1
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Wan C, Zong RY, Chen XS. The new mechanism of cognitive decline induced by hypertension: High homocysteine-mediated aberrant DNA methylation. Front Cardiovasc Med 2022; 9:928701. [PMID: 36352848 PMCID: PMC9637555 DOI: 10.3389/fcvm.2022.928701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The prevalence and severity of hypertension-induced cognitive impairment increase with the prolonging of hypertension. The mechanisms of cognitive impairment induced by hypertension primarily include cerebral blood flow perfusion imbalance, white and gray matter injury with blood-brain barrier disruption, neuroinflammation and amyloid-beta deposition, genetic polymorphisms and variants, and instability of blood pressure. High homocysteine (HHcy) is an independent risk factor for hypertension that also increases the risk of developing early cognitive impairment. Homocysteine (Hcy) levels increase in patients with cognitive impairment induced by hypertension. This review summarizes a new mechanism whereby HHcy-mediated aberrant DNA methylation and exacerbate hypertension. It involves changes in Hcy-dependent DNA methylation products, such as methionine adenosyltransferase, DNA methyltransferases, S-adenosylmethionine, S-adenosylhomocysteine, and methylenetetrahydrofolate reductase (MTHFR). The mechanism also involves DNA methylation changes in the genes of hypertension patients, such as brain-derived neurotrophic factor, apolipoprotein E4, and estrogen receptor alpha, which contribute to learning, memory, and attention deficits. Studies have shown that methionine (Met) induces hypertension in mice. Moreover, DNA hypermethylation leads to cognitive behavioral changes alongside oligodendroglial and/or myelin deficits in Met-induced mice. Taken together, these studies demonstrate that DNA methylation regulates cognitive dysfunction in patients with hypertension. A better understanding of the function and mechanism underlying the effect of Hcy-dependent DNA methylation on hypertension-induced cognitive impairment will be valuable for early diagnosis, interventions, and prevention of further cognitive defects induced by hypertension.
Collapse
Affiliation(s)
- Chong Wan
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui-Yi Zong
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- NCO School, Army Medical University, Shijiazhuang, China
| | - Xing-Shu Chen
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Su Y, Yang X, Yang L, Liu X, She Z, Zhang Y, Dong Z. Thyroid hormones regulate reelin expression in neuropsychiatric disorders. Can J Physiol Pharmacol 2022; 100:1033-1044. [PMID: 36166833 DOI: 10.1139/cjpp-2022-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incidence and prevalence of hypothyroidism in pregnancy have increased over the past two decades, leading to the occurrence of neuropsychiatric disorders. However, the underlying mechanisms of thyroid hormone (TH)-regulated gene expression and neuropsychiatric development during the postnatal period remain unknown. Recent achievements have shown that reelin, a large extracellular glycoprotein, plays a crucial role in neuronal migration and localization during the development of neocortex and cerebellar cortex, thereby participating in the development of neuropsychiatric diseases. Reelin-induced neuronal migration requires triiodothyronine (T3) from the deiodination of thyroxine (T4) by fetal brain deiodinases. Previous studies have reported decreased reelin levels and abnormal gene expression, which are the same as the pathological alternations in reelin-induced neuropsychiatric disorders including schizophrenia and autism. Low T3 in the fetal brain due to hypothyroxinemia during pregnancy may be detrimental to neuronal migration, leading to neuropsychiatric disorders. In this review, we focus on the reelin expression between hypothyroidism and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yadi Su
- College of Stomatology, Chongqing Medical University, Chongqing, 401334, PR China
| | - Xiaoyu Yang
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401334, PR China
| | - Xinjing Liu
- College of Public Health and Management, Chongqing Medical University, Chongqing, 401334, PR China
| | - Zhenghang She
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Youwen Zhang
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
4
|
Alameda L, Trotta G, Quigley H, Rodriguez V, Gadelrab R, Dwir D, Dempster E, Wong CCY, Forti MD. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychol Med 2022; 52:1645-1665. [PMID: 35193719 PMCID: PMC9280283 DOI: 10.1017/s0033291721005559] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A significant proportion of the global burden of disease can be attributed to mental illness. Despite important advances in identifying risk factors for mental health conditions, the biological processing underlying causal pathways to disease onset remain poorly understood. This represents a limitation to implement effective prevention and the development of novel pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environmental and genetic risk factors which might play a role in disease onset, including childhood adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methylation has provided new and promising insights into the role of biological pathways implicated in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response and oxidative stress. While these epigenetic changes have been often studied as disease-specific, similarly to the investigation of environmental risk factors, they are often transdiagnostic. Therefore, we aim to review the existing literature on DNA methylation from human studies of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological pathways either transdiagnostically or specifically related to psychiatric diseases such as Eating Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression, Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence between some of these epigenetic modifications and the exposure to known risk factors for psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psychiatry research.
Collapse
Affiliation(s)
- Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Harriet Quigley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romayne Gadelrab
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Chloe C. Y. Wong
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
6
|
Esmaeili F, Mansouri E, Emami MA, Montazerghaem H, Hosseini Teshnizi S, Kheirandish M, Koochakkhani S, Eftekhar E. Association of Serum Level and DNA Methylation Status of Brain-Derived Neurotrophic Factor with the Severity of Coronary Artery Disease. Indian J Clin Biochem 2021; 37:159-168. [PMID: 35463104 PMCID: PMC8993966 DOI: 10.1007/s12291-021-00974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/03/2021] [Indexed: 11/25/2022]
Abstract
New investigations suggest a pivotal role of brain-derived neurotrophic factor (BDNF) in cardiovascular homeostasis. However, no data could indicate the association between BDNF methylation status and the risk of coronary artery disease (CAD). The aim of the present study was to assess the association of BDNF methylation status and its serum level with the severity of CAD. According to the angiography report, a total of 84 non-diabetic CAD patients with at least 50% stenosis in one of the major coronary arteries were selected as the CAD group. For comparison, 62 angiographically proven non-CAD participants were selected as control. Additionally, subjects were categorized according to the Gensini Scoring system. Blood sample was used for genomic DNA isolation. Methylation status of the BDNF gene in exonic region was determined using the MS-PCR method and serum BDNF levels were measured with ELISA. BDNF gene methylation was significantly higher in the CAD group than in the non-CAD group. After adjustment for confounding factors, BDNF gene hypermethylation increases the risk of CAD in the total population (OR = 2.769; 95% CI, 1.033-7.423; P = 0.043). BDNF gene hypermethylation was higher in patients with severe CAD than patients with mild CAD. Additionally, the serum BDNF level was not different from non-diabetic CAD and control groups. Our findings indicate that BDNF hypermethylation was associated with an increased risk of CAD, which may help identify subjects being at the risk of developing CAD. In addition, BDNF hypermethylation shows a significant correlation with the severity of CAD.
Collapse
Affiliation(s)
- Fataneh Esmaeili
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Mansouri
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Amin Emami
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saeed Hosseini Teshnizi
- Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Kheirandish
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Jomhori St, 7919915519 Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Jomhori St, 7919915519 Bandar Abbas, Iran
| |
Collapse
|
7
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
The clues in solving the mystery of major psychosis: The epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2020; 113:51-61. [DOI: 10.1016/j.neubiorev.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
9
|
Tian XL, Jiang SY, Zhang XL, Yang J, Cui JH, Liu XL, Gong KR, Yan SC, Zhang CY, Shao G. Potassium bisperoxo (1,10-phenanthroline) oxovanadate suppresses proliferation of hippocampal neuronal cell lines by increasing DNA methyltransferases. Neural Regen Res 2019; 14:826-833. [PMID: 30688268 PMCID: PMC6375031 DOI: 10.4103/1673-5374.249230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Bisperoxo (1,10-phenanthroline) oxovanadate (BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases (DNMTs), which would impact the cell cycle. Immortalized mouse hippocampal neuronal precursor cells (HT22) were treated with 0.3 or 3 μM BpV. Proliferation, morphology, and viability of HT22 cells were detected with an IncuCyte real-time video imaging system or inverted microscope and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, respectively. mRNA and protein expression of DNMTs and p21 in HT22 cells was detected by real-time polymerase chain reaction and immunoblotting, respectively. In addition, DNMT activity was measured with an enzyme-linked immunosorbent assay. Effects of BpV on the cell cycle were analyzed using flow cytometry. Results demonstrated that treatment with 0.3 μM BpV did not affect cell proliferation, morphology, or viability; however, treatment with 3 μM BpV decreased cell viability, increased expression of both DNMT3B mRNA and protein, and inhibited the proliferation of HT22 cells; and 3 μM BpV also blocked the cell cycle and increased expression of the regulatory factor p21 by increasing DNMT expression in mouse hippocampal neurons.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Yuan Jiang
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xiao-Lu Zhang
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Yang
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jun-He Cui
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xiao-Lei Liu
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Ke-Rui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francsico, San Francisco, CA, USA
| | - Shao-Chun Yan
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Chun-Yang Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Guo Shao
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Vidrascu EM, Bashore AC, Howard TD, Moore JB. Effects of early- and mid-life stress on DNA methylation of genes associated with subclinical cardiovascular disease and cognitive impairment: a systematic review. BMC MEDICAL GENETICS 2019; 20:39. [PMID: 30866842 PMCID: PMC6417232 DOI: 10.1186/s12881-019-0764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Background Traditional and novel risk factors cannot sufficiently explain the differential susceptibility to cardiovascular disease (CVD). Epigenetics may serve to partially explain this residual disparity, with life course stressors shown to modify methylation of genes implicated in various diseases. Subclinical CVD is often comorbid with cognitive impairment (CI), which warrants research into the identification of common genes for both conditions. Methods We conducted a systematic review of the existing literature to identify studies depicting the relationship between life course stressors, DNA methylation, subclinical CVD, and cognition. Results A total of 16 articles (8 human and 8 animal) were identified, with the earliest published in 2008. Four genes (COMT, NOS3, Igfl1, and Sod2) were analyzed by more than one study, but not in association with both CVD and CI. One gene (NR3C1) was associated with both outcomes, albeit not within the same study. There was some consistency among studies with markers used for subclinical CVD and cognition, but considerable variability in stress exposure (especially in human studies), cell type/tissue of interest, method for detection of DNA methylation, and risk factors. Racial and ethnic differences were not considered, but analysis of sex in one human study found statistically significant differentially methylated X-linked loci associated with attention and intelligence. Conclusions This review suggests the need for additional studies to implement more comprehensive and methodologically rigorous study designs that can better identify epigenetic biomarkers to differentiate individuals vulnerable to both subclinical CVD and associated CI. Electronic supplementary material The online version of this article (10.1186/s12881-019-0764-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena M Vidrascu
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Alexander C Bashore
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Justin B Moore
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
11
|
Alfimova MV, Kondratyev NV, Golov AK, Golubev SA, Galaktionova DY, Nasedkina TV, Golimbet VE. [Relationships of rs7341475 polymorphism and DNA methylation in the reelin gene with schizophrenia symptoms]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:71-76. [PMID: 30335076 DOI: 10.17116/jnevro201811809171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the role of polymorphism rs7341475 and methylation of the reelin gene in symptoms of schizophrenia and semantic verbal fluency. MATERIAL AND METHODS Genotypes at the locus rs7341475 were identified in 556 patients with schizophrenic disorders. PANSS scores were obtained for 549 patients and 221 patients performed a test for semantic verbal fluency. The association of the reelin promoter methylation with the PANSS and verbal fluency measures was evaluated in 35 patients. A five-factor model of the PANSS was used. RESULTS The interaction effect of sex with genotype on the PANSS scores was found (F=2.70, p=0.020). Schizophrenic men homozygous for a common allele G had the lowest scores of the positive syndrome. Verbal fluency was related to the reelin promoter methylation. CONCLUSION The results suggest that polymorphism rs7341475 may be associated with the variability of positive symptomatology in schizophrenic men. At the same time, the reelin gene methylation pattern, which consists of a higher methylation level in the region of the transcription start site and a lower one in the distal region of the promoter, may be beneficial for verbal fluency.
Collapse
Affiliation(s)
| | | | - A K Golov
- Mental Health Research Center, Moscow, Russia
| | - S A Golubev
- Mental Health Research Center, Moscow, Russia
| | - D Yu Galaktionova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - T V Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
12
|
Alfimova MV, Kondratiev NV, Golov AK, Golimbet VE. Methylation of the Reelin Gene Promoter in Peripheral Blood and Its Relationship with the Cognitive Function of Schizophrenia Patients. Mol Biol 2018. [DOI: 10.1134/s0026893318050023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Wang RH, Chen YF, Chen S, Hao B, Xue L, Wang XG, Shi YW, Zhao H. Maternal Deprivation Enhances Contextual Fear Memory via Epigenetically Programming Second-Hit Stress-Induced Reelin Expression in Adult Rats. Int J Neuropsychopharmacol 2018; 21:1037-1048. [PMID: 30169690 PMCID: PMC6209857 DOI: 10.1093/ijnp/pyy078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early-life stress increases the risk for posttraumatic stress disorder. However, the epigenetic mechanism of early-life stress-induced susceptibility to posttraumatic stress disorder in adulthood remains unclear. METHODS Rat pups were exposed to maternal deprivation during postnatal days 1 to 14 for 3 hours daily and treated with the DNA methyltransferase inhibitor zebularine, L-methionine, or vehicle 7 days before contextual fear conditioning, which was used as a second stress and to mimic the reexperiencing symptom of posttraumatic stress disorder in adulthood. Long-term potentiation, dendritic spine density, DNA methyltransferase mRNA, Reelin gene methylation, and Reelin protein expression in the hippocampal CA1 were measured. RESULTS Maternal deprivation enhanced contextual fear memory in adulthood. Meanwhile, maternal deprivation decreased DNA methyltransferase mRNA and Reelin gene methylation in the hippocampal CA1 on postnatal days 22 and 90. Reelin protein expression was increased in the hippocampal CA1 following contextual fear conditioning in adulthood. Furthermore, compared with rats that experienced maternal deprivation alone, rats also exposed to contextual fear conditioning showed an enhanced induction of hippocampal long-term potentiation and increased dendritic spine density in the hippocampal CA1 following contextual fear conditioning in adulthood. Zebularine pretreatment led to an enhancement of contextual fear memory, hypomethylation of the Reelin gene, and increased Reelin protein expression in adult rats, while L-methionine had the opposite effects. CONCLUSIONS Maternal deprivation can epigenetically program second-hit stress-induced Reelin expression and enhance the susceptibility to contextual fear memory in adulthood. These findings provide a new framework for understanding the cumulative stress hypothesis.
Collapse
Affiliation(s)
- Run-Hua Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Ye-Fei Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Correspondence: Hu Zhao, PhD, MD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China (); and Yan-Wei Shi, PhD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China ()
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Correspondence: Hu Zhao, PhD, MD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China (); and Yan-Wei Shi, PhD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China ()
| |
Collapse
|
14
|
Orsolini L, Sarchione F, Vellante F, Fornaro M, Matarazzo I, Martinotti G, Valchera A, Di Nicola M, Carano A, Di Giannantonio M, Perna G, Olivieri L, De Berardis D. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr Neuropharmacol 2018; 16:583-606. [PMID: 29357805 PMCID: PMC5997872 DOI: 10.2174/1570159x16666180119144538] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Schizophrenia is a complex illness in which genetic, environmental, and epigenetic components have been implicated. However, recently, psychiatric disorders appear to be related to a chronic inflammatory state, at the level of specific cerebral areas which have been found as well impaired and responsible for schizophrenia symptomatology. Hence, a role of inflammatory mediators and cytokines has been as well defined. Accordingly, the role of an acute inflammatory phase protein, the C-reactive protein (CRP) has been recently investigated. OBJECTIVE The objective of the present study is to evaluate how PCR may represent a biomarker in schizophrenia, i.e. correlated with illness phases and/or clinical manifestation and/or psychopathological severity. METHODS A systematic review was here carried out by searching the following keywords ((C-reactive protein AND ((schizophrenia) OR (psychotic disorder))) for the topics 'PCR' and 'Schizophrenia', by using MESH terms. RESULTS An immune dysfunction and inflammation have been described amongst schizophrenic patients. Findings reported elevated CRP levels in schizophrenia, mainly correlated with the severity of illness and during the recrudescent phase. CRP levels are higher when catatonic features, negative symptomatology and aggressiveness are associated. CRP levels appeared not to be related to suicidal behaviour and ideation. CONCLUSION CRP and its blood levels have been reported higher amongst schizophrenic patients, by suggesting a role of inflammation in the pathogenesis of schizophrenia. Further studies are needed to better understand if CRP may be considered a biomarker in schizophrenia.
Collapse
Affiliation(s)
- Laura Orsolini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, Hatfield, HertsAL10 9AB, UK
- Polyedra Research, Teramo, Italy
| | - Fabiola Sarchione
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Federica Vellante
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Michele Fornaro
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine ‘Federico II’ Naples, Naples, Italy
| | - Ilaria Matarazzo
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Alessandro Valchera
- Polyedra Research, Teramo, Italy
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, Ascoli Piceno, Italy
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli”, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “Madonna Del Soccorso”, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Massimo Di Giannantonio
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, Como, Italy
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Florida, USA
| | - Luigi Olivieri
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4 Teramo, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4 Teramo, Italy
| |
Collapse
|
15
|
Lezheiko TV, Alfimova MV. [Epigenetic research of cognitive deficit in schizophrenia: some methodological considerations]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:76-80. [PMID: 29171493 DOI: 10.17116/jnevro201711710176-80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To highlights the problems of assessing cognitive deficits in schizophrenia, relevant to the epigenetic, as well as a wide range of other approaches to the search for biological bases of cognition. MATERIAL AND METHODS The literature on the weaknesses in the evaluation of cognitive functions in patients with schizophrenia are summarized and discussed. The analysis is illustrated by our experience in developing a cognitive battery and a sample to examine relationships between DNA methylation in blood cells and cognitive deficits in schizophrenia. RESULTS AND CONCLUSION It has been shown that to assess cognitive deficits in patients and to reduce the influence of confounders in epigenetic analysis it is necessary (1) to use a battery with the existing co-normative data in the target population, which allows to evaluate representativeness of control and patients included in the study sample, (2) to verify the theoretically driven battery structure using normative population and a cohort of patients, (3) to balance groups of cases and controls on the number, age and sex, for which an individual matching of cases and controls is best suited, (4) to conduct an additional statistical analysis controlling for education and smoking.
Collapse
|
16
|
Ibrahim O, Sutherland HG, Haupt LM, Griffiths LR. An emerging role for epigenetic factors in relation to executive function. Brief Funct Genomics 2017; 17:170-180. [DOI: 10.1093/bfgp/elx032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
The correlation between DNA methylation and transcriptional expression of human dopamine transporter in cell lines. Neurosci Lett 2017; 662:91-97. [PMID: 29030220 DOI: 10.1016/j.neulet.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the relationship between DNA methylation and expression of human dopamine transporter (hDAT). We examined methylation status of hDAT in cells with various hDAT expression levels, including two dopaminergic neural cell lines (SK-N-AS and SH-SY-5Y) and one non-dopaminergic cell line (HEK293) by bisulfite sequencing PCR(BSP). The effects of DNA methyltransferase inhibitor 5-aza-dC or/and histone deacetylase inhibitor (HDACi, sodium butyrate, NaB) on the DNA methylation status and mRNA expression levels of hDAT were examined. The results revealed marked hypomethylation of the two promoter regions (-1214 to -856bp and -48 to 439bp, the first base of exon 1 was taken as +1 bp)of hDAT in SK-N-AS (4.7%±2.0mC and 3.5%±1.0mC, respectively) compared with SH-SY-5Y (88.0%±4.4%mC and 81.1%±8.8%mC) and HEK293 (90.7%±2.4mC and 84.4%±8.6% mC) cell lines, indicating a cell-specific methylation regulation of hDAT. 5-aza-dC and NaB decreased hypermethylation,while increase hDAT expression in SH-SY-5Y cells and recovered hDAT mRNA expression in HEK293 cells. DNA methylation enabled the cell-specific differential expression of the hDAT gene. hDAT silencing was reversed by the introduction of DNA hypomethylation via 5-aza-dC or/and NaB.
Collapse
|
18
|
Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR, Hanisah MN, Kartini A, Norsidah K, Nor Zamzila A. Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res 2017; 88:28-37. [PMID: 28086126 DOI: 10.1016/j.jpsychires.2016.12.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 01/08/2023]
Abstract
The epigenetic changes of RELN that are involved in the development of dopaminergic neurons may fit the developmental theory of schizophrenia. However, evidence regarding the association of RELN DNA methylation with schizophrenia is far from sufficient, as studies have only been conducted on a few limited brain samples. As DNA methylation in the peripheral blood may mirror the changes taking place in the brain, the use of peripheral blood for a DNA methylation study in schizophrenia is feasible due to the scarcity of brain samples. Therefore, the aim of our study was to examine the relationship of DNA methylation levels of RELN promoters with schizophrenia using genomic DNA derived from the peripheral blood of patients with the disorder. The case control studies consisted of 110 schizophrenia participants and 122 healthy controls who had been recruited from the same district. After bisufhite conversion, the methylation levels of the DNA samples were calculated based on their differences of the Cq values assayed using the highly sensitive real-time MethyLight TaqMan® procedure. A significantly higher level of methylation of the RELN promoter was found in patients with schizophrenia compared to controls (p = 0.005) and also in males compared with females (p = 0.004). Subsequently, the RELN expression of the methylated group was 25 fold less than that of the non-methylated group. Based upon the assumption of parallel methylation changes in the brain and peripheral blood, we concluded that RELN DNA methylation might contribute to the pathogenesis of schizophrenia. However, the definite effects of methylation on RELN function during development and also in adult life still require further elaboration.
Collapse
Affiliation(s)
- Rahim Mohd Nabil Fikri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia
| | - A Talib Norlelawati
- Department of Pathology & Laboratory Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia.
| | - Abdul Rahim Nour El-Huda
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia
| | - Mohd Noor Hanisah
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia
| | - Kuzaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia
| | - Abdullah Nor Zamzila
- Department of Pathology & Laboratory Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Malaysia
| |
Collapse
|
19
|
Rethinking the Epigenetic Framework to Unravel the Molecular Pathology of Schizophrenia. Int J Mol Sci 2017; 18:ijms18040790. [PMID: 28387726 PMCID: PMC5412374 DOI: 10.3390/ijms18040790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia is a complex mental disorder whose causes are still far from being known. Although researchers have focused on genetic or environmental contributions to the disease, we still lack a scientific framework that joins molecular and clinical findings. Epigenetic can explain how environmental variables may affect gene expression without modifying the DNA sequence. In fact, neuroepigenomics represents an effort to unify the research available on the molecular pathology of mental diseases, which has been carried out through several approaches ranging from interrogating single DNA methylation events and hydroxymethylation patterns, to epigenome-wide association studies, as well as studying post-translational modifications of histones, or nucleosomal positioning. The high dependence on tissues with epigenetic marks compels scientists to refine their sampling procedures, and in this review, we will focus on findings obtained from brain tissue. Despite our efforts, we still need to refine our hypothesis generation process to obtain real knowledge from a neuroepigenomic framework, to avoid the creation of more noise on this innovative point of view; this may help us to definitively unravel the molecular pathology of severe mental illnesses, such as schizophrenia.
Collapse
|
20
|
Alfimova MV, Kondratiev NV, Golimbet VE. Results and promises of genetics of cognitive impairment in schizophrenia: epigenetic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2017. [DOI: 10.17116/jnevro201711721130-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Alelú-Paz R, Carmona FJ, Sanchez-Mut JV, Cariaga-Martínez A, González-Corpas A, Ashour N, Orea MJ, Escanilla A, Monje A, Guerrero Márquez C, Saiz-Ruiz J, Esteller M, Ropero S. Epigenetics in Schizophrenia: A Pilot Study of Global DNA Methylation in Different Brain Regions Associated with Higher Cognitive Functions. Front Psychol 2016; 7:1496. [PMID: 27746755 PMCID: PMC5044511 DOI: 10.3389/fpsyg.2016.01496] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Attempts to discover genes that are involved in the pathogenesis of major psychiatric disorders have been frustrating and often fruitless. Concern is building about the need to understand the complex ways in which nature and nurture interact to produce mental illness. We analyze the epigenome in several brain regions from schizophrenic patients with severe cognitive impairment using high-resolution (450K) DNA methylation array. We identified 139 differentially methylated CpG sites included in known and novel candidate genes sequences as well as in and intergenic sequences which functions remain unknown. We found that altered DNA methylation is not restricted to a particular region, but includes others such as CpG shelves and gene bodies, indicating the presence of different DNA methylation signatures depending on the brain area analyzed. Our findings suggest that epimutations are not relatables between different tissues or even between tissues' regions, highlighting the need to adequately study brain samples to obtain reliable data concerning the epigenetics of schizophrenia.
Collapse
Affiliation(s)
- Raúl Alelú-Paz
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of AlcaláMadrid, Spain; Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, University of AlcaláMadrid, Spain; Department of Psychiatry, CIBERSAM, IRYCIS, Hospital Ramón y CajalMadrid, Spain
| | - Francisco J Carmona
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat Barcelona, Spain
| | - José V Sanchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat Barcelona, Spain
| | - Ariel Cariaga-Martínez
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, University of Alcalá Madrid, Spain
| | - Ana González-Corpas
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| | - Nadia Ashour
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| | - Maria J Orea
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| | - Ana Escanilla
- Neurological Brain Bank, Parc Sanitari Sant Joan de Déu Barcelona, Spain
| | - Alfonso Monje
- Neurological Brain Bank, Parc Sanitari Sant Joan de Déu Barcelona, Spain
| | | | - Jerónimo Saiz-Ruiz
- Department of Psychiatry, CIBERSAM, IRYCIS, Hospital Ramón y Cajal Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de LlobregatBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain; Department of Physiological Sciences II, School of Medicine, University of BarcelonaBarcelona, Spain
| | - Santiago Ropero
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine, University of Alcalá Madrid, Spain
| |
Collapse
|
22
|
Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats. Neurotox Res 2015; 29:243-55. [PMID: 26678494 DOI: 10.1007/s12640-015-9585-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 10/24/2022]
Abstract
General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.
Collapse
|
23
|
Zong X, Hu M, Li Z, Cao H, Chen X, Tang J. DNA methylation in schizophrenia: progress and challenges. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0690-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Chen XS, Huang N, Michael N, Xiao L. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells. Front Cell Neurosci 2015; 9:451. [PMID: 26696822 PMCID: PMC4667081 DOI: 10.3389/fncel.2015.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
Collapse
Affiliation(s)
- Xing-Shu Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Namaka Michael
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
- *Correspondence: Lan Xiao
| |
Collapse
|