1
|
Modder M, Coomans CP, Saaltink DJ, Tersteeg MMH, Hoogduin J, Scholten L, Pronk ACM, Lalai RA, Boelen A, Kalsbeek A, Rensen PCN, Vreugdenhil E, Kooijman S. Doublecortin-like knockdown in mice attenuates obesity by stimulating energy expenditure in adipose tissue. Sci Rep 2024; 14:19517. [PMID: 39174821 PMCID: PMC11341836 DOI: 10.1038/s41598-024-70639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Crosstalk between peripheral metabolic organs and the central nervous system is essential for body weight control. At the base of the hypothalamus, β-tanycytes surround the portal capillaries and function as gatekeepers to facilitate transfer of substances from the circulation into the cerebrospinal fluid and vice versa. Here, we investigated the role of the neuroplasticity gene doublecortin-like (DCL), highly expressed by β-tanycytes, in body weight control and whole-body energy metabolism. We demonstrated that DCL-knockdown through a doxycycline-inducible shRNA expression system prevents body weight gain by reducing adiposity in mice. DCL-knockdown slightly increased whole-body energy expenditure possibly as a result of elevated circulating thyroid hormones. In white adipose tissue (WAT) triglyceride uptake was increased while the average adipocyte cell size was reduced. At histological level we observed clear signs of browning, and thus increased thermogenesis in WAT. We found no indications for stimulated thermogenesis in brown adipose tissue (BAT). Altogether, we demonstrate an important, though subtle, role of tanycytic DCL in body weight control through regulation of energy expenditure, and specifically WAT browning. Elucidating mechanisms underlying the role of DCL in regulating brain-peripheral crosstalk further might identify new treatment targets for obesity.
Collapse
Affiliation(s)
- Melanie Modder
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Claudia P Coomans
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Dirk-Jan Saaltink
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Mayke M H Tersteeg
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Janna Hoogduin
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Leonie Scholten
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Reshma A Lalai
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Endocrine Laboratory, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Erno Vreugdenhil
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
2
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, Hastings MH. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2301330120. [PMID: 37186824 PMCID: PMC10214171 DOI: 10.1073/pnas.2301330120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.
Collapse
Affiliation(s)
- Andrew P. Patton
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Emma L. Morris
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - David McManus
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University, School of Life Sciences, 100871Beijing, China
| | - Jason W. Chin
- PNAC Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Michael H. Hastings
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|