting in damage and dysfunction of specific or multiple organs and tissues. Most autoimmune diseases were related to inflammatory response. In this review, we will conclude the recent research advances of IL-36 in the occurrence and development of autoimmune diseases, which may provide new insight for the future research and the treatment of these diseases.
Collapse
Affiliation(s)
- Wen-jian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Xiao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bang-jie Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuo Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan-song Sun
- Department of Emergency Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-wen Li
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Li Z, Siddique I, Hadrović I, Kirupakaran A, Li J, Zhang Y, Klärner FG, Schrader T, Bitan G. Lysine-selective molecular tweezers are cell penetrant and concentrate in lysosomes. Commun Biol 2021; 4:1076. [PMID: 34521989 PMCID: PMC8440717 DOI: 10.1038/s42003-021-02603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Lysine-selective molecular tweezers are promising drug candidates against proteinopathies, viral infection, and bacterial biofilm. Despite demonstration of their efficacy in multiple cellular and animal models, important questions regarding their mechanism of action, including cell penetrance and intracellular distribution, have not been answered to date. The main impediment to answering these questions has been the low intrinsic fluorescence of the main compound tested to date, called CLR01. Here, we address these questions using new fluorescently labeled molecular tweezers derivatives. We show that these compounds are internalized in neurons and astrocytes, at least partially through dynamin-dependent endocytosis. In addition, we demonstrate that the molecular tweezers concentrate rapidly in acidic compartments, primarily lysosomes. Accumulation of molecular tweezers in lysosomes may occur both through the endosomal-lysosomal pathway and via the autophagy-lysosome pathway. Moreover, by visualizing colocalization of molecular tweezers, lysosomes, and tau aggregates we show that lysosomes likely are the main site for the intracellular anti-amyloid activity of molecular tweezers. These findings have important implications for the mechanism of action of molecular tweezers in vivo, explaining how administration of low doses of the compounds achieves high effective concentrations where they are needed, and supporting the development of these compounds as drugs for currently cureless proteinopathies.
Collapse
Affiliation(s)
- Zizheng Li
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Inesa Hadrović
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Abbna Kirupakaran
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Thomas Schrader
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Shao FB, Fang JF, Wang SS, Qiu MT, Xi DN, Jin XM, Liu JG, Shao XM, Shen Z, Liang Y, Fang JQ, Du JY. Anxiolytic effect of GABAergic neurons in the anterior cingulate cortex in a rat model of chronic inflammatory pain. Mol Brain 2021; 14:139. [PMID: 34507588 PMCID: PMC8431944 DOI: 10.1186/s13041-021-00849-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic pain easily leads to concomitant mood disorders, and the excitability of anterior cingulate cortex (ACC) pyramidal neurons (PNs) is involved in chronic pain-related anxiety. However, the mechanism by which PNs regulate pain-related anxiety is still unknown. The GABAergic system plays an important role in modulating neuronal activity. In this paper, we aimed to study how the GABAergic system participates in regulating the excitability of ACC PNs, consequently affecting chronic inflammatory pain-related anxiety. A rat model of CFA-induced chronic inflammatory pain displayed anxiety-like behaviors, increased the excitability of ACC PNs, and reduced inhibitory presynaptic transmission; however, the number of GAD65/67 was not altered. Interestingly, intra-ACC injection of the GABAAR agonist muscimol relieved anxiety-like behaviors but had no effect on chronic inflammatory pain. Intra-ACC injection of the GABAAR antagonist picrotoxin induced anxiety-like behaviors but had no effect on pain in normal rats. Notably, chemogenetic activation of GABAergic neurons in the ACC alleviated chronic inflammatory pain and pain-induced anxiety-like behaviors, enhanced inhibitory presynaptic transmission, and reduced the excitability of ACC PNs. Chemogenetic inhibition of GABAergic neurons in the ACC led to pain-induced anxiety-like behaviors, reduced inhibitory presynaptic transmission, and enhanced the excitability of ACC PNs but had no effect on pain in normal rats. We demonstrate that the GABAergic system mediates a reduction in inhibitory presynaptic transmission in the ACC, which leads to enhanced excitability of pyramidal neurons in the ACC and is associated with chronic inflammatory pain-related anxiety.
Collapse
Affiliation(s)
- Fang-Bing Shao
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Si-Si Wang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Meng-Ting Qiu
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Dan-Ning Xi
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Xiao-Ming Jin
- Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, NB Building, 320w 15th Street #141, Indianapolis, IN, 46202, USA
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.,Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Zui Shen
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C, Rieder F. IL-36 in chronic inflammation and fibrosis - bridging the gap? J Clin Invest 2021; 131:144336. [PMID: 33463541 DOI: 10.1172/jci144336] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-36 is a member of the IL-1 superfamily and consists of three agonists and one receptor antagonist (IL-36Ra). The three endogenous agonists, IL-36α, -β, and -γ, act primarily as proinflammatory cytokines, and their signaling through the IL-36 receptor (IL-36R) promotes immune cell infiltration and secretion of inflammatory and chemotactic molecules. However, IL-36 signaling also fosters secretion of profibrotic soluble mediators, suggesting a role in fibrotic disorders. IL-36 isoforms and IL-36 have been implicated in inflammatory diseases including psoriasis, arthritis, inflammatory bowel diseases, and allergic rhinitis. Moreover, IL-36 has been connected to fibrotic disorders affecting the kidney, lung, and intestines. This review summarizes the expression, cellular source, and function of IL-36 in inflammation and fibrosis in various organs, and proposes that IL-36 modulation may prove valuable in preventing or treating inflammatory and fibrotic diseases and may reveal a mechanistic link between inflammation and fibrosis.
Collapse
Affiliation(s)
- Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Markus F Neurath
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Namba T, Ichii O, Nakamura T, Masum MA, Otani Y, Hosotani M, Elewa YHA, Kon Y. Compartmentalization of interleukin 36 subfamily according to inducible and constitutive expression in the kidneys of a murine autoimmune nephritis model. Cell Tissue Res 2021; 386:59-77. [PMID: 34287716 DOI: 10.1007/s00441-021-03495-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
The interleukin (IL) 36 subfamily belongs to the IL-1 family and is comprised of agonists (IL-36α, IL-36β, IL-36γ) and antagonists (IL-36Ra, IL-38). We previously reported IL-36α overexpression in renal tubules of chronic nephritis mice. To understand the localization status and biological relationships among each member of the IL-36 subfamily in the kidneys, MRL/MpJ-Faslpr/lpr mice were investigated as autoimmune nephritis models using pathology-based techniques. MRL/MpJ-Faslpr/lpr mice exhibited disease onset from 3 months and severe nephritis at 6-7 months (early and late stages, respectively). Briefly, IL-36γ and IL-36Ra were constitutively expressed in murine kidneys, while the expression of IL-36α, IL-36β, IL-36Ra, and IL-38 was induced in MRL/MpJ-Faslpr/lpr mice. IL-36α expression was significantly increased and localized to injured tubular epithelial cells (TECs). CD44+-activated parietal epithelial cells (PECs) also exhibited higher IL-36α-positive rates, particularly in males. IL-36β and IL-38 are expressed in interstitial plasma cells. Quantitative indices for IL-36α and IL-38 positively correlated with nephritis severity. Similar to IL-36α, IL-36Ra localized to TECs and PECs at the late stage; however, MRL/MpJ-Faslpr/lpr and healthy MRL/MpJ mice possessed IL-36Ra+ smooth muscle cells in kidney arterial tunica media at both stages. IL-36γ was constitutively expressed in renal sympathetic axons regardless of strain and stage. IL-36 receptor gene was ubiquitously expressed in the kidneys and was induced proportional to disease severity. MRL/MpJ-Faslpr/lpr mice kidneys possessed significantly upregulated IL-36 downstream candidates, including NF-κB- or MAPK-pathway organizing molecules. Thus, the IL-36 subfamily contributes to homeostasis and inflammation in the kidneys, and especially, an IL-36α-dominant imbalance could strongly impact nephritis deterioration.
Collapse
Affiliation(s)
- Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Hokkaido, 066-0052, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-E-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Marina Hosotani
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zigazig, 44519, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
21
|
Lattke M, Goldstone R, Ellis JK, Boeing S, Jurado-Arjona J, Marichal N, MacRae JI, Berninger B, Guillemot F. Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in culture. Nat Commun 2021; 12:4335. [PMID: 34267208 PMCID: PMC8282848 DOI: 10.1038/s41467-021-24624-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes have essential functions in brain homeostasis that are established late in differentiation, but the mechanisms underlying the functional maturation of astrocytes are not well understood. Here we identify extensive transcriptional changes that occur during murine astrocyte maturation in vivo that are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lack expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induces distinct sets of mature astrocyte-specific transcripts. Culturing astrocytes in a three-dimensional matrix containing FGF2 induces expression of Rorb, Dbx2 and Lhx2 and improves astrocyte maturity based on transcriptional and chromatin profiles. Therefore, extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - James K Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Stefan Boeing
- Software Development & Machine Learning Team, The Francis Crick Institute, London, UK
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, UK
| | - Jerónimo Jurado-Arjona
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
| | - Nicolás Marichal
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Benedikt Berninger
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
22
|
Zhu X, Li F, Wang M, Su H, Wu X, Qiu H, Zhou W, Shan C, Wang C, Wei L. Integrated Analysis of Omics Data Reveal AP-1 as a Potential Regulation Hub in the Inflammation-Induced Hyperalgesia Rat Model. Front Immunol 2021; 12:672498. [PMID: 34122430 PMCID: PMC8194263 DOI: 10.3389/fimmu.2021.672498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammation-associated chronic pain is a global clinical problem, affecting millions of people worldwide. However, the underlying mechanisms that mediate inflammation-associated chronic pain remain unclear. A rat model of cutaneous inflammation induced by Complete Freund's Adjuvant (CFA) has been widely used as an inflammation-induced pain hypersensitivity model. We present the transcriptomics profile of CFA-induced inflammation in the rat dorsal root ganglion (DRG) via an approach that targets gene expression, DNA methylation, and post-transcriptional regulation. We identified 418 differentially expressed mRNAs, 120 differentially expressed microRNAs (miRNAs), and 2,670 differentially methylated regions (DMRs), which were all highly associated with multiple inflammation-related pathways, including nuclear factor kappa B (NF-κB) and interferon (IFN) signaling pathways. An integrated analysis further demonstrated that the activator protein 1 (AP-1) network, which may act as a regulator of the inflammatory response, is regulated at both the transcriptomic and epigenetic levels. We believe our data will not only provide drug screening targets for the treatment of chronic pain and inflammation but will also shed light on the molecular network associated with inflammation-induced hyperalgesia.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Li
- The Yancheng Clinical College of XuZhou Medical University, The First People's Hospital of Yancheng, Yancheng, China
| | - Miqun Wang
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Huibin Su
- Department of Anesthesiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Xuedong Wu
- Department of Anesthesiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Haiyan Qiu
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng, China
| | - Wang Zhou
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.,Graduate School of Nantong University, Nantong, China
| | - Chunli Shan
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.,Graduate School of Nantong University, Nantong, China
| | - Cancan Wang
- Graduate School of Nantong University, Nantong, China
| | - Lei Wei
- Department of Anesthesiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| |
Collapse
|
23
|
Li H, Li J, Guan Y, Wang Y. The emerging role of kainate receptor functional dysregulation in pain. Mol Pain 2021; 17:1744806921990944. [PMID: 33567997 PMCID: PMC7883153 DOI: 10.1177/1744806921990944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pain is a serious clinical challenge, and is associated with a significant reduction in quality of life and high financial costs for affected patients. Research efforts have been made to explore the etiological basis of pain to guide the future treatment of patients suffering from pain conditions. Findings from studies using KA (kainate) receptor agonist, antagonists and receptor knockout mice suggested that KA receptor dysregulation and dysfunction may govern both peripheral and central sensitization in the context of pain. Additional evidence showed that KA receptor dysfunction may disrupt the finely-tuned process of glutamic acid transmission, thereby contributing to the onset of a range of pathological contexts. In the present review, we summarized major findings in recent studies which examined the roles of KA receptor dysregulation in nociceptive transmission and in pain. This timely overview of current knowledge will help to provide a framework for future developing novel therapeutic strategies to manage pain.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
25
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
26
|
Hiz P, Kanbur E, Demir N, Akalin H, Cagan E, Pashazadeh M, Bal SH, Tezcan G, Oral HB, Budak F. Roles of novel IL-1 family (IL-36, IL-37, and IL-38) members in chronic brucellosis. Cytokine 2020; 135:155211. [PMID: 32736334 DOI: 10.1016/j.cyto.2020.155211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The secretion of interleukin (IL)-1 family cytokines is one of the most potent and earliest pro-inflammatory responses triggered by brucellosis. However, the roles of the most recently discovered IL-1 family members, IL-36, IL-37, and IL-38, in the transition into the chronic form of brucellos is remain largely unknown. Therefore, in this study, the roles of IL-36, IL-37, and IL-38 in brucella infections and their effects on the transition from the acute to chronic form of the disease were investigated. Using peripheral blood samples from 40 patients with acute brucellosis, 40 patients with chronic brucellosis, and 40 healthy control subjects, we analysed the serum concentrations of secreted IL-36, IL-37, and IL-38 using ELISA. The findings were confirmed by using RT-qPCR to analyse the mRNA levels of the genes encoding IL-36, IL-37, and IL-38 in peripheral blood mononuclear cells (PBMCs) from 10 randomly selected patients from each of the three groups. Our results showed that serum IL-37 (p < 0.001) and IL-38 (p < 0.001) concentrations were lower in patients with brucellosis than in the healthy controls. In addition, serum IL-37 and IL-38 concentrations were higher in the chronic patient group than in the acute patient group. The mRNA expression levels of IL-37 and IL1F10, genes that encode IL-38, did not affect serum cytokine secretion levels. This result suggests that the high secretion levels of IL-37 and IL-38 may be related to the progression into the chronic form of brucellosis. Our findings will aid in clarifying the mechanism of the transition of brucellosis from the acute to the chronic form of the disease.
Collapse
Affiliation(s)
- Pinar Hiz
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ertan Kanbur
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Nesrin Demir
- Department of Immunology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| | - Eren Cagan
- Clinics of Child Infection, Bursa Yuksek Ihtisas Education and Research Hospital, Health Sciences University, Bursa, Turkey
| | - Mehrdat Pashazadeh
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Salih Haldun Bal
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| | - Gulcin Tezcan
- Department of Fundamental Science, Faculty of Dentistry, Bursa Uludağ University, Bursa, Turkey.
| | - Haluk Barbaros Oral
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey.
| |
Collapse
|
27
|
Wang S, Liu Y, Nie M, Li Q, Liu Y. Profile of IL-36 cytokines (IL-36α, IL-36β, IL-36γ and IL-36Ra) in patients with primary immune thrombocytopenia. Int Immunopharmacol 2020; 82:106341. [PMID: 32114410 DOI: 10.1016/j.intimp.2020.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Shuang Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mu Nie
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Qianpeng Li
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, China.
| |
Collapse
|
28
|
Gardner JK, Swaims-Kohlmeier A, Herbst-Kralovetz MM. IL-36γ Is a Key Regulator of Neutrophil Infiltration in the Vaginal Microenvironment and Limits Neuroinvasion in Genital HSV-2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2655-2664. [PMID: 31578266 PMCID: PMC9978960 DOI: 10.4049/jimmunol.1900280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
HSV-2 is a neurotropic virus that causes a persistent, lifelong infection that increases risk for other sexually transmitted infections. The vaginal epithelium is the first line of defense against HSV-2 and coordinates the immune response through the secretion of immune mediators, including the proinflammatory cytokine IL-36γ. Previously, we showed that IL-36γ treatment promoted transient polymorphonuclear cell infiltration to the vaginal cavity and protected against lethal HSV-2 challenge. In this report, we reveal that IL-36γ specifically induces transient neutrophil infiltration but does not impact monocyte and macrophage recruitment. Using IL-36γ-/- mice in a lethal HSV-2 challenge model, we show that neutrophil counts are significantly reduced at 1 and 2 d postinfection and that KC-mediated mature neutrophil recruitment is impaired in IL-36γ-/- mice. Additionally, IL-36γ-/- mice develop genital disease more rapidly, have significantly reduced survival time, and exhibit an increased incidence of hind limb paralysis that is linked to productive HSV-2 infection in the brain stem. IL-36γ-/- mice also exhibit a significant delay in clearance of the virus from the vaginal epithelium and a more rapid spread of HSV-2 to the spinal cord, bladder, and colon. We further show that the decreased survival time and increased virus spread observed in IL-36γ-/- mice are not neutrophil-dependent, suggesting that IL-36γ may function to limit HSV-2 spread in the nervous system. Ultimately, we demonstrate that IL-36γ is a key regulator of neutrophil recruitment in the vaginal microenvironment and may function to limit HSV-2 neuroinvasion.
Collapse
Affiliation(s)
- Jameson K. Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA,Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alison Swaims-Kohlmeier
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
29
|
Wang YF, Gao YJ. 2019 Academic Annual Meeting and the Frontier Seminar on "Glial Cell Function and Disease" (Nantong, China). ASN Neuro 2019; 11:1759091419863576. [PMID: 31342775 PMCID: PMC6659189 DOI: 10.1177/1759091419863576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The contribution of glial activities to the functions, diseases, and repair of
the central nervous system has received increasing attention in neuroscience
studies. To promote the research of glial cells and increase cooperation with
peers, the 2019 Academic Annual Meeting and the Frontier Seminar on “Glial Cell
Function and Disease” was held in Nantong City, Jiangsu Province, China from May
24 to 26. The meeting was organized by Drs. Yong-Jing Gao and Jia-Wei Zhou of
the Chinese Society of Neuroscience Glia Branch. The conference focused on the
physiological and pathological functions of astrocytes, microglia, and
oligodendrocytes with 25 speakers in two plenary speeches and five sections of
more than 180 participants engaged in glial cell research. In the two plenary
lectures, Yutian Wang from the University of British Columbia and Xia Zhang from
the University of Ottawa presented “Development of NMDAR (N-methyl-D-aspartic
acid receptor)-positive allosteric modulators as novel therapeutics for brain
disorders” and “Mechanisms underlying cannabinoid regulation of brain function
and disease,” respectively. The five sections included microglia and disease,
astrocytes and disease, glioma treatment and glial imaging, oligodendrocytes and
disease, and glial–neuronal interactions and disease. This meeting allowed
extensive and in-depth academic exchanges on the latest research and
experimental techniques, represented the highest achievements of Chinese
scholars on glial cells, and promoted the cooperation between peers in the
fields of glia studies.
Collapse
Affiliation(s)
- Yu-Feng Wang
- 1 Department of Physiology, Harbin Medical University, China
| | - Yong-Jing Gao
- 2 Institute of Pain Medicine, Institute of Special Environmental Medicine, Nantong University, China
| |
Collapse
|