1
|
Lum JS, Brown ML, Farrawell NE, Bartlett R, Chisholm CG, Gorman J, Dosseto A, Dux F, McInnes LE, Ecroyd H, McAlary L, Crouch PJ, Donnelly PS, Yerbury JJ. A polytherapy approach demonstrates therapeutic efficacy for the treatment of SOD1 associated amyotrophic lateral sclerosis. EBioMedicine 2025; 115:105692. [PMID: 40222103 DOI: 10.1016/j.ebiom.2025.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND SOD1 mutations are a significant contributor of familial amyotrophic lateral sclerosis (ALS) cases. SOD1 mutations increase the propensity for the protein to misfold and aggregate into insoluble proteinaceous deposits within motor neurons and neighbouring cells. The small molecule, CuATSM, has repeatedly shown in mouse models to be a promising therapeutic treatment for SOD1-associated ALS and is currently in Phase II/III clinical trials for the treatment of ALS. We have previously shown CuATSM stabilises various ALS-associated variants of the SOD1 protein, reducing misfolding and toxicity. Two additional FDA-approved small molecules, ebselen and telbivudine, have also been identified to reduce mutant SOD1 toxicity, providing additional potential therapeutic candidates that could be used in combination with CuATSM. Here, we aimed to investigate if CuATSM, ebselen and telbivudine (CET) polytherapy could improve on the therapeutic efficacy of CuATSM monotherapy for the treatment of SOD1-associated ALS. METHODS We utilised a 3D checkerboard approach to investigate whether a matrix of different concentrations CuATSM, ebselen and telbivudine could provide therapeutic improvements on cell survival, SOD1 folding and aggregation in SOD1G93A-transfected NSC-34 cells, compared to CuATSM alone. To progress the preclinical development of CET polytherapy, we evaluated the bioavailability and safety of in vivo polytherapy administration. Furthermore, we assessed and compared the effects of CET- and CuATSM-treatment on disease onset, motor function, survival and neuropathological features in SOD1G93A mice. FINDINGS CET polytherapy reduced inclusion formation and increased cell survival of NSC-34 cells overexpressing SOD1G93A compared to higher concentrations of CuATSM monotherapy. In addition, CET administration was bioavailable and tolerable in mice. CET treatment in SOD1G93A mice delayed disease onset, reduced motor impairments, and increased survival compared to vehicle- and CuATSM-treated mice. In line with these findings, biochemical analysis of lumbar spinal cords showed CET administration improved SOD1 folding, decreased misfolded SOD1 accumulation, and reduced motor neuron loss. INTERPRETATION These findings support CET polytherapy as an advantageous alternative compared to CuATSM monotherapy and highlight the potential of utilising small molecules targeting SOD1 as a polytherapy avenue for the treatment of SOD1-associated ALS. FUNDING This work was supported by a FightMND Drug Development Grant, an Australian National Health and Medical Research Council (NHMRC) Investigator Grant (No. 1194872) and a Motor Neuron Disease Research Institute of Australia Bill Gole Postdoctoral Fellowship.
Collapse
Affiliation(s)
- Jeremy S Lum
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia; School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Mikayla L Brown
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie E Farrawell
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christen G Chisholm
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jody Gorman
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Florian Dux
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Lachlan E McInnes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Luke McAlary
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Centre for Muscle Research, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Justin J Yerbury
- Molecular Horizons and School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
4
|
Benatar M, Robertson J, Andersen PM. Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention. Lancet Neurol 2025; 24:77-86. [PMID: 39706636 DOI: 10.1016/s1474-4422(24)00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
Pathogenic variants in the superoxide dismutase 1 (SOD1) gene were the first identified genetic cause of amyotrophic lateral sclerosis (ALS), in 1993. This discovery enabled the development of transgenic rodent models for studying the biology of SOD1 ALS. The understanding that SOD1 ALS is driven by a toxic gain-of-function mutation has led to therapeutic strategies that aim to lower concentrations of SOD1 protein, an endeavour that has been complicated by the phenotypic heterogeneity of SOD1 ALS. The successful development of genetically targeted therapies to reduce SOD1 expression, together with a better understanding of pre-symptomatic disease and the discovery of neurofilament light protein as a susceptibility/risk biomarker that predicts phenoconversion, has ushered in a new era of trials that aim to prevent clinically manifest SOD1 ALS. The 30-year journey from gene discovery to gene therapy has not only uncovered the pathophysiology of SOD1 ALS, but has also facilitated the development of biomarkers that should aid therapy development for all forms of ALS.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Janice Robertson
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
6
|
Wang LY, Zhang L, Bai XY, Qiang RR, Zhang N, Hu QQ, Cheng JZ, Yang YL, Xiang Y. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. Neurochem Res 2024; 49:2653-2667. [PMID: 38864944 DOI: 10.1007/s11064-024-04194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.
Collapse
Affiliation(s)
- Le Yi Wang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Rong Rong Qiang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Ning Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Jun Zhi Cheng
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China.
| |
Collapse
|
7
|
Dennys CN, Vermudez SAD, Deacon RJM, Sierra-Delgado JA, Rich K, Zhang X, Buch A, Weiss K, Moxley Y, Rajpal H, Espinoza FD, Powers S, Ávila AS, Gogliotti RG, Cogram P, Niswender CM, Meyer KC. MeCP2 gene therapy ameliorates disease phenotype in mouse model for Pitt Hopkins syndrome. Neurotherapeutics 2024; 21:e00376. [PMID: 38876822 PMCID: PMC11579869 DOI: 10.1016/j.neurot.2024.e00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.
Collapse
Affiliation(s)
- Cassandra N Dennys
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Sheryl Anne D Vermudez
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert J M Deacon
- Department of Genetics, Institute of Ecology and Biodiversity, Faculty of Science, University of Chile, Chile
| | - J Andrea Sierra-Delgado
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kelly Rich
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xiaojin Zhang
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aditi Buch
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelly Weiss
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Yuta Moxley
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Hemangi Rajpal
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Francisca D Espinoza
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, 4090541, Chile
| | - Samantha Powers
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ariel S Ávila
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, 4090541, Chile
| | - Rocco G Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patricia Cogram
- Department of Genetics, Institute of Ecology and Biodiversity, Faculty of Science, University of Chile, Chile
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Gale J, Aizenman E. The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci 2024; 60:3505-3543. [PMID: 38747014 PMCID: PMC11491124 DOI: 10.1111/ejn.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 07/06/2024]
Abstract
Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-β-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal. However, it is important to note that because of copper's ability to redox cycle and generate reactive species, cellular levels of the metal must be tightly regulated to meet cellular needs while avoiding copper-induced oxidative stress. Therefore, it is essential that the intricate system of copper transporters, exporters, copper chaperones and copper trafficking proteins function properly and in coordinate fashion. Indeed, disorders of copper metabolism such as Menkes disease and Wilson disease, as well as diseases linked to dysfunction of copper-requiring enzymes, such as SOD1-linked amyotrophic lateral sclerosis, demonstrate the dramatic neurological consequences of altered copper homeostasis. In this review, we explore the physiological importance of copper in the nervous system as well as pathologies related to improper copper handling.
Collapse
Affiliation(s)
- Jenna Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Bauersachs D, Bomholtz L, del Rey Mateos S, Kühn R, Lisowski P. Novel human neurodevelopmental and neurodegenerative disease associated with IRF2BPL gene variants-mechanisms and therapeutic avenues. Front Neurosci 2024; 18:1426177. [PMID: 38903604 PMCID: PMC11187338 DOI: 10.3389/fnins.2024.1426177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Recently a broad range of phenotypic abnormalities related to the neurodevelopmental and neurodegenerative disorder NEDAMSS (Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech, and Seizures) have been associated with rare single-nucleotide polymorphisms (SNPs) or insertion and deletion variants (Indel) in the intron-less gene IRF2BPL. Up to now, 34 patients have been identified through whole exome sequencing carrying different heterozygous pathogenic variants spanning the intron-less gene from the first polyglutamine tract at the N-terminus to the C3HC4 RING domain of the C-terminus of the protein. As a result, the phenotypic spectrum of the patients is highly heterogeneous and ranges from abnormal neurocognitive development to severe neurodegenerative courses with developmental and seizure-related encephalopathies. While the treatment of IRF2BPL-related disorders has focused on alleviating the patient's symptoms by symptomatic multidisciplinary management, there has been no prospect of entirely relieving the symptoms of the individual patients. Yet, the recent advancement of CRISPR-Cas9-derived gene editing tools, leading to the generation of base editors (BEs) and prime editors (PEs), provide an encouraging new therapeutic avenue for treating NEDAMSS and other neurodevelopmental and neurodegenerative diseases, which contain SNPs or smaller Indels in post-mitotic cell populations of the central nervous system, due to its ability to generate site-specific DNA sequence modifications without creating double-stranded breaks, and recruiting the non-homologous DNA end joining repair mechanism.
Collapse
Affiliation(s)
- Daniel Bauersachs
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Louise Bomholtz
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sara del Rey Mateos
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB) Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ralf Kühn
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pawel Lisowski
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB) Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Psychiatry, Neuropsychiatry Research Division, Translation and Neurotechnology Research Group, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Chaves JCS, Milton LA, Stewart R, Senapati T, Rantanen LM, Wasielewska JM, Lee S, Hernández D, McInnes L, Quek H, Pébay A, Donnelly PS, White AR, Oikari LE. Differential Cytokine Responses of APOE3 and APOE4 Blood-brain Barrier Cell Types to SARS-CoV-2 Spike Proteins. J Neuroimmune Pharmacol 2024; 19:22. [PMID: 38771543 DOI: 10.1007/s11481-024-10127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Queensland University of Technology, Brisbane (QLD), Australia
| | - Laura A Milton
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
| | - Romal Stewart
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
| | | | - Laura M Rantanen
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Queensland University of Technology, Brisbane (QLD), Australia
| | - Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Faculty of Medicine, The University of Queensland, Brisbane (QLD), Australia
| | - Serine Lee
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville (VIC), Australia
| | - Lachlan McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville (VIC), Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- Queensland University of Technology, Brisbane (QLD), Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane (QLD), Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville (VIC), Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville (VIC), Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville (VIC), Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane (QLD), Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane (QLD), Australia.
- Queensland University of Technology, Brisbane (QLD), Australia.
| |
Collapse
|
11
|
Scarpellini C, Klejborowska G, Lanthier C, Hassannia B, Vanden Berghe T, Augustyns K. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci 2023; 44:902-916. [PMID: 37770317 DOI: 10.1016/j.tips.2023.08.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023]
Abstract
Ferroptosis is an iron-catalysed form of regulated cell death, which is critically dependent on phospholipid peroxidation of cellular membranes. Ferrostatin 1 was one of the first synthetic radical-trapping antioxidants (RTAs) reported to block ferroptosis and it is widely used as reference compound. Ferroptosis has been linked to multiple diseases and the use of its inhibitors could have therapeutic potential. Although, novel biochemical pathways provide insights for different pharmacological targets, the use of lipophilic RTAs to block ferroptosis remains superior. In this Review, we provide a comprehensive overview of the different classes of ferroptosis inhibitors, focusing on endogenous and synthetic RTAs. A thorough analysis of their chemical, pharmacokinetic, and pharmacological properties and potential for in vivo use is provided.
Collapse
Affiliation(s)
- Camilla Scarpellini
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Greta Klejborowska
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Caroline Lanthier
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Behrouz Hassannia
- Ferroptosis and Inflammation Research Team, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Pathophysiology Lab, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Tom Vanden Berghe
- Ferroptosis and Inflammation Research Team, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Pathophysiology Lab, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| |
Collapse
|
12
|
Yang Y, Rowe D, McCann H, Shepherd CE, Kril JJ, Kiernan MC, Halliday GM, Tan RH. Treatment with the copper compound CuATSM has no significant effect on motor neuronal pathology in patients with ALS. Neuropathol Appl Neurobiol 2023; 49:e12919. [PMID: 37317638 PMCID: PMC10947464 DOI: 10.1111/nan.12919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
AIMS Although the orally available brain-penetrant copper compound CuATSM has demonstrated promising effects in SOD1-linked mouse models, the impact of CuATSM on disease pathology in patients with amyotrophic lateral sclerosis (ALS) remains unknown. METHODS The present study set out to address this deficit by performing the first pilot comparative analysis of ALS pathology in patients that had been administered CuATSM and riluzole [N = 6 cases composed of ALS-TDP (n = 5) and ALS-SOD1 (n = 1)] versus riluzole only [N = 6 cases composed of ALS-TDP (n = 4) and ALS-SOD1 (n = 2)]. RESULTS Our results revealed no significant difference in neuron density or TDP-43 burden in the motor cortex and spinal cord of patients that had received CuATSM compared with patients that had not. In patients that had received CuATSM, p62-immunoreactive astrocytes were observed in the motor cortex and reduced Iba1 density was found in the spinal cord. However, no significant difference in measures of astrocytic activity and SOD1 immunoreactivity was found with CuATSM treatment. DISCUSSION These findings, in this first postmortem investigation of patients with ALS in CuATSM trials, demonstrate that in contrast to that seen in preclinical models of disease, CuATSM does not significantly alleviate neuronal pathology or astrogliosis in patients with ALS.
Collapse
Affiliation(s)
- Yue Yang
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Dominic Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Heather McCann
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
| | | | - Jillian J. Kril
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
- Dementia Research Centre, Macquarie Medical SchoolMacquarie UniversitySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Institute of Clinical NeurosciencesRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Rachel H. Tan
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
13
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
14
|
Stoklund Dittlau K, Van Den Bosch L. Why should we care about astrocytes in a motor neuron disease? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1047540. [PMID: 39086676 PMCID: PMC11285655 DOI: 10.3389/fmmed.2023.1047540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults, causing progressive degeneration of motor neurons, which results in muscle atrophy, respiratory failure and ultimately death of the patients. The pathogenesis of ALS is complex, and extensive efforts have focused on unravelling the underlying molecular mechanisms with a large emphasis on the dying motor neurons. However, a recent shift in focus towards the supporting glial population has revealed a large contribution and influence in ALS, which stresses the need to explore this area in more detail. Especially studies into astrocytes, the residential homeostatic supporter cells of neurons, have revealed a remarkable astrocytic dysfunction in ALS, and therefore could present a target for new and promising therapeutic entry points. In this review, we provide an overview of general astrocyte function and summarize the current literature on the role of astrocytes in ALS by categorizing the potentially underlying molecular mechanisms. We discuss the current efforts in astrocyte-targeted therapy, and highlight the potential and shortcomings of available models.
Collapse
Affiliation(s)
- Katarina Stoklund Dittlau
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
15
|
Sinha Ray S, Dutta D, Dennys C, Powers S, Roussel F, Lisowski P, Glažar P, Zhang X, Biswas P, Caporale JR, Rajewsky N, Bickle M, Wein N, Bellen HJ, Likhite S, Marcogliese PC, Meyer KC. Mechanisms of IRF2BPL-related disorders and identification of a potential therapeutic strategy. Cell Rep 2022; 41:111751. [PMID: 36476864 DOI: 10.1016/j.celrep.2022.111751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.
Collapse
Affiliation(s)
- Shrestha Sinha Ray
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cassandra Dennys
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Samantha Powers
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Florence Roussel
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pawel Lisowski
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Psychiatry, Charité - Universitätmedizin Berlin, Berlin, Germany; Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | - Petar Glažar
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Xiaojin Zhang
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pipasha Biswas
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph R Caporale
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nikolaus Rajewsky
- The Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Marc Bickle
- Roche Institute for Translational Bioengineering, Basel, Switzerland
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shibi Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|