1
|
Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam K, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 2024; 31:519-536.e8. [PMID: 38579683 DOI: 10.1016/j.stem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.
Collapse
Affiliation(s)
- Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
| | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Fricklas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cecilia Lie
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Lam
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Violeta Yu
- Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Konnova EA, Deftu AF, Chu Sin Chung P, Kirschmann G, Decosterd I, Suter MR. Potassium channel modulation in macrophages sensitizes dorsal root ganglion neurons after nerve injury. Glia 2024; 72:677-691. [PMID: 38108588 DOI: 10.1002/glia.24496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Macrophages and satellite glial cells are found between injured and uninjured neurons in the lumbar dorsal root ganglia (DRG). We explored the mechanism of neuro-immune and neuron-glia crosstalk leading to hyperexcitability of DRG neurons. After spared nerve injury (SNI), CX3CR1+ resident macrophages became activated, proliferated, and increased inward-rectifying potassium channel Kir 2.1 currents. Conditioned medium (CM) by macrophages, obtained from DRG of SNI mice, sensitized small DRG neurons from naïve mice. However, treatment with CM from GFAP+ glial cells did not affect neuronal excitability. When subjected to this macrophage-derived CM, DRG neurons had increased spontaneous activity, current-evoked responses and voltage-gated NaV 1.7 and NaV 1.8 currents. Silencing Kir 2.1 in macrophages after SNI prevented the induction of neuronal hyperexcitability from their CM. Blocking vesicular exocytosis or soluble tumor necrosis factor in CM or interfering with the downstream intracellular p38 pathway in neurons, also prevented neuronal hyperexcitability. Blocking protein trafficking in neurons reduced the effect of CM, suggesting that the hyperexcitable state resulted from changes in NaV channel trafficking. These results suggest that DRG macrophages, primed by peripheral nerve injury, contribute to neuron-glia crosstalk, NaV channel dysregulation and neuronal hyperexcitability implicated in the development of neuropathic pain.
Collapse
Affiliation(s)
- Elena A Konnova
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Guylène Kirschmann
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc R Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers. Drugs 2023:10.1007/s40265-023-01903-7. [PMID: 37326804 DOI: 10.1007/s40265-023-01903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Chronic neuropathic pain after a spinal cord injury (SCI) continues to be a complex condition that is difficult to manage due to multiple underlying pathophysiological mechanisms and the association with psychosocial factors. Determining the individual contribution of each of these factors is currently not a realistic goal; however, focusing on the primary mechanisms may be more feasible. One approach used to uncover underlying mechanisms includes phenotyping using pain symptoms and somatosensory function. However, this approach does not consider cognitive and psychosocial mechanisms that may also significantly contribute to the pain experience and impact treatment outcomes. Indeed, clinical experience supports that a combination of self-management, non-pharmacological, and pharmacological approaches is needed to optimally manage pain in this population. This article will provide a broad updated summary integrating the clinical aspects of SCI-related neuropathic pain, potential pain mechanisms, evidence-based treatment recommendations, neuropathic pain phenotypes and brain biomarkers, psychosocial factors, and progress regarding how defining neuropathic pain phenotypes and other surrogate measures in the neuropathic pain field may lead to targeted treatments for neuropathic pain after SCI.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1611 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
6
|
Maejima Y, Horita S, Yokota S, Yamachi M, Shimizu M, Ono T, Yu Z, Tomita H, Shimomura K. Surface translocation of Kir2.1 channel induces IL-1β secretion in microglia. Mol Cell Neurosci 2022; 120:103734. [DOI: 10.1016/j.mcn.2022.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
|
7
|
The Antidiabetic Drug Metformin Regulates Voltage-Gated Sodium Channel Na V1.7 via the Ubiquitin-Ligase NEDD4-2. eNeuro 2022; 9:ENEURO.0409-21.2022. [PMID: 35131865 PMCID: PMC8906783 DOI: 10.1523/eneuro.0409-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
The antidiabetic drug metformin has been shown to reduce pain hypersensitivity in preclinical models of chronic pain and in neuropathic pain in humans. Multiple intracellular pathways have been described as metformin targets. Among them, metformin is an activator of the adenosine 5′-monophosphate protein kinase that can in turn modulate the activity of the E3 ubiquitin ligase NEDD4-2 and thus post-translational expression of voltage-gated sodium channels (NaVs). In this study, we found that the bulk of the effect of metformin on Na1.7 is dependent on NEDD4-2. In HEK cells, the expression of NaV1.7 at the membrane fraction, obtained by a biotinylation approach, is only reduced by metformin when cotransfected with NEDD4-2. Similarly, in voltage-clamp recordings, metformin significantly reduced NaV1.7 current density when cotransfected with NEDD4-2. In mouse dorsal root ganglion (DRG) neurons, without changing the biophysical properties of NaV1.7, metformin significantly decreased NaV1.7 current densities, but not in Nedd4L knock-out mice (SNS-Nedd4L−/−). In addition, metformin induced a significant reduction in NEDD4-2 phosphorylation at the serine-328 residue in DRG neurons, an inhibitory phosphorylation site of NEDD4-2. In current-clamp recordings, metformin reduced the number of action potentials elicited by DRG neurons from Nedd4Lfl/fl, with a partial decrease also present in SNS-Nedd4L−/− mice, suggesting that metformin can also change neuronal excitability in an NEDD4-2-independent manner. We suggest that NEDD4-2 is a critical player for the effect of metformin on the excitability of nociceptive neurons; this action may contribute to the relief of neuropathic pain.
Collapse
|
8
|
Wen Q, Wang Y, Pan Q, Tian R, Zhang D, Qin G, Zhou J, Chen L. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J Neuroinflammation 2021; 18:287. [PMID: 34893074 PMCID: PMC8665643 DOI: 10.1186/s12974-021-02342-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous studies have confirmed that the microglial activation and subsequent inflammatory responses in the trigeminal nucleus caudalis (TNC) are involved in the central sensitization of chronic migraine (CM). MicroRNA-155-5p has been shown to modulate the polarization of microglia and participate in inflammatory processes in a variety of neurological diseases. However, its role in CM remains unclear. The purpose of this study was to determine the precise role of miR-155-5p in CM. Methods A model of CM in C57BL/6 mice was established by recurrent intraperitoneal injection of nitroglycerin (NTG). Mechanical and thermal hyperalgesia were evaluated by Von Frey filaments and radiant heat. The expression of miR-155-5p was examined by qRT-PCR, and the mRNA and protein levels of silent information regulator 1(SIRT1) were measured by qRT-PCR, Western blotting (WB) and immunofluorescence (IF) analysis. The miR-155-5p antagomir, miR-155-5p agomir, SRT1720 (a SIRT1 activator) and EX527 (a SIRT1 inhibitor) were administered to confirm the effects of miR-155-5p and SIRT1 on neuroinflammation and the central sensitization of CM. ELISA, WB and IF assays were applied to evaluate the expression of TNF-α, myeloperoxidase (MPO), IL-10, p-ERK, p-CREB, calcitonin gene-related peptide (CGRP), c-Fos and microglial activation. The cellular localization of SIRT1 was illustrated by IF. Results After the NTG-induced mouse model of CM was established, the expression of miR-155-5p was increased. The level of SIRT1 was decreased, and partly colocalized with Iba1 in the TNC. The miR-155-5p antagomir and SRT1720 downregulated the expression of p-ERK, p-CREB, CGRP, and c-Fos, alleviating microglial activation and decreasing inflammatory substances (TNF-α, MPO). The administration of miR-155-5p agomir or EX527 exacerbated neuroinflammation and central sensitization. Importantly, the miR-155-5p agomir elevated CGRP and c-Fos expression and microglial activation, which could subsequently be alleviated by SRT1720. Conclusions These data demonstrate that upregulated miR-155-5p in the TNC participates in the central sensitization of CM. Inhibiting miR-155-5p alleviates neuroinflammation by activating SIRT1 in the TNC of CM mice.
Collapse
Affiliation(s)
- Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, Nanchong, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China.
| |
Collapse
|
9
|
Klose E, Kuhrt H, Kohen L, Wiedemann P, Bringmann A, Hollborn M. Hypoxic and osmotic expression of Kir2.1 potassium channels in retinal pigment epithelial cells: Contribution to vascular endothelial growth factor expression. Exp Eye Res 2021; 211:108741. [PMID: 34425102 DOI: 10.1016/j.exer.2021.108741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Retinal pigment epithelial (RPE) cells express different subtypes of inwardly rectifying potassium (Kir) channels. We investigated whether human and rat RPE cells express genes of strongly rectifying Kir2 channels. We also determined the hypoxic and hyperosmotic regulation of Kir2.1 gene expression in cultured human RPE cells and the effects of siRNA-mediated knockdown of Kir2.1 on VEGFA expression, VEGF secretion, proliferation, and viability of the cells. Extracellular hyperosmolarity was induced by addition of NaCl or sucrose. Hypoxia and chemical hypoxia were produced by cell culture in 0.25% O2 and addition of CoCl2, respectively. Gene expression levels were evaluated by real-time RT-PCR. Rat RPE cells contained Kir2.1, Kir2.2, Kir2.3, and Kir2.4 gene transcripts while human RPE cells contained Kir2.1, Kir2.2, and Kir2.4 transcripts. Immunocytochemical data may suggest that Kir2.1 protein in cultured human cells is expressed in both perinuclear and plasma membranes. Kir2.1 gene expression and Kir2.1 protein level in human cells increased under hypoxic and hyperosmotic conditions. The expression of the Kir2.1 gene was mediated in part by diverse intracellular signal transduction pathways and transcription factor activities under both conditions; the hyperosmotic, but not the CoCl2-induced Kir2.1 gene expression was dependent on intracellular calcium signaling. Autocrine/paracrine activation of purinergic receptors contributed to Kir2.1 gene expression under hyperosmotic (P2Y1, P2Y2, P2X7) and CoCl2-induced conditions (P2Y2, P2X7). Exogenous VEGF, TGF-β1, and blood serum decreased Kir2.1 gene expression. Inhibition of VEGF receptor-2 increased the Kir2.1 gene expression under control conditions and in CoCl2-simulated hypoxia, and decreased it under high NaCl conditions. Knockdown of Kir2.1 by siRNA inhibited the CoCl2-induced and hyperosmotic transcription of the VEGFA gene and caused a delayed decrease of the constitutive VEGFA gene expression while VEGF protein secretion was not altered. Kir2.1 knockdown stimulated RPE cell proliferation under control and hyperosmotic conditions without affecting cell viability. The data indicate that Kir2.1 channel activity is required for the expression of the VEGFA gene and inhibits the proliferation of RPE cells. Under control and hypoxic conditions, the extracellular VEGF level may regulate the production of VEGF via its inhibitory effect on the Kir2.1 gene transcription; this feedback loop may prevent overproduction of VEGF.
Collapse
Affiliation(s)
- Eva Klose
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, University of Leipzig, Germany
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany; Helios Klinikum Aue, Aue, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
10
|
Weaver CD, Denton JS. Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology. Am J Physiol Cell Physiol 2021; 320:C1125-C1140. [PMID: 33826405 DOI: 10.1152/ajpcell.00548.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inward rectifying potassium (Kir) channels play important roles in both excitable and nonexcitable cells of various organ systems and could represent valuable new drug targets for cardiovascular, metabolic, immune, and neurological diseases. In nonexcitable epithelial cells of the kidney tubule, for example, Kir1.1 (KCNJ1) and Kir4.1 (KCNJ10) are linked to sodium reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively, and have been explored as novel-mechanism diuretic targets for managing hypertension and edema. G protein-coupled Kir channels (Kir3) channels expressed in the central nervous system are critical effectors of numerous signal transduction pathways underlying analgesia, addiction, and respiratory-depressive effects of opioids. The historical dearth of pharmacological tool compounds for exploring the therapeutic potential of Kir channels has led to a molecular target-based approach using high-throughput screen (HTS) of small-molecule libraries and medicinal chemistry to develop "next-generation" Kir channel modulators that are both potent and specific for their targets. In this article, we review recent efforts focused specifically on discovery and improvement of target-selective molecular probes. The reader is introduced to fluorescence-based thallium flux assays that have enabled much of this work and then provided with an overview of progress made toward developing modulators of Kir1.1 (VU590, VU591), Kir2.x (ML133), Kir3.X (ML297, GAT1508, GiGA1, VU059331), Kir4.1 (VU0134992), and Kir7.1 (ML418). We discuss what is known about the small molecules' molecular mechanisms of action, in vitro and in vivo pharmacology, and then close with our view of what critical work remains to be done.
Collapse
Affiliation(s)
- C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Yi MH, Liu YU, Umpierre AD, Chen T, Ying Y, Zheng J, Dheer A, Bosco DB, Dong H, Wu LJ. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol 2021; 19:e3001154. [PMID: 33739978 PMCID: PMC8011727 DOI: 10.1371/journal.pbio.3001154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/31/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia. We found that activation of ReaChR by red light in spinal microglia evoked reliable inward currents and membrane depolarization. In vivo optogenetic activation of microglial ReaChR in the spinal cord triggered chronic pain hypersensitivity in both male and female mice. In addition, activation of microglial ReaChR up-regulated neuronal c-Fos expression and enhanced C-fiber responses. Mechanistically, ReaChR activation led to a reactive microglial phenotype with increased interleukin (IL)-1β production, which is likely mediated by inflammasome activation and calcium elevation. IL-1 receptor antagonist (IL-1ra) was able to reverse the pain hypersensitivity and neuronal hyperactivity induced by microglial ReaChR activation. Therefore, our work demonstrates that optogenetic activation of spinal microglia is sufficient to trigger chronic pain phenotypes by increasing neuronal activity via IL-1 signaling.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yong U. Liu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anthony D. Umpierre
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hailong Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
12
|
Cojocaru A, Burada E, Bălșeanu AT, Deftu AF, Cătălin B, Popa-Wagner A, Osiac E. Roles of Microglial Ion Channel in Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10061239. [PMID: 33802786 PMCID: PMC8002406 DOI: 10.3390/jcm10061239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandru Cojocaru
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
| | - Adrian-Tudor Bălșeanu
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland;
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Bogdan Cătălin
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (B.C.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (B.C.); (A.P.-W.)
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
13
|
Potassium Channels Kv1.3 and Kir2.1 But Not Kv1.5 Contribute to BV2 Cell Line and Primary Microglial Migration. Int J Mol Sci 2021; 22:ijms22042081. [PMID: 33669857 PMCID: PMC7923211 DOI: 10.3390/ijms22042081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: As membrane channels contribute to different cell functions, understanding the underlying mechanisms becomes extremely important. A large number of neuronal channels have been investigated, however, less studied are the channels expressed in the glia population, particularly in microglia. In the present study, we focused on the function of the Kv1.3, Kv1.5 and Kir2.1 potassium channels expressed in both BV2 cells and primary microglia cultures, which may impact the cellular migration process. (2) Methods: Using an immunocytochemical approach, we were able to show the presence of the investigated channels in BV2 microglial cells, record their currents using a patch clamp and their role in cell migration using the scratch assay. The migration of the primary microglial cells in culture was assessed using cell culture inserts. (3) Results: By blocking each potassium channel, we showed that Kv1.3 and Kir2.1 but not Kv1.5 are essential for BV2 cell migration. Further, primary microglial cultures were obtained from a line of transgenic CX3CR1-eGFP mice that express fluorescent labeled microglia. The mice were subjected to a spared nerve injury model of pain and we found that microglia motility in an 8 µm insert was reduced 2 days after spared nerve injury (SNI) compared with sham conditions. Additional investigations showed a further impact on cell motility by specifically blocking Kv1.3 and Kir2.1 but not Kv1.5; (4) Conclusions: Our study highlights the importance of the Kv1.3 and Kir2.1 but not Kv1.5 potassium channels on microglia migration both in BV2 and primary cell cultures.
Collapse
|
14
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|