1
|
Habean ML, Kaiser KE, Williams JL. Orchestrating Stress Responses in Multiple Sclerosis: A Role for Astrocytic IFNγ Signaling. Int J Mol Sci 2024; 25:7524. [PMID: 39062765 PMCID: PMC11276796 DOI: 10.3390/ijms25147524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that is characterized by the infiltration of peripheral immune cells into the central nervous system (CNS), secretion of inflammatory factors, demyelination, and axonal degeneration. Inflammatory mediators such as cytokines alter cellular function and activate resident CNS cells, including astrocytes. Notably, interferon (IFN)γ is a prominent pleiotropic cytokine involved in MS that contributes to disease pathogenesis. Astrocytes are dynamic cells that respond to changes in the cellular microenvironment and are highly responsive to many cytokines, including IFNγ. Throughout the course of MS, intrinsic cell stress is initiated in response to inflammation, which can impact the pathology. It is known that cell stress is pronounced during MS; however, the specific mechanisms relating IFNγ signaling to cell stress responses in astrocytes are still under investigation. This review will highlight the current literature regarding the impact of IFNγ signaling alone and in combination with other immune mediators on astrocyte synthesis of free oxygen radicals and cell death, and cover what is understood regarding astrocytic mitochondrial dysfunction and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Maria L. Habean
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Kaitlin E. Kaiser
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Priego M, Noriega L, Kalinin S, Hoffman LM, Feinstein DL, Morfini G. Genetic deletion of c-Jun amino-terminal kinase 3 (JNK3) modestly increases disease severity in a mouse model of multiple sclerosis. J Neuroimmunol 2023; 382:578152. [PMID: 37454525 PMCID: PMC10527920 DOI: 10.1016/j.jneuroim.2023.578152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The c-Jun amino terminal kinases (JNKs) regulate transcription, and studies suggest they contribute to neuropathology in the EAE model of MS. To examine the role of the JNK3 isoform, we compared EAE in JNK3 null mice to wild type (WT) littermates. Although disease severity was similar in female mice, in male JNK3 null mice the day of onset and time to reach 100% incidence occurred sooner, and disease severity was increased. While glial activation in spinal cord was similar, white matter lesions were increased in JNK3 null mice. These results suggest JNK3 normally limits EAE disease in a sex-dependent manner.
Collapse
Affiliation(s)
- Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America
| | - Lorena Noriega
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America
| | - Sergey Kalinin
- Department of Research, Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America
| | - Lisa M Hoffman
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America
| | - Douglas L Feinstein
- Department of Research, Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Anesthesiology, University of Illinois, Chicago, IL 60612, United States of America.
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America.
| |
Collapse
|
4
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Luo J. Dysregulation of polarity proteins in astrocyte reactivity. Ageing Res Rev 2023; 86:101869. [PMID: 36736704 PMCID: PMC10026364 DOI: 10.1016/j.arr.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Astrocytes are highly polarized neuroglial cells. Polarity is the basis for many of the diverse roles that astrocytes play in the normal and injured brain. Astrocytes are generally dormant and non-migratory under normal physiological conditions, where they perform a wide variety of intricate and essential tasks in preserving CNS homeostasis. In response to pathological insults, astrocytes shift from the normal dormant and homeostatic state to a reactive and migratory state through a process referred to as "reactive astrogliosis". Cell polarity proteins play a key role in the initiation and regulation of migration. Recent evidence suggests that cell polarity proteins are dysregulated during astrogliosis and may modulate astrocyte reactivity and alter the course of disease. Therefore, cell polarity proteins may provide novel therapeutic targets for modulating astrocyte reactivity in brain disorders.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA.
| |
Collapse
|
6
|
Huang E, Li S. Liver Kinase B1 Functions as a Regulator for Neural Development and a Therapeutic Target for Neural Repair. Cells 2022; 11:cells11182861. [PMID: 36139438 PMCID: PMC9496952 DOI: 10.3390/cells11182861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) and Par-4 in C. elegans, has been identified as a master kinase of AMPKs and AMPK-related kinases. LKB1 plays a crucial role in cell growth, metabolism, polarity, and tumor suppression. By interacting with the downstream signals of SAD, NUAK, MARK, and other kinases, LKB1 is critical to regulating neuronal polarization and axon branching during development. It also regulates Schwann cell function and the myelination of peripheral axons. Regulating LKB1 activity has become an attractive strategy for repairing an injured nervous system. LKB1 upregulation enhances the regenerative capacity of adult CNS neurons and the recovery of locomotor function in adult rodents with CNS axon injury. Here, we update the major cellular and molecular mechanisms of LKB1 in regulating neuronal polarization and neural development, and the implications thereof for promoting neural repair, axon regeneration, and functional recovery in adult mammals.
Collapse
|
7
|
Moon S, Kim CH, Park J, Kim M, Jeon HS, Kim YM, Choi YK. Induction of BVR-A Expression by Korean Red Ginseng in Murine Hippocampal Astrocytes: Role of Bilirubin in Mitochondrial Function via the LKB1–SIRT1–ERRα Axis. Antioxidants (Basel) 2022; 11:antiox11091742. [PMID: 36139815 PMCID: PMC9496118 DOI: 10.3390/antiox11091742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
The beneficial effects of Korean red ginseng extract (KRGE) on the central nervous system (CNS) have been reported. Among the CNS cells, astrocytes possess robust antioxidative properties and regenerative potential. Under physiological conditions, biliverdin reductase A (BVR-A) converts biliverdin (a heme oxygenase metabolite) into bilirubin, a major natural and potent antioxidant. We found that KRGE enhanced BVR-A in astrocytes in the fimbria region of the adult mouse hippocampus under physiological conditions. KRGE-induced BVR-A expression and subsequent bilirubin production were required for changes in mitochondrial membrane potential, mitochondrial mass, and oxidative phosphorylation through liver kinase B1 (LKB1), estrogen-related receptor α (ERRα), and sirtuin (SIRT1 and SIRT5) in astrocytes. However, BVR-A did not affect the KRGE-induced expression of AMP-activated protein kinase α (AMPKα). The KRGE-stimulated BVR-A–LKB1–SIRT1–ERRα pathway regulates the levels of mitochondria-localized proteins such as SIRT5, translocase of the outer mitochondrial membrane 20 (Tom20), Tom22, cytochrome c (Cyt c), and superoxide dismutase 2 (SOD2). Increased Tom20 expression in astrocytes of the hippocampal fimbria region was observed in KRGE-treated mice. KRGE-induced expression of Cyt c and SOD2 was associated with the Tom20/Tom22 complex. Taken together, KRGE-induced bilirubin production is required for enhanced astrocytic mitochondrial function in an LKB1-dependent and AMPKα-independent manner under physiological conditions.
Collapse
Affiliation(s)
- Sunhong Moon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Jinhong Park
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Minsu Kim
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Hui Su Jeon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0558
| |
Collapse
|
8
|
Kalinin S, Boullerne AI, Feinstein DL. Serum levels of lipocalin-2 are elevated at early times in African American relapsing remitting multiple sclerosis patients. J Neuroimmunol 2022; 364:577810. [DOI: 10.1016/j.jneuroim.2022.577810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
9
|
Liver kinase B1 rs9282860 polymorphism and risk for multiple sclerosis in White and Black Americans. Mult Scler Relat Disord 2021; 55:103185. [PMID: 34371271 DOI: 10.1016/j.msard.2021.103185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND We previously reported that the single nucleotide polymorphism (SNP) rs9282860 in serine threonine kinase 11 (STK11) gene which codes for liver kinase B1 (LKB1) has higher prevalence in White relapsing-remitting multiple sclerosis (RRMS) patients than controls. However it is not known if this SNP is a risk factor for MS in other populations. METHODS We assessed the prevalence of the STK11 SNP in samples collected from African American (AA) persons with MS (PwMS) and controls at multiple Veterans Affairs (VA) Medical Centers and from a network of academic MS centers. Genotyping was carried out using a specific Taqman assay. Comparisons of SNP frequencies were made using Fisher's exact test to determine significance and odds ratios. Group means were compared by appropriate t-tests based on normality and variance using SPSS V27. RESULTS There were no significant differences in average age at first symptom onset, age at diagnosis, disease duration, or disease severity between RRMS patients recruited from VAMCs versus non-VAMCs. The SNP was more prevalent in AA than White PwMS, however only in secondary progressive MS (SPMS) patients was that difference statistically significant. AA SPMS patients had higher STK11 SNP prevalence than controls; and in that cohort the SNP was associated with older age at symptom onset and at diagnosis. CONCLUSIONS The results suggest that the STK11 SNP represents a risk factor for SPMS in AA patients, and can influence both early (onset) and later (conversion to SPMSS) events.
Collapse
|
10
|
Kipp M. Does Siponimod Exert Direct Effects in the Central Nervous System? Cells 2020; 9:cells9081771. [PMID: 32722245 PMCID: PMC7463861 DOI: 10.3390/cells9081771] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| |
Collapse
|