1
|
Zu Z, Chen F, Yang L, Wei W, Zhang M, Huang L, Li N, Lv Z, Du H, Xue X, Ma L, Wang H, Wang K, Li X. Efficacy of brain stimulation therapies across psychiatric, movement, and cognitive disorders: an umbrella review synthesizing meta-analyses of randomized controlled trials. EClinicalMedicine 2025; 80:103046. [PMID: 39867967 PMCID: PMC11760298 DOI: 10.1016/j.eclinm.2024.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Background Brain stimulation therapy (BST) has significant potential in treating psychiatric, movement, and cognitive disorders. Given the high prevalence of comorbidities among these disorders, we conducted an umbrella review to comprehensively assess the efficacy of BSTs in treating the core symptoms across these three categories of disorders. Methods We systematically searched for meta-analyses and network meta-analyses of randomized controlled trials with sham controls up to September 25, 2024, from databases including PubMed, PsycINFO, Embase, and the Cochrane Library. Our primary outcome was improvements in core symptoms. We evaluated quality using 11 criteria. We calculated pooled effect estimates for core symptoms based on the largest meta-analyses, then conducted sensitivity and subgroup analyses, and assessed heterogeneity, publication bias, and small-study effects. Finally, we synthesized effect sizes from all meta-analyses to provide a comprehensive overview of BSTs' efficacy. PROSPERO registration: CRD42023439090. Findings We included 198 articles with 108,377 patients evaluating 14 BSTs across 21 disorders. The largest meta-analysis showed a moderate standardized mean difference (SMD) of 0.56 (95% CI: 0.49, 0.64; I2 = 70%). Subgroup analyses revealed significant SMDs for psychiatric disorders (0.60; 95% CI: 0.49, 0.71; I2 = 66%), movement disorders (0.56; 95% CI: 0.42, 0.69; I2 = 79%), and cognitive disorders (0.46; 95% CI: 0.32, 0.61; I2 = 48%). SMDs were 0.44 (95% CI: 0.23, 0.65; I2 = 70%) for follow-up ≤1 month and 0.69 (95% CI: 0.43, 0.94; I2 = 84%) for follow-up >1 month. Compared to other conditions, BSTs show better therapeutic effects in treating depression, post-traumatic stress disorder, obsessive-compulsive disorder, pain, fibromyalgia, and post-stroke motor recovery. Interpretation This review explored the potential of BSTs for comorbidities of the three disorders from a disorder-specific perspective, providing a roadmap for their clinical application and future research. Funding This work was supported by the Anhui Natural Science Foundation (2023AH040086), Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention (SYS2023B08), and the Joint Funds of the National Natural Science Foundation of China (U23A20424).
Collapse
Affiliation(s)
- Zhenyue Zu
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Fenglan Chen
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Linxi Yang
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhuo Wei
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Mi Zhang
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Limin Huang
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Ni Li
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Zihan Lv
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - He Du
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Xinrong Xue
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Lijun Ma
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Huixue Wang
- School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiaoming Li
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Jiao J, Brumbach BH, Hantke N, Wilhelmi M, Bonilla C, Safarpour D. Changes in Anticholinergic Burden in Parkinson's Disease After Deep Brain Stimulation. Neuromodulation 2024; 27:538-543. [PMID: 38085189 DOI: 10.1016/j.neurom.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/30/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effect of deep brain stimulation (DBS) on anticholinergic burden in Parkinson's disease (PD) and the association of anticholinergic burden with cognition. MATERIALS AND METHODS A retrospective chart review in patients with PD who underwent bilateral subthalamic nucleus (STN) or globus pallidus internus (GPi) DBS from 2010 to 2020 reviewed medications with anticholinergic burden at baseline, six months, and one year (N = 216) after surgery. The cumulative anticholinergic burden at each visit was calculated using the Anticholinergic Risk Scale (ARS). RESULTS ARS scores were significantly lower for patients six months and one year after surgery than at baseline (z = 6.58, p < 0.0001; z = 6.99, p < 0.0001). Change in ARS scores at both six months and one year were driven by down-titration of PD medications (z = 9.35, p < 0.0001; z = 8.61, p < 0.0001), rather than changes in pain, psychiatric, or urinary medications with anticholinergic effects. There was no significant difference in change in ARS scores at one year between targets (t = 0.41, p = 0.68). In addition, there was no significant association between anticholinergic burden and cognitive performance. CONCLUSION GPi and STN DBS are associated with decreased anticholinergic burden due to PD medications in the first year after surgery.
Collapse
Affiliation(s)
- Jocelyn Jiao
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| | - Barbara H Brumbach
- Oregon Health and Science University-Portland State University School of Public Health, Biostatistics and Design Program, Oregon Health and Science University, Portland, OR, USA
| | - Nathan Hantke
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA; Mental Health and Clinical Neuroscience Division, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Morgan Wilhelmi
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Christian Bonilla
- School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Delaram Safarpour
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Aquino CHD, Moscovich M, Marinho MM, Barcelos LB, Felício AC, Halverson M, Hamani C, Ferraz HB, Munhoz RP. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 1. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38653485 PMCID: PMC11039067 DOI: 10.1055/s-0044-1786026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
Deep brain stimulation (DBS) is recognized as an established therapy for Parkinson's disease (PD) and other movement disorders in the light of the developments seen over the past three decades. Long-term efficacy is established for PD with documented improvement in the cardinal motor symptoms of PD and levodopa-induced complications, such as motor fluctuations and dyskinesias. Timing of patient selection is crucial to obtain optimal benefits from DBS therapy, before PD complications become irreversible. The objective of this first part review is to examine the fundamental concepts of DBS for PD in clinical practice, discussing the historical aspects, patient selection, potential effects of DBS on motor and non-motor symptoms, and the practical management of patients after surgery.
Collapse
Affiliation(s)
- Camila Henriques de Aquino
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Calgary, AB, Canada.
- University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada.
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Mariana Moscovich
- Christian-Albrechts University, Department of Neurology, Kiel, Germany.
| | - Murilo Martinez Marinho
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Lorena Broseghini Barcelos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | | - Matthew Halverson
- University of Utah, Department of Neurology, Salt Lake City, Utah, United States.
| | - Clement Hamani
- University of Toronto, Sunnybrook Hospital, Toronto, ON, Canada.
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | |
Collapse
|
4
|
Hong J, Xie H, Chen Y, Liu D, Wang T, Xiong K, Mao Z. Effects of STN-DBS on cognition and mood in young-onset Parkinson's disease: a two-year follow-up. Front Aging Neurosci 2024; 15:1177889. [PMID: 38292047 PMCID: PMC10824910 DOI: 10.3389/fnagi.2023.1177889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Background The effects of subthalamic nucleus deep brain stimulation (STN-DBS) on the cognition and mood of patients with PD are still not uniformly concluded, and young-onset Parkinson's disease (YOPD) is even less explored. Objective To observe the effectiveness of STN-DBS on the cognition and mood of YOPD patients. Methods A total of 27 subjects, with a mean age at onset of 39.48 ± 6.24 and age at surgery for STN-DBS of 48.44 ± 4.85, were followed up preoperatively and for 2 years postoperatively. Using the Unified Parkinson disease rating scale (UPDRS), H&Y(Hoehn and Yahr stage), 39-Item Parkinson's Disease Questionnaire (PDQ-39), Mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA) to assess motor, cognition, and mood. Results At the 2-year follow-up after STN-DBS, YOPD patients showed significant improvements in motor and quality of life (UPDRS III: p < 0.001, PDQ-39: p < 0.001); overall cognition was not significantly different from preoperative (MMSE: p = 0.275, MoCA: p = 0.913), although language function was significantly impaired compared to preoperative (MMSE: p = 0.004, MoCA: p = 0.009); depression and anxiety symptoms also improved significantly (HAMD: p < 0.001, HAMA: p < 0.001) and the depression score correlated significantly with motor (preoperative: r = 0.493, p = 0.009), disease duration (preoperative: r = 0.519, p = 0.006; postoperative: r = 0.406, p = 0.036) and H&Y (preoperative: r = 0.430, p = 0.025; postoperative: r = 0.387, p = 0.046); total anxiety scores were also significantly correlated with motor (preoperative: r = 0.553, p = 0.003; postoperative: r = 0.444, p = 0.020), disease duration (preoperative: r = 0.417, p = 0.031), PDQ-39 (preoperative: r = 0.464, p = 0.015) and H&Y (preoperative: r = 0.440, p = 0.022; postoperative: r = 0.526, p = 0.005). Conclusion STN-DBS is a safe and effective treatment for YOPD. The mood improved significantly, and overall cognition was not impaired, were only verbal fluency decreased but did not affect the improvement in quality of life.
Collapse
Affiliation(s)
- Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huimin Xie
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuhua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Di Liu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Block CK, Patel M, Risk BB, Staikova E, Loring D, Esper CD, Scorr L, Higginbotham L, Aia P, DeLong MR, Wichmann T, Factor SA, Au Yong N, Willie JT, Boulis NM, Gross RE, Buetefisch C, Miocinovic S. Patients with Cognitive Impairment in Parkinson's Disease Benefit from Deep Brain Stimulation: A Case-Control Study. Mov Disord Clin Pract 2023; 10:382-391. [PMID: 36949802 PMCID: PMC10026300 DOI: 10.1002/mdc3.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 01/18/2023] Open
Abstract
Background Deep brain stimulation (DBS) for Parkinson's disease (PD) is generally contraindicated in persons with dementia but it is frequently performed in people with mild cognitive impairment or normal cognition, and current clinical guidelines are primarily based on these cohorts. Objectives To determine if moderately cognitive impaired individuals including those with mild dementia could meaningfully benefit from DBS in terms of motor and non-motor outcomes. Methods In this retrospective case-control study, we identified a cohort of 40 patients with PD who exhibited moderate (two or more standard deviations below normative scores) cognitive impairment (CI) during presurgical workup and compared their 1-year clinical outcomes to a cohort of 40 matched patients with normal cognition (NC). The surgery targeted subthalamus, pallidus or motor thalamus, in a unilateral, bilateral or staged approach. Results At preoperative baseline, the CI cohort had higher Unified Parkinson's Disease Rating Scale (UPDRS) subscores, but similar levodopa responsiveness compared to the NC cohort. The NC and CI cohorts demonstrated comparable degrees of postoperative improvement in the OFF-medication motor scores, motor fluctuations, and medication reduction. There was no difference in adverse event rates between the two cohorts. Outcomes in the CI cohort did not depend on the target, surgical staging, or impaired cognitive domain. Conclusions Moderately cognitively impaired patients with PD can experience meaningful motor benefit and medication reduction with DBS.
Collapse
Affiliation(s)
- Cady K. Block
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Margi Patel
- Department of NeurologyTexas A&M University, Baylor University Medical CenterDallasTexasUSA
| | - Benjamin B. Risk
- Department of Biostatistics and BioinformaticsEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Ekaterina Staikova
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - David Loring
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Christine D. Esper
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Laura Scorr
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Lenora Higginbotham
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Pratibha Aia
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Mahlon R. DeLong
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Thomas Wichmann
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Stewart A. Factor
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Nicholas Au Yong
- Department of NeurosurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jon T. Willie
- Department of Neurosurgery, Neurology and PsychiatryWashington University School of MedicineSt LouisMissouriUSA
| | - Nicholas M. Boulis
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Robert E. Gross
- Department of NeurosurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Cathrin Buetefisch
- Department of Neurology, Rehabilitation Medicine and RadiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Svjetlana Miocinovic
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Vos SH, Kessels RPC, Vinke RS, Esselink RAJ, Piai V. The Effect of Deep Brain Stimulation of the Subthalamic Nucleus on Language Function in Parkinson's Disease: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2794-2810. [PMID: 34157249 DOI: 10.1044/2021_jslhr-20-00515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose This systematic review focuses on the effect of bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) on language function in Parkinson's disease (PD). It fills an important gap in recent reviews by considering other language tasks in addition to verbal fluency. Method We critically and systematically reviewed the literature on studies that investigated the effect of bilateral STN-DBS on language function in PD. All studies included a matched PD control group who were on best medical treatment, with language testing at similar baseline and follow-up intervals as the DBS PD group. Results Thirteen identified studies included a form of a verbal fluency task, seven studies included picture naming, and only two studies included more language-oriented tasks. We found that verbal fluency was negatively affected after DBS, whereas picture naming was unaffected. Studies investigating individual change patterns using reliable change indices showed that individual variability is larger for picture naming than for verbal fluency. Conclusions Verbal fluency is the most frequently investigated aspect of language function. Our analysis showed a pattern of decline in verbal fluency across multiple studies after STN-DBS, whereas picture naming was unaffected. Data on more language-oriented tests in a large DBS sample and best medical treatment control group are sparse. The investigation of language function in PD after DBS requires sensitive language tests (with and without time pressure) and experimental designs as used in the studies reviewed here. Reliable change index statistics are a promising tool for investigating individual differences in performance after DBS. Supplemental Material https://doi.org/10.23641/asha.14794458.
Collapse
Affiliation(s)
- Sandra H Vos
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - R Saman Vinke
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne A J Esselink
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vitória Piai
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci 2021; 15:599-613. [PMID: 32507876 PMCID: PMC7328022 DOI: 10.1093/scan/nsaa076] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The basal ganglia (BG) and the cerebellum historically have been relegated to a functional role in producing or modulating motor output. Recent research, however, has emphasized the importance of these subcortical structures in multiple functional domains, including affective processes such as emotion recognition, subjective feeling elicitation and reward valuation. The pathways through the thalamus that connect the BG and cerebellum directly to each other and with extensive regions of the cortex provide a structural basis for their combined influence on limbic function. By regulating cortical oscillations to guide learning and strengthening rewarded behaviors or thought patterns to achieve a desired goal state, these regions can shape the way an individual processes emotional stimuli. This review will discuss the basic structure and function of the BG and cerebellum and propose an updated view of their functional role in human affective processing.
Collapse
Affiliation(s)
- Jordan E Pierce
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
8
|
Liu Y, Wu L, Yang C, Xian W, Zheng Y, Zhang C, Hong G, Jiang L, Yang Z, Pei Z, Liu J, Chen L. The white matter hyperintensities within the cholinergic pathways and cognitive performance in patients with Parkinson's disease after bilateral STN DBS. J Neurol Sci 2020; 418:117121. [PMID: 32950863 DOI: 10.1016/j.jns.2020.117121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND White matter hyperintensities (WMHs) in the cholinergic pathways are associated with cognitive impairment in Parkinson's disease (PD). This study aimed to investigate the role of WMHs within the cholinergic pathways in cognitive performance following bilateral subthalamic nucleus deep brain stimulation (STN DBS) in patients with PD. METHODS 38 patients with PD who underwent bilateral STN DBS were assessed using the Cholinergic Pathways Hyperintensities Scale (CHIPS) with magnetic resonance imaging before surgery. Their cognitive statuses were evaluated pre-surgically and 6 months, 1 year, and 2 years post operation. The correlations between the CHIPS score and cognitive performance were analyzed. The differences in cognitive performance before and after the surgery between the high-CHIPS and low-CHIPS groups were also compared. RESULTS The CHIPS score in patients with PD negatively correlated with the general cognition assessed using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) both at baseline and after DBS. No correlation was found between the CHIPS score and the change of MMSE and MoCA scores after DBS. No significant difference was observed in the change in cognitive performance after the surgery between the high and low-CHIPS groups. CONCLUSION The severity of cholinergic WMHs was correlated with the cognition in patients with PD both before and after the STN DBS. However, it does not correlate with the cognitive change in patients with PD after bilateral STN-DBS.
Collapse
Affiliation(s)
- Yanmei Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China
| | - Lei Wu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Wenbiao Xian
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China
| | - Yifan Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China
| | - Caixia Zhang
- School of Public Health, Sun Yat-sen University, North Campus, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Guixun Hong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Lulu Jiang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China
| | - Jinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Ling Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, PR China.
| |
Collapse
|
9
|
You Z, Wu YY, Wu R, Xu ZX, Wu X, Wang XP. Efforts of subthalamic nucleus deep brain stimulation on cognitive spectrum: From explicit to implicit changes in the patients with Parkinson's disease for 1 year. CNS Neurosci Ther 2020; 26:972-980. [PMID: 32436660 PMCID: PMC7415202 DOI: 10.1111/cns.13392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To evaluate the cognitive function of Chinese patients with Parkinson's disease PD postsubthalamic nucleus deep brain stimulation (STN-DBS). METHODS Cognitive function was assessed by neuropsychological methods in PD patients. Twenty matched healthy persons served as normal controls. t test, analysis of variance, and chi-square analysis were used to compare the difference among the groups. Reliable change index was utilized to analyze the changes in cognition from the individual level. RESULTS (a) Improvement in motor function was significantly better after STN-DBS (P < .01). (b) Notably, the increase error rates of implicit SRTT (serial reaction time task) was significantly higher after STN-DBS as compared with the conservative therapy group (P = .03). (c) The decline of verbal fluency (explicit) was also significantly higher after STN-DBS than that in the medication therapy group (P = .03). (d) In the explicit clock-drawing test, scores had significantly improved after STN-DBS (P = .04). CONCLUSIONS STN-DBS as a neuromodulatory tool in the Chinese PD population not only improves motor symptoms but also cognitive function to a certain extent, such as the decline of executive function and verbal fluency. The explicit cognitive decline was significantly quicker than that in patients on medication therapy. The improvement of visiospatial function was also noted. Implicit memory impairment during the 1-year follow-up period was not observed.
Collapse
Affiliation(s)
- ZhiFei You
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yi-Ying Wu
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Rong Wu
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Zhi-Xiang Xu
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Grover T, Georgiev D, Kalliola R, Mahlknecht P, Zacharia A, Candelario J, Hyam J, Zrinzo L, Hariz M, Foltynie T, Limousin P, Jahanshahi M, Tripoliti E. Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. JOURNAL OF PARKINSONS DISEASE 2020; 9:141-151. [PMID: 30594934 DOI: 10.3233/jpd-181368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is an established treatment for late stage Parkinson's disease (PD). Speech intelligibility (SI) and verbal fluency (VF) have been shown to deteriorate following chronic STN-DBS. It has been suggested that speech might respond favourably to low frequency stimulation (LFS). OBJECTIVE We examined how SI, perceptual speech characteristics, phonemic and semantic VF and processes underlying it (clustering and switching) respond to LFS of 60 and 80 Hz in comparison to high frequency stimulation (HFS) (110, 130 and 200 Hz). METHODS In this double-blind study, 15 STN-DBS PD patients (mean age 65, SD = 5.8, 14 right handed, three females), were assessed at five stimulation frequencies: 60 Hz, 80 Hz, 110 Hz, 130 Hz and 200 Hz. In addition to the clinical neurological assessment of speech, VF and SI were assessed. RESULTS SI and in particular articulation, respiration, phonation and prosody improved with LFS (all p < 0.05). Phonemic VF switching improved with LFS (p = 0.005) but this did not translate to an improved phonemic VF score. A trend for improved semantic VF was found. A negative correlation was found between perceptual characteristics of speech and duration of chronic stimulation (all p < 0.05). CONCLUSIONS These findings highlight the need for meticulous programming of frequency to maximise SI in chronic STN-DBS. The findings further implicate stimulation frequency in changes to specific processes underlying VF, namely phonemic switching and demonstrate the potential to address such deficits through advanced adjustment of stimulation parameters.
Collapse
Affiliation(s)
- Timothy Grover
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia.,Faculty of Computer and Information Sciences, University of Ljubljana, Slovenia
| | - Rania Kalliola
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Philipp Mahlknecht
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - André Zacharia
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Joseph Candelario
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Jonathan Hyam
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Elina Tripoliti
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
11
|
Abstract
Deep brain stimulation (DBS) has become an established therapeutic tool for treating patients with Parkinson's disease (PD) who have troublesome motor fluctuations and dyskinesias refractory to best medical therapy. In addition to its proven efficacy in patients with late PD, the EARLYSTIM trial not only demonstrated the efficacy of DBS in patients with early motor complications but also showed that it did not lose its therapeutic efficacy as the years passed by. However, like all other therapies for PD, DBS is not offered to patients either as a cure for this disease nor is it expected to stop the progression of the neurodegenerative process underlying PD; these important issues need to be highlighted to patients who are considering this therapy. This article aims to provide an introduction to residents or trainees starting a career in movement disorders of the technical aspects of this therapy and the evidence base for its use. For the latter objective, PUBMED was searched from 1946 to 2017 combining the search terms "deep brain stimulation" and "Parkinson's disease" looking for studies demonstrating the efficacy of this therapy in PD. Inclusion criteria included studies that involved more than 20 patients with a physician confirmed diagnosis of PD and a follow-up of greater than or equal to at least 12 months. The findings from those studies on motor symptoms, medication requirements, quality of life, and independence in activities of daily living in PD patients are summarized and presented in tabulated form in this paper at the end.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurology, Ipswich Hospital NHS Trust, United Kingdom
| |
Collapse
|
12
|
Tandra S, Ramavath B, Kandadai RM, Jabeen SA, Kannan MA, Borgohain R. Functional Outcome of Bilateral Subthalamic Nucleus-Deep Brain Stimulation in Advanced Parkinson's Disease Patients: A Prospective Study. Ann Indian Acad Neurol 2019; 23:54-58. [PMID: 32055123 PMCID: PMC7001439 DOI: 10.4103/aian.aian_357_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Deep brain stimulation (DBS) is an accepted modality of treatment in patients with Parkinson's disease (PD). Although DBS was approved in advanced PD, it is being done in early PD as well. It was mainly developed to help the patients of PD to overcome the adverse motor effects associated with treatment and treatment failure. Objective: The objective is to study the efficacy of subthalamic nucleus (STN)-DBS procedure in patients with PD. Materials and Methods: This was a prospective, single-center, follow-up observational study using a direct, structured interview of 40 selected PD patients. Preoperative assessment using Unified PD Rating Scale-III (UPDRS-III), Montreal Cognitive Assessment (MOCA), and Parkinson's Disease Questionnaire-39 were done. All the patients underwent DBS. Postoperatively, similar assessment was done during follow-up period of 6 months. The results were analyzed using Student's t-test. Results: The total score of UPDRS-III was reduced by 35% after STN-DBS intervention which was statistically significant (P < 0.05). STN-DBS intervention was successful in significantly reducing all UPDRS-III subscores but failed to reduce the scores in case of postural stability. MOCA scores of the patients were not found to be affected by STN-DBS intervention (P = 0.1466). Similar findings were also observed for MOCA subscores, but there was significant improvement of verbal fluency in all patients. Quality of life(QoL) improved significantly in all patients after STN-DBS intervention in all areas. Lower baseline UPDRS-III scores were found to enhance the QoL both in “off” and “on” state. However, prolonged disease duration and older age at PD onset were found to be hampering factors in the improvement of QoL. Conclusions: STN-DBS is a safe procedure and can be performed in all patients of PD who develop disabling motor fluctuations to improve their QoL irrespective early or advanced disease.
Collapse
Affiliation(s)
- Swetha Tandra
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Balakrishna Ramavath
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | | | - S A Jabeen
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Meena A Kannan
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Rupam Borgohain
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Mehanna R, Bajwa JA, Fernandez H, Wagle Shukla AA. Cognitive Impact of Deep Brain Stimulation on Parkinson's Disease Patients. PARKINSON'S DISEASE 2017; 2017:3085140. [PMID: 29359065 PMCID: PMC5735627 DOI: 10.1155/2017/3085140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
Subthalamic nucleus (STN) or globus pallidus interna (GPi) deep brain stimulation (DBS) is considered a robust therapeutic tool in the treatment of Parkinson's disease (PD) patients, although it has been reported to potentially cause cognitive decline in some cases. We here provide an in-depth and critical review of the current literature regarding cognition after DBS in PD, summarizing the available data on the impact of STN and GPi DBS as monotherapies and also comparative data across these two therapies on 7 cognitive domains. We provide evidence that, in appropriately screened PD patients, worsening of one or more cognitive functions is rare and subtle after DBS, without negative impact on quality of life, and that there is very little data supporting that STN DBS has a worse cognitive outcome than GPi DBS.
Collapse
Affiliation(s)
- Raja Mehanna
- University of Texas Health Science Center, Houston, TX, USA
| | - Jawad A. Bajwa
- Parkinson's, Movement Disorders and Neurorestoration Program, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hubert Fernandez
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
14
|
Enrici I, Mitkova A, Castelli L, Lanotte M, Lopiano L, Adenzato M. Deep Brain Stimulation of the subthalamic nucleus does not negatively affect social cognitive abilities of patients with Parkinson's disease. Sci Rep 2017; 7:9413. [PMID: 28842656 PMCID: PMC5573348 DOI: 10.1038/s41598-017-09737-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a treatment option for patients with advanced idiopathic PD successful at alleviating disabling motor symptoms. Nevertheless, the effects of STN-DBS on cognitive functions remain controversial and few studies have investigated modification of social cognitive abilities in patients with PD treated with STN-DBS. Here we expanded the typically-investigated spectrum of these abilities by simultaneously examining emotion recognition, and both affective and cognitive Theory of Mind (ToM). By means of a cross-sectional study, 20 patients with PD under dopaminergic replacement therapy, 18 patients with PD treated with STN-DBS, and 20 healthy controls performed the Ekman 60-Faces test, the full version of the Reading the Mind in the Eyes test, and the Protocol for the Attribution of Communicative Intentions. There were no differences between the PD groups (treated and not treated with STN-DBS) on any of the social cognitive tests. Our results suggest that patients with PD who are treated with STN-DBS do not experience detrimental effects on their social cognitive abilities. The present study, the first one examining a wide spectrum of social cognitive abilities after DBS of the STN, suggests that this surgical procedure can be considered safe from this standpoint.
Collapse
Affiliation(s)
- Ivan Enrici
- Department of Philosophy and Educational Sciences, University of Turin, Turin, Italy.,Center for Cognitive Science, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy
| | - Antonia Mitkova
- Psychology Research Laboratory, IRCCS Istituto Auxologico Italiano, Ospedale S. Giuseppe, Piancavallo, VCO, Italy
| | - Lorys Castelli
- Department of Psychology, University of Turin, Turin, Italy.
| | - Michele Lanotte
- Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Mauro Adenzato
- Center for Cognitive Science, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy.,Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Foki T, Hitzl D, Pirker W, Novak K, Pusswald G, Auff E, Lehrner J. Assessment of individual cognitive changes after deep brain stimulation surgery in Parkinson's disease using the Neuropsychological Test Battery Vienna short version. Wien Klin Wochenschr 2017; 129:564-571. [PMID: 28176003 PMCID: PMC5552840 DOI: 10.1007/s00508-017-1169-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Long-term therapy of Parkinson’s disease with L‑DOPA is associated with a high risk of developing motor fluctuations and dyskinesia. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can improve these motor complications. Although the positive effect on motor symptoms has been proven, postoperative cognitive decline has been documented. To tackle the impact of DBS on cognition, 18 DBS patients were compared to 25 best medically treated Parkinson’s patients, 24 patients with mild cognitive impairment (MCI) and 12 healthy controls using the Neuropsychological Test Battery Vienna short version (NTBV-short) for cognitive outcome 12 months after the first examination. Reliable change index methodology was used. Roughly 10% of DBS patients showed cognitive decline mainly affecting the domains attention and executive functioning (phonemic fluency). Further research is needed to identify the mechanisms that lead to improvement or deterioration of cognitive functions in individual cases.
Collapse
Affiliation(s)
- Thomas Foki
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Daniela Hitzl
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Walter Pirker
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
- Department of Neurology, Wilhelminenspital Wien, Vienna, Austria
| | - Klaus Novak
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Gisela Pusswald
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Eduard Auff
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Johann Lehrner
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| |
Collapse
|
16
|
Deep Brain Stimulation of the Subthalamic Nucleus Improves Lexical Switching in Parkinsons Disease Patients. PLoS One 2016; 11:e0161404. [PMID: 27575379 PMCID: PMC5004923 DOI: 10.1371/journal.pone.0161404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Reduced verbal fluency (VF) has been reported in patients with Parkinson’s disease (PD), especially those treated by Deep Brain Stimulation of the subthalamic nucleus (STN DBS). To delineate the nature of this dysfunction we aimed at identifying the particular VF-related operations modified by STN DBS. Method Eleven PD patients performed VF tasks in their STN DBS ON and OFF condition. To differentiate VF-components modulated by the stimulation, a temporal cluster analysis was performed, separating production spurts (i.e., ‘clusters’ as correlates of automatic activation spread within lexical fields) from slower cluster transitions (i.e., ‘switches’ reflecting set-shifting towards new lexical fields). The results were compared to those of eleven healthy control subjects. Results PD patients produced significantly more switches accompanied by shorter switch times in the STN DBS ON compared to the STN DBS OFF condition. The number of clusters and time intervals between words within clusters were not affected by the treatment state. Although switch behavior in patients with DBS ON improved, their task performance was still lower compared to that of healthy controls. Discussion Beyond impacting on motor symptoms, STN DBS seems to influence the dynamics of cognitive procedures. Specifically, the results are in line with basal ganglia roles for cognitive switching, in the particular case of VF, from prevailing lexical concepts to new ones.
Collapse
|
17
|
Russo JF, Sheth SA. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 2016; 38:E11. [PMID: 26030699 DOI: 10.3171/2015.3.focus1543] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer F Russo
- 1Columbia University College of Physicians and Surgeons and.,2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
18
|
Mantione M, Nieman D, Figee M, van den Munckhof P, Schuurman R, Denys D. Cognitive effects of deep brain stimulation in patients with obsessive-compulsive disorder. J Psychiatry Neurosci 2015; 40:378-86. [PMID: 26107159 PMCID: PMC4622634 DOI: 10.1503/jpn.140210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising treatment for treatment-refractory obsessive-compulsive disorder (OCD). However, the effects of DBS on cognitive functioning remain unclear. Therefore, we aimed to assess cognitive safety of DBS for treatment-refractory OCD and the association between clinical changes and cognitive functioning. METHODS Patients with treatment-refractory OCD treated with DBS targeted at the nucleus accumbens (NAcc) were compared with a control group of 14 patients with treatment-refractory OCD treated with care as usual. We assessed cognitive functioning at baseline, 3 weeks postoperatively and following 8 months of DBS. We compared change in clinical symptoms with cognitive changes. RESULTS There were 16 patients in the DBS group and 14 patients in the control group. Three weeks postoperatively, the DBS group showed a significantly reduced performance on measures of visual organization and verbal fluency and a trend toward reduced performance on measures of visual memory and abstract reasoning. Cognitive functioning was found to be stable on all other measures. After 8 months of DBS, reduced performances persisted, except for a significant improvement in verbal fluency. Cognitive functioning in all other domains remained unaffected. We found no correlation between improvement of clinical symptoms and cognitive changes. LIMITATIONS A limitation of this study was its relatively small sample size. CONCLUSION Deep brain stimulation targeted at the NAcc may be considered a safe method in terms of cognition because cognitive functioning was unaffected on most neuropsychological measures. Nevertheless, we observed some minor reduced performance on specific measures of executive functioning that were possibly associated with surgical intervention. Our results suggest that severity of OCD symptoms is independent of cognitive functioning.
Collapse
Affiliation(s)
- Mariska Mantione
- Correspondence to: M. Mantione, Academic Medical Center, University of Amsterdam, PA.0-162, PO Box 22660 — 1100 DD Amsterdam;
| | | | | | | | | | | |
Collapse
|
19
|
Effects of Mental Flexibility and Motor Dysfunction on Cognitive Performance in Patients With Parkinson's Disease. ARCHIVES OF NEUROSCIENCE 2015. [DOI: 10.5812/archneurosci.21087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Sequential movement skill in Parkinson's disease: A state-of-the-art. Cortex 2015; 65:102-12. [DOI: 10.1016/j.cortex.2015.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022]
|
21
|
|
22
|
Wu X, Cai H, Ge R, Li L, Jia Z. Recent progress of imaging agents for Parkinson's disease. Curr Neuropharmacol 2014; 12:551-63. [PMID: 25977680 PMCID: PMC4428027 DOI: 10.2174/1570159x13666141204221238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/22/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a common progressive, neurodegenerative brain disease that is promoted by mitochondrial dysfunction, oxidative stress, protein aggregation and proteasome dysfunction in the brain. Compared with computer tomography (CT) or magnetic resonance imaging (MRI), non-invasive nuclear radiopharmaceuticals have great significance for the early diagnosis of PD due to their high sensitivity and specificity in atypical and preclinical cases. Based on the development of coordination chemistry and chelator design, radionuclides may be delivered to lesions by attaching to PD-related transporters and receptors, such as dopamine, serotonin, and others. In this review, we comprehensively detailed the current achievements in radionuclide imaging in Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Ran Ge
- Department of Nuclear Medicine, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
23
|
Ehlen F, Schoenecker T, Kühn AA, Klostermann F. Differential effects of deep brain stimulation on verbal fluency. BRAIN AND LANGUAGE 2014; 134:23-33. [PMID: 24815947 DOI: 10.1016/j.bandl.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
We aimed at gaining insights into principles of subcortical lexical processing. Therefore, effects of deep brain stimulation (DBS) in different target structures on verbal fluency (VF) were tested. VF was assessed with active vs. inactivated DBS in 13 and 14 patients with DBS in the vicinity of the thalamic ventral intermediate nucleus (VIM) and, respectively, of the subthalamic nucleus (STN). Results were correlated to electrode localizations in postoperative MRI, and compared to those of 12 age-matched healthy controls. Patients' VF performance was generally below normal. However, while activation of DBS in the vicinity of VIM provoked marked VF decline, it induced subtle phonemic VF enhancement in the vicinity of STN. The effects correlated with electrode localizations in left hemispheric stimulation sites. The results show distinct dependencies of VF on DBS in the vicinity of VIM vs. STN. Particular risks for deterioration occur in patients with relatively ventromedial thalamic electrodes.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Charité, University Medicine Berlin, Dept. of Neurology, Motor and Cognition Group, Campus Benjamin Franklin, Germany.
| | - Thomas Schoenecker
- Charité, University Medicine Berlin, Dept. of Neurology, Motor Neuroscience Group, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Andrea A Kühn
- Charité, University Medicine Berlin, Dept. of Neurology, Motor Neuroscience Group, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| | - Fabian Klostermann
- Charité, University Medicine Berlin, Dept. of Neurology, Motor and Cognition Group, Campus Benjamin Franklin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| |
Collapse
|
24
|
Heumann R, Moratalla R, Herrero MT, Chakrabarty K, Drucker-Colín R, Garcia-Montes JR, Simola N, Morelli M. Dyskinesia in Parkinson's disease: mechanisms and current non-pharmacological interventions. J Neurochem 2014; 130:472-89. [DOI: 10.1111/jnc.12751] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Rolf Heumann
- Molecular Neurobiochemistry; Ruhr-University Bochum; Bochum Germany
| | | | - Maria Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE-CIBERNED); School of Health Sciences; University Jaume I; Castelló, and School of Medicine; University of Murcia; Murcia Spain
| | | | - René Drucker-Colín
- Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Mexico City México
| | | | - Nicola Simola
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Micaela Morelli
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- National Institute of Neuroscience (INN); University of Cagliari; Cagliari Italy
- National Research Council (CNR); Neuroscience Institute; Cagliari Italy
- Center of Excellence on Neurobiology of Dependence; University of Cagliari; Cagliari Italy
| |
Collapse
|
25
|
Abstract
The use of functional brain imaging techniques, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), has allowed for monitoring neuronal and neurochemical activities in the living human brain and identifying abnormal changes in various neurological and psychiatric diseases. Combining these methods with techniques such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) has greatly advanced our understanding of the effects of such treatment on brain activity at targeted regions as well as specific disease-related networks. Indeed, recent network-level analysis focusing on inter-regional covarying activities in data interpretation has unveiled several key mechanisms underlying the therapeutic effects of brain stimulation. However, non-negligible discrepancies have been reported in the literature, attributable in part to the heterogeneity of both imaging and brain stimulation techniques. This chapter summarizes recent studies that combine brain imaging and brain stimulation, and includes discussion of future direction in these lines of research.
Collapse
|
26
|
Albaugh DL, Shih YYI. Neural circuit modulation during deep brain stimulation at the subthalamic nucleus for Parkinson's disease: what have we learned from neuroimaging studies? Brain Connect 2014; 4:1-14. [PMID: 24147633 PMCID: PMC5349222 DOI: 10.1089/brain.2013.0193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) represents a powerful clinical tool for the alleviation of many motor symptoms that are associated with Parkinson's disease. Despite its extensive use, the underlying therapeutic mechanisms of STN-DBS remain poorly understood. In the present review, we integrate and discuss recent literature examining the network effects of STN-DBS for Parkinson's disease, placing emphasis on neuroimaging findings, including functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These techniques enable the noninvasive detection of brain regions that are modulated by DBS on a whole-brain scale, representing a key experimental strength given the diffuse and far-reaching effects of electrical field stimulation. By examining these data in the context of multiple hypotheses of DBS action, generally developed through clinical and physiological observations, we define a multitude of consistencies and inconsistencies in the developing literature of this rapidly moving field.
Collapse
Affiliation(s)
- Daniel L. Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Boller JK, Barbe MT, Pauls KAM, Reck C, Brand M, Maier F, Fink GR, Timmermann L, Kalbe E. Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson's disease. Exp Neurol 2014; 254:70-7. [PMID: 24444545 DOI: 10.1016/j.expneurol.2014.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Inconsistent findings regarding the effects of dopaminergic medication (MED) and deep brain stimulation (DBS) of the subthalamic nucleus (STN) on decision making processes and impulsivity in Parkinson's disease (PD) patients have been reported. This study investigated the influence of MED and STN-DBS on decision-making under risk. Eighteen non-demented PD patients, treated with both MED and STN-DBS (64.3±10.2years, UPDRS III MED off, DBS off 45.5±17.1) were tested with the Game of Dice Task (GDT) which probes decision-making under risk during four conditions: MED on/DBS on, MED on/DBS off, MED off/DBS on, and MED off/DBS off. Task performance across conditions was compared analyzing two GDT-parameters: (i) the "net score" indicating advantageous decisions, and (ii) the patient's ability to use negative feedback. Significantly higher GDT net scores were observed in Med on in contrast to Med off conditions as well as in DBS on versus DBS off conditions. However, no effect of therapy for the patient's ability to make use of negative feedback could be detected. The data suggest a positive influence of both MED and STN-DBS on making decisions under risk in PD patients, an effect which seems to be mediated by mechanisms other than the use of negative feedback.
Collapse
Affiliation(s)
- Jana K Boller
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Michael T Barbe
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institute of Neurosciences and Medicine (INM-3), Cognitive Neurology Section, Research Centre Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany.
| | - K Amande M Pauls
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Christiane Reck
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Matthias Brand
- General Psychology: Cognition, Faculty of Engineering, University of Duisburg-Essen, Campus Duisburg, Forsthausweg 2, 47048 Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Ahrendahls Wiese 199, 45141 Essen, Germany.
| | - Franziska Maier
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institute of Neurosciences and Medicine (INM-3), Cognitive Neurology Section, Research Centre Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany.
| | - Lars Timmermann
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Elke Kalbe
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institute of Gerontology & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University of Vechta, Driverstrasse 22, 49377 Vechta, Germany.
| |
Collapse
|
28
|
Marceglia S, Fumagalli M, Priori A. What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus. Expert Rev Neurother 2014; 11:139-49. [DOI: 10.1586/ern.10.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Ethical considerations in deep brain stimulation for psychiatric illness. J Clin Neurosci 2014; 21:1-5. [DOI: 10.1016/j.jocn.2013.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 01/03/2023]
|
30
|
Mehanna R, Lai EC. Deep brain stimulation in Parkinson's disease. Transl Neurodegener 2013; 2:22. [PMID: 24245947 PMCID: PMC4177536 DOI: 10.1186/2047-9158-2-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
For the last 50 years, levodopa has been the cornerstone of Parkinson's disease management. However, a majority of patients develop motor complications a few years after therapy onset. Deep brain stimulation has been approved by the FDA as an adjunctive treatment in Parkinson disease, especially aimed at controlling these complications. However, the exact mechanism of action of deep brain stimulation, the best nucleus to target as well as the best timing for surgery are still debatable. We here provide an in-depth and critical review of the current literature on this topic.
Collapse
Affiliation(s)
| | - Eugene C Lai
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin, Suite 802, Houston 77030, TX, USA.
| |
Collapse
|
31
|
Abstract
For the last 50 years, levodopa has been the cornerstone of Parkinson's disease management. However, a majority of patients develop motor complications a few years after therapy onset. Deep brain stimulation has been approved by the FDA as an adjunctive treatment in Parkinson disease, especially aimed at controlling these complications. However, the exact mechanism of action of deep brain stimulation, the best nucleus to target as well as the best timing for surgery are still debatable. We here provide an in-depth and critical review of the current literature on this topic.
Collapse
Affiliation(s)
| | - Eugene C Lai
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin, Suite 802, Houston 77030, TX, USA.
| |
Collapse
|
32
|
deSouza RM, Moro E, Lang AE, Schapira AHV. Timing of deep brain stimulation in Parkinson disease: a need for reappraisal? Ann Neurol 2013; 73:565-75. [PMID: 23483564 PMCID: PMC4065356 DOI: 10.1002/ana.23890] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/27/2023]
Abstract
We review the current application of deep brain stimulation (DBS) in Parkinson disease (PD) and consider the evidence that earlier use of DBS confers long-term symptomatic benefit for patients compared to best medical therapy. Electronic searches were performed of PubMed, Web of Knowledge, Embase, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials to identify all article types relating to the timing of DBS in PD. Current evidence suggests that DBS is typically performed in late stage PD, a mean of 14 to 15 years after diagnosis. Current guidelines recommend that PD patients who are resistant to medical therapies, have significant medication side effects and lengthening off periods, but are otherwise cognitively intact and medically fit for surgery be considered for DBS. If these criteria are rigidly interpreted, it may be that, by the time medical treatment options have been exhausted, the disease has progressed to the point that the patient may no longer be fit for neurosurgical intervention. From the evidence available, we conclude that surgical management of PD alone or in combination with medical therapy results in greater improvement of motor symptoms and quality of life than medical treatment alone. There is evidence to support the use of DBS in less advanced PD and that it may be appropriate for earlier stages of the disease than for which it is currently used. The improving short and long-term safety profile of DBS makes early application a realistic possibility.
Collapse
Affiliation(s)
- Ruth-Mary deSouza
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
33
|
Abstracts of the 2013 Annual Meeting of the British Society for Stereotactic & Functional Neurosurgery (BSSFN) hosted by Queen Elizabeth Hospital Birmingham, June 2013. Br J Neurosurg 2013. [DOI: 10.3109/02688697.2013.819676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Bell E, Racine E. Ethics guidance for neurological and psychiatric deep brain stimulation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:313-25. [DOI: 10.1016/b978-0-444-53497-2.00026-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Heluani AS, Porto FHDG, Listik S, de Campos AW, Machado AAC, Cukiert A, de Oliveira Jr JO. Neuropsychological and quality of life assessment in patients with Parkinson's disease submitted to bilateral deep brain stimulation in the subthalamic nucleus. Dement Neuropsychol 2012; 6:260-265. [PMID: 29213806 PMCID: PMC5619338 DOI: 10.1590/s1980-57642012dn06040010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/13/2012] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) has been widely used to control motor symptoms and improve quality of life in patients with Parkinsons disease (PD). Recently, DBS in the subthalamic nucleus (STN) has become the preferred target for patients with mixed motor symptoms. Despite resultant motor and quality of life improvements, the procedure has been associated with cognitive decline, mainly in language skills, and also with psychiatric symptoms. OBJECTIVE To evaluate the influence of DBS in the STN on cognition, mood and quality of life. METHODS We studied 20 patients with PD submitted to DBS in the STN from May 2008 to June 2012 with an extensive battery of cognitive tests including memory, language, praxis, executive functions and attention assessments; the Parkinson's Disease Quality of Life Questionnaire (PDQ-39); and the Hospital Anxiety and Depression Scale (HAD), were applied both before and after the surgery. Data was analyzed using SPSS version 17.0 and results compared using the paired Student's t test. RESULTS A total of 20 patients with pre and post-operative assessments were included. A statistically significant improvement was found in total score and on subscales of mobility, activities of daily living and emotional well-being from the PDQ-39 (P=0.009, 0.025, 0.001 and 0.034, respectively). No significant difference was found on the cognitive battery or mood scale. CONCLUSION DBS in the SNT improved quality of life in PD with no negative impact on cognitive skills and mood.
Collapse
Affiliation(s)
| | - Fábio Henrique de Gobbi Porto
- MD, Neurologist. Behavioral and Cognitive Neurology Unit,
Department of Neurology, and Cognitive Disorders Reference Center (CEREDIC).
Hospital das Clínicas of the University of São Paulo. Department of
Neurosurgery of Hospital “Euriclydes de Jesus Zerbini”, São Paulo SP,
Brazil
| | - Sergio Listik
- MD, Neurosurgeon. Department of Neurosurgery of Hospital
“Euriclydes de Jesus Zerbini”, São Paulo SP, Brazil. Movement Disorders
Unit
| | - Alexandre Walter de Campos
- MD, Neurosurgeon. Department of Neurosurgery of Hospital
“Euriclydes de Jesus Zerbini”, São Paulo SP, Brazil. Movement Disorders
Unit
| | | | | | - José Oswaldo de Oliveira Jr
- MD, Neurosurgeon in Chief-Movement Disorders Unit -
Department of Neurosurgery of Hospital “Euriclydes de Jesus Zerbini”, São
Paulo SP, Brazil
| |
Collapse
|
36
|
DiFrancesco MF, Halpern CH, Hurtig HH, Baltuch GH, Heuer GG. Pediatric indications for deep brain stimulation. Childs Nerv Syst 2012; 28:1701-14. [PMID: 22828866 DOI: 10.1007/s00381-012-1861-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/10/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE Based on the success of deep brain stimulation (DBS) in the treatment of adult disorders, it is reasonable to assume that the application of DBS in the pediatric population is an emerging area worthy of study. The purpose of this paper is to outline the current movement disorder indications for DBS in the pediatric population, and to describe areas of investigation, including possible medically refractory psychiatric indications. METHODS We performed a structured review of the English language literature from 1990 to 2011 related to studies of DBS in pediatrics using Medline and PubMed search results. RESULTS Twenty-four reports of DBS in the pediatric population were found. Based on published data on the use of DBS for pediatric indications, there is a spectrum of clinical evidence for the use of DBS to treat different disorders. Dystonia, a disease associated with a low rate of remission and significant disability, is routinely treated with DBS and is currently the most promising pediatric application of DBS. We caution the application of DBS to conditions associated with a high remission rate later in adulthood, like obsessive-compulsive disorder and Tourette's syndrome. Moreover, epilepsy and obesity are currently being investigated as indications for DBS in the adult population; however, both are associated with significant morbidity in pediatrics. CONCLUSION While currently dystonia is the most promising application of DBS in the pediatric population, multiple conditions currently being investigated in adults also afflict children and adolescents, and thus warrant further research.
Collapse
Affiliation(s)
- Matthew F DiFrancesco
- Center for Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-4399, USA
| | | | | | | | | |
Collapse
|
37
|
Torta DME, Vizzari V, Castelli L, Zibetti M, Lanotte M, Lopiano L, Geminiani G. Impulsivities and Parkinson's disease: delay aversion is not worsened by Deep Brain Stimulation of the subthalamic nucleus. PLoS One 2012; 7:e43261. [PMID: 22984415 PMCID: PMC3439437 DOI: 10.1371/journal.pone.0043261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/18/2012] [Indexed: 12/13/2022] Open
Abstract
Deep Brain Stimulation (DBS) of the Subthalamic Nucleus (STN) improves motor symptoms in Parkinson's disease (PD), but can exert detrimental effects on impulsivity. These effects are especially related to the inability to slow down when high-conflict choices have to be made. However, the influence that DBS has on delay aversion is still under-investigated. Here, we tested a group of 21 PD patients on and off stimulation (off medication) by using the Cambridge Gamble Task (CGT), a computerized task that allows the investigation of risk-related behaviours and delay aversion, and psychological questionnaires such as the Barratt Impulsiveness Scale (BIS), the Sensitivity to Punishment and to Reward Questionnaire (SPSRQ), and the Quick Delay Questionnaire (QDQ). We found that delay aversion scores on the CGT were no higher when patients were on stimulation as compared to when they were off stimulation. In contrast, PD patients reported feeling more impulsive in the off stimulation state, as revealed by significantly higher scores on the BIS. Higher scores on the sensitivity to punishment subscale of the SPSRQ highlighted that possible punishments influence patients' behaviours more than possible rewards. Significant correlations between delay aversion scores on the CGT and QDQ delay aversion subscale suggest that these two instruments can be used in synergy to reach a convergent validity. In conclusion, our results show that not all impulsivities are detrimentally affected by DBS of the STN and that the joint use of experimental paradigms and psychological questionnaires can provide useful insights in the study of impulsivity.
Collapse
Affiliation(s)
- Diana M E Torta
- Department of Psychology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Borgohain R, Kandadai RM, Jabeen A, Kannikannan MA. Nonmotor outcomes in Parkinson's disease: is deep brain stimulation better than dopamine replacement therapy? Ther Adv Neurol Disord 2012; 5:23-41. [PMID: 22276074 DOI: 10.1177/1756285611423412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nonmotor symptoms are an integral part of Parkinson's disease and cause significant morbidity. Pharmacological therapy helps alleviate the disease but produces nonmotor manifestations. While deep brain stimulation (DBS) has emerged as the treatment of choice for motor dysfunction, the effect on nonmotor symptoms is not well known. Compared with pharmacological therapy, bilateral subthalamic nucleus (STN)-DBS or globus pallidum interna (GPi)-DBS has significant beneficial effects on pain, sleep, gastrointestinal and urological symptoms. STN-DBS is associated with a mild worsening in verbal fluency while GPi-DBS has no effect on cognition. STN-DBS may improve cardiovascular autonomic disturbances by reducing the dose of dopaminergic drugs. Because the motor effects of STN-DBS and GPi-DBS appear to be similar, nonmotor symptoms may determine the target choice in surgery of future patients.
Collapse
|
39
|
Müller T. Drug therapy in patients with Parkinson's disease. Transl Neurodegener 2012; 1:10. [PMID: 23211041 PMCID: PMC3514092 DOI: 10.1186/2047-9158-1-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/24/2012] [Indexed: 01/20/2023] Open
Abstract
Parkinson`s disease (PD) is a progressive, disabling neurodegenerative disorder with onset of motor and non-motor features. Both reduce quality of life of PD patients and cause caregiver burden. This review aims to provide a survey of possible therapeutic options for treatment of motor and non motor symptoms of PD and to discuss their relation to each other. MAO-B-Inhibitors, NMDA antagonists, dopamine agonists and levodopa with its various application modes mainly improve the dopamine associated motor symptoms in PD. This armentarium of PD drugs only partially influences the onset and occurrence of non motor symptoms. These PD features predominantly result from non dopaminergic neurodegeneration. Autonomic features, such as seborrhea, hyperhidrosis, orthostatic syndrome, salivation, bladder dysfunction, gastrointestinal disturbances, and neuropsychiatric symptoms, such as depression, sleep disorders, psychosis, cognitive dysfunction with impaired execution and impulse control may appear. Drug therapy of these non motor symptoms complicates long-term PD drug therapy due to possible occurrence of drug interactions, - side effects, and altered pharmacokinetic behaviour of applied compounds. Dopamine substituting compounds themselves may contribute to onset of these non motor symptoms. This complicates the differentiation from the disease process itself and influences therapeutic options, which are often limited because of additional morbidity with necessary concomitant drug therapy.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St, Joseph Hospital Berlin-Weissensee, Gartenstr, 1, 13088, Berlin, Germany.
| |
Collapse
|
40
|
Skodda S, Schlegel U, Südmeyer M, Schnitzler A, Wojtecki L. Effects of levodopa and deep brain stimulation on motor speech performance in Parkinson’s disease. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Müller T, Gerlach M, Youdim MB, Riederer P. Psychiatric, nonmotor aspects of Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:477-90. [DOI: 10.1016/b978-0-444-52002-9.00028-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Baláž M, Bočková M, Rektorová I, Rektor I. Involvement of the subthalamic nucleus in cognitive functions — A concept. J Neurol Sci 2011; 310:96-9. [DOI: 10.1016/j.jns.2011.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/24/2022]
|
43
|
Zibetti M, Merola A, Rizzi L, Ricchi V, Angrisano S, Azzaro C, Artusi CA, Arduino N, Marchisio A, Lanotte M, Rizzone M, Lopiano L. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson's disease. Mov Disord 2011; 26:2327-34. [DOI: 10.1002/mds.23903] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 11/12/2022] Open
|
44
|
Brück C, Wildgruber D, Kreifelts B, Krüger R, Wächter T. Effects of subthalamic nucleus stimulation on emotional prosody comprehension in Parkinson's disease. PLoS One 2011; 6:e19140. [PMID: 21552518 PMCID: PMC3084266 DOI: 10.1371/journal.pone.0019140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/17/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although impaired decoding of emotional prosody has frequently been associated with Parkinson's disease (PD), to date only few reports have sought to explore the effect of Parkinson's treatment on disturbances of prosody decoding. In particular, little is known about how surgical treatment approaches such as high frequency deep brain stimulation (DBS) affect emotional speech perception in patients with PD. Accordingly, the objective of this study was to evaluate the effect of subthalamic nucleus (STN) stimulation on prosody processing. METHODOLOGY/PRINCIPAL FINDINGS To this end the performance of 13 PD patients on three tasks requiring the decoding of emotional speech was assessed and subsequently compared to the performance of healthy control individuals. To delineate the effect of STN-DBS, all patients were tested with stimulators turned on as well as with stimulators turned off. Results revealed that irrespective of whether assessments were made "on" or "off" stimulation, patients' performance was less accurate as compared to healthy control participants on all tasks employed in this study. However, while accuracy appeared to be unaffected by stimulator status, a facilitation of reactions specific to highly conflicting emotional stimulus material (i.e. stimulus material presenting contradicting emotional messages on a verbal and non-verbal prosodic level) was observed during "on" stimulation assessments. CONCLUSION In sum, presented results suggest that the processing of emotional speech is indeed modulated by STN-DBS. Observed alterations might, on the one hand, reflect a more efficient processing of highly conflicting stimulus material following DBS. However, on the other hand, given the lack of an improvement in accuracy, increased impulsivity associated with STN stimulation needs to be taken into consideration.
Collapse
Affiliation(s)
- Carolin Brück
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
45
|
Cyron D. Deep brain stimulation—drawbacks and perspectives. In response to Dr. Saleh. Acta Neurochir (Wien) 2010. [DOI: 10.1007/s00701-010-0815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Pisapia JM, Halpern CH, Williams NN, Wadden TA, Baltuch GH, Stein SC. Deep brain stimulation compared with bariatric surgery for the treatment of morbid obesity: a decision analysis study. Neurosurg Focus 2010; 29:E15. [DOI: 10.3171/2010.5.focus10109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Object
Roux-en-Y gastric bypass is the gold standard treatment for morbid obesity, although failure rates may be high, particularly in patients with a BMI > 50 kg/m2. With improved understanding of the neuropsychiatric basis of obesity, deep brain stimulation (DBS) offers a less invasive and reversible alternative to available surgical treatments. In this decision analysis, the authors determined the success rate at which DBS would be equivalent to the two most common bariatric surgeries.
Methods
Medline searches were performed for studies of laparoscopic adjustable gastric banding (LAGB), laparoscopic Roux-en-Y gastric bypass (LRYGB), and DBS for movement disorders. Bariatric surgery was considered successful if postoperative excess weight loss exceeded 45% at 1-year follow-up. Using complication and success rates from the literature, the authors constructed a decision analysis model for treatment by LAGB, LRYGB, DBS, or no surgical treatment. A sensitivity analysis in which major parameters were systematically varied within their 95% CIs was used.
Results
Fifteen studies involving 3489 and 3306 cases of LAGB and LRYGB, respectively, and 45 studies involving 2937 cases treated with DBS were included. The operative successes were 0.30 (95% CI 0.247–0.358) for LAGB and 0.968 (95% CI 0.967–0.969) for LRYGB. Sensitivity analysis revealed utility of surgical complications in LRYGB, probability of surgical complications in DBS, and success rate of DBS as having the greatest influence on outcomes. At no values did LAGB result in superior outcomes compared with other treatments.
Conclusions
Deep brain stimulation must achieve a success rate of 83% to be equivalent to bariatric surgery. This high-threshold success rate is probably due to the reported success rate of LRYGB, despite its higher complication rate (33.4%) compared with DBS (19.4%). The results support further research into the role of DBS for the treatment of obesity.
Collapse
Affiliation(s)
| | | | | | - Thomas A. Wadden
- 3Psychiatry, Center for Weight and Eating Disorders, University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
47
|
Kramer DR, Halpern CH, Buonacore DL, McGill KR, Hurtig HI, Jaggi JL, Baltuch GH. Best surgical practices: a stepwise approach to the University of Pennsylvania deep brain stimulation protocol. Neurosurg Focus 2010; 29:E3. [DOI: 10.3171/2010.4.focus10103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) is the treatment of choice for otherwise healthy patients with advanced Parkinson disease who are suffering from disabling dyskinesias and motor fluctuations related to dopaminergic therapy. As DBS is an elective procedure, it is essential to minimize the risk of morbidity. Further, precision in targeting deep brain structures is critical to optimize efficacy in controlling motor features. The authors have already established an operational checklist in an effort to minimize errors made during DBS surgery. Here, they set out to standardize a strict, step-by-step approach to the DBS surgery used at their institution, including preoperative evaluation, the day of surgery, and the postoperative course. They provide careful instruction on Leksell frame assembly and placement as well as the determination of indirect coordinates derived from MR images used to target deep brain structures. Detailed descriptions of the operative procedure are provided, outlining placement of the stereotactic arc as well as determination of the appropriate bur hole location, lead placement using electrophysiology, and placement of the internal pulse generator. The authors also include their approach to preventing postoperative morbidity. They believe that a strategic, step-by-step approach to DBS surgery combined with a standardized checklist will help to minimize operating room mistakes that can compromise targeting and increase the risk of complication.
Collapse
|
48
|
Lu C, Bharmal A, Kiss ZH, Suchowersky O, Haffenden AM. Attention and reach-to-grasp movements in Parkinson's disease. Exp Brain Res 2010; 205:69-80. [PMID: 20585762 DOI: 10.1007/s00221-010-2341-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
Abstract
The role of attention in grasping movements directed at common objects has not been examined in Parkinson's disease (PD), though these movements are critical to activities of daily living. Our primary objective was to determine whether patients with PD demonstrate automaticity in grasping movements directed toward common objects. Automaticity is assumed when tasks can be performed with little or no interference from concurrent tasks. Grasping performance in three patient groups (newly diagnosed, moderate, and advanced/surgically treated PD) on and off of their medication or deep brain stimulation was compared to performance in an age-matched control group. Automaticity was demonstrated by the absence of a decrement in grasping performance when attention was consumed by a concurrent spatial-visualization task. Only the control group and newly diagnosed PD group demonstrated automaticity in their grasping movements. The moderate and advanced PD groups did not demonstrate automaticity. Furthermore, the well-known effects of pharmacotherapy and surgical intervention on movement speed and muscle activation patterns did not appear to reduce the impact of attention-demanding tasks on grasping movements in those with moderate to advanced PD. By the moderate stage of PD, grasping is an attention-demanding process; this change is not ameliorated by dopaminergic or surgical treatments. These findings have important implications for activities of daily living, as devoting attention to the simplest of daily tasks would interfere with complex activities and potentially exacerbate fatigue.
Collapse
Affiliation(s)
- Cathy Lu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|