1
|
Ossadtchi A, Semenkov I, Zhuravleva A, Kozunov V, Serikov O, Voloshina E. Representational dissimilarity component analysis (ReDisCA). Neuroimage 2024; 301:120868. [PMID: 39343110 DOI: 10.1016/j.neuroimage.2024.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The principle of Representational Similarity Analysis (RSA) posits that neural representations reflect the structure of encoded information, allowing exploration of spatial and temporal organization of brain information processing. Traditional RSA when applied to EEG or MEG data faces challenges in accessing activation time series at the brain source level due to modeling complexities and insufficient geometric/anatomical data. To overcome this, we introduce Representational Dissimilarity Component Analysis (ReDisCA), a method for estimating spatial-temporal components in EEG or MEG responses aligned with a target representational dissimilarity matrix (RDM). ReDisCA yields informative spatial filters and associated topographies, offering insights into the location of "representationally relevant" sources. Applied to evoked response time series, ReDisCA produces temporal source activation profiles with the desired RDM. Importantly, while ReDisCA does not require inverse modeling its output is consistent with EEG and MEG observation equation and can be used as an input to rigorous source localization procedures. Demonstrating ReDisCA's efficacy through simulations and comparison with conventional methods, we show superior source localization accuracy and apply the method to real EEG and MEG datasets, revealing physiologically plausible representational structures without inverse modeling. ReDisCA adds to the family of inverse modeling free methods such as independent component analysis (Makeig, 1995), Spatial spectral decomposition (Nikulin, 2011), and Source power comodulation (Dähne, 2014) designed for extraction sources with desired properties from EEG or MEG data. Extending its utility beyond EEG and MEG analysis, ReDisCA is likely to find application in fMRI data analysis and exploration of representational structures emerging in multilayered artificial neural networks.
Collapse
Affiliation(s)
- Alexei Ossadtchi
- Higher School of Economics, Moscow, Russia; LIFT, Life Improvement by Future Technologies Institute, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia.
| | - Ilia Semenkov
- Higher School of Economics, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Anna Zhuravleva
- Higher School of Economics, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Vladimir Kozunov
- MEG Centre, Moscow State University of Psychology and Education, Russia
| | - Oleg Serikov
- AI Initiative, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
| | - Ekaterina Voloshina
- Higher School of Economics, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| |
Collapse
|
2
|
Golubic SJ, Jurasic MJ, Susac A, Huonker R, Gotz T, Haueisen J. Attention modulates topology and dynamics of auditory sensory gating. Hum Brain Mapp 2019; 40:2981-2994. [PMID: 30882981 PMCID: PMC6865797 DOI: 10.1002/hbm.24573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 01/26/2023] Open
Abstract
This work challenges the widely accepted model of sensory gating as a preattention inhibitory process by investigating whether attention directed at the second tone (S2) within a paired-click paradigm could affect gating at the cortical level. We utilized magnetoencephalography, magnetic resonance imaging and spatio-temporal source localization to compare the cortical dynamics underlying gating responses across two conditions (passive and attention) in 19 healthy subjects. Source localization results reaffirmed the existence of a fast processing pathway between the prefrontal cortex (PFC) and bilateral superior temporal gyri (STG) that underlies the auditory gating process. STG source dynamics comprised two gating sub-components, Mb1 and Mb2, both of which showed significant gating suppression (>51%). The attention directed to the S2 tone changed the gating network topology by switching the prefrontal generator from a dorsolateral location, which was active in the passive condition (18/19), to a medial location, active in the attention condition (19/19). Enhanced responses to the attended stimulus caused a significant reduction in gating suppression in both STG gating components (>50%). Our results demonstrate that attention not only modulates sensory gating dynamics, but also exerts topological rerouting of information processing within the PFC. The present data, suggesting that the cortical levels of early sensory processing are subject to top-down influences, change the current view of gating as a purely automatic bottom-up process.
Collapse
Affiliation(s)
| | | | - Ana Susac
- Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
- Department of Applied Physics, Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
| | - Ralph Huonker
- Biomagnetic Center, Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Theresa Gotz
- Biomagnetic Center, Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University HospitalJenaGermany
| | - Jens Haueisen
- Biomagnetic Center, Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Institute of Biomedical Engineering and Informatics, Technical University IlmenauIlmenauGermany
| |
Collapse
|
3
|
Tanaka H. Length of Hair Affects P1 and N170 Latencies for Perception of Women's Faces. Percept Mot Skills 2018; 125:1011-1028. [PMID: 30413142 DOI: 10.1177/0031512518803202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the relationship between length of hair in facial stimuli and latency and amplitude of the P1 and N170 components of event-related potentials during facial perception. Electroencephalography was recorded from 21 Japanese participants (four men, 17 women) who were shown pictures of faces with one of three lengths of hair: long, medium length, or short. In addition, we used both fixed-size and variable-size blocks. In fixed-size blocks, the three types of stimuli were matched to have the same overall size; in variable-size blocks, long hair stimuli were the biggest, medium length hair stimuli were medium sized, and short hair stimuli were the smallest. We analyzed P1 latency and amplitude using two-way (6 × 2) repeated-measures analysis of variance over length of hair and electrode; N170 latency and amplitude were analyzed using three-way (6 × 2 × 2) repeated-measures analysis of variance over length of hair, hemisphere, and electrode. The latency of P1 to faces with short hair in variable-size blocks was significantly longer than that to the other five stimulus types ( p < .01 for four of the other types; p = .083 for medium length hair in variable-size blocks). The latency of N170 to faces with long hair in variable-size blocks was significantly shorter than that to faces with medium length hair and short hair in variable-size blocks ( p = .026 and p = .086, respectively). These results indicate that length of hair influenced P1 and N170 latency, supporting the notion that length of hair is a significant external facial feature. Because long hair attracted participants' attention, there was early perceptual processing of this feature. In contrast, because short hair did not attract attention, perceptual processing of this feature was late.
Collapse
Affiliation(s)
- Hideaki Tanaka
- 1 Department of Psychology, Faculty of Psychology, Otemon Gakuin University, Japan
| |
Collapse
|
4
|
Josef Golubic S, Aine CJ, Stephen JM, Adair JC, Knoefel JE, Supek S. MEG biomarker of Alzheimer's disease: Absence of a prefrontal generator during auditory sensory gating. Hum Brain Mapp 2017; 38:5180-5194. [PMID: 28714589 DOI: 10.1002/hbm.23724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
Magnetoencephalography (MEG), a direct measure of neuronal activity, is an underexplored tool in the search for biomarkers of Alzheimer's disease (AD). In this study, we used MEG source estimates of auditory gating generators, nonlinear correlations with neuropsychological results, and multivariate analyses to examine the sensitivity and specificity of gating topology modulation to detect AD. Our results demonstrated the use of MEG localization of a medial prefrontal (mPFC) gating generator as a discrete (binary) detector of AD at the individual level and resulted in recategorizing the participant categories in: (1) controls with mPFC generator localized in response to both the standard and deviant tones; (2) a possible preclinical stage of AD participants (a lower functioning group of controls) in which mPFC activation was localized to the deviant tone only; and (3) symptomatic AD in which mPFC activation was not localized to either the deviant or standard tones. This approach showed a large effect size (0.9) and high accuracy, sensitivity, and specificity (100%) in identifying symptomatic AD patients within a limited research sample. The present results demonstrate high potential of mPFC activation as a noninvasive biomarker of AD pathology during putative preclinical and clinical stages. Hum Brain Mapp 38:5180-5194, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Cheryl J Aine
- Department of Radiology, UNM School of Medicine, Albuquerque, New Mexico.,The Mind Research Network, Albuquerque, New Mexico
| | | | - John C Adair
- Department of Neurology, UNM School of Medicine, Albuquerque, New Mexico.,New Mexico VA Healthcare System, Albuquerque, New Mexico
| | - Janice E Knoefel
- Department of Neurology, UNM School of Medicine, Albuquerque, New Mexico.,Department of Internal Medicine, UNM School of Medicine, Albuquerque, New Mexico
| | - Selma Supek
- Department of Physics, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
5
|
Tanaka H. Facial Cosmetics Exert a Greater Influence on Processing of the Mouth Relative to the Eyes: Evidence from the N170 Event-Related Potential Component. Front Psychol 2016; 7:1359. [PMID: 27656161 PMCID: PMC5011140 DOI: 10.3389/fpsyg.2016.01359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Cosmetic makeup significantly influences facial perception. Because faces consist of similar physical structures, cosmetic makeup is typically used to highlight individual features, particularly those of the eyes (i.e., eye shadow) and mouth (i.e., lipstick). Though event-related potentials have been utilized to study various aspects of facial processing, the influence of cosmetics on specific ERP components remains unclear. The present study aimed to investigate the relationship between the application of cosmetic makeup and the amplitudes of the P1 and N170 event-related potential components during facial perception tasks. Moreover, the influence of visual perception on N170 amplitude, was evaluated under three makeup conditions: Eye Shadow, Lipstick, and No Makeup. Electroencephalography was used to monitor 17 participants who were exposed to visual stimuli under each these three makeup conditions. The results of the present study subsequently demonstrated that the Lipstick condition elicited a significantly greater N170 amplitude than the No Makeup condition, while P1 amplitude was unaffected by any of the conditions. Such findings indicate that the application of cosmetic makeup alters general facial perception but exerts no influence on the perception of low-level visual features. Collectively, these results support the notion that the application of makeup induces subtle alterations in the processing of facial stimuli, with a particular effect on the processing of specific facial components (i.e., the mouth), as reflected by changes in N170 amplitude.
Collapse
Affiliation(s)
- Hideaki Tanaka
- Department of Psychology, Faculty of Psychology, Otemon Gakuin University Ibaraki, Japan
| |
Collapse
|
6
|
Abstract
This study used event-related potentials to investigate the sensitivity of P1 and N170 components to human-like and animal-like makeup stimuli, which were derived from pictures of Peking opera characters. As predicted, human-like makeup stimuli elicited larger P1 and N170 amplitudes than did animal-like makeup stimuli. Interestingly, a right hemisphere advantage was observed for human-like but not for animal-like makeup stimuli. Dipole source analyses of 130-200-ms window showed that the bilateral fusiform face area may contribute to the differential sensitivity of the N170 component in response to human-like and animal-like makeup stimuli. The present study suggests that the amplitudes of both the P1 and the N170 are sensitive for the mouth component of face-like stimuli.
Collapse
|
7
|
Butler DL, Mattingley JB, Cunnington R, Suddendorf T. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins. PLoS One 2013; 8:e72586. [PMID: 24069151 PMCID: PMC3777976 DOI: 10.1371/journal.pone.0072586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i) the configural processing of faces (i.e., the N170), (ii) the matching of the currently perceived face to a representation already stored in memory (i.e., the P250), and (iii) the retrieval of information about the person being recognized (i.e., the N400). There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400) differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.
Collapse
Affiliation(s)
- David L. Butler
- School of Psychology, McElwain Building, University of Queensland, Saint Lucia, Australia
| | - Jason B. Mattingley
- School of Psychology, McElwain Building, University of Queensland, Saint Lucia, Australia
- Queensland Brain Institute, QBI Building, University of Queensland, Saint Lucia, Australia
| | - Ross Cunnington
- School of Psychology, McElwain Building, University of Queensland, Saint Lucia, Australia
- Queensland Brain Institute, QBI Building, University of Queensland, Saint Lucia, Australia
| | - Thomas Suddendorf
- School of Psychology, McElwain Building, University of Queensland, Saint Lucia, Australia
| |
Collapse
|
8
|
Gao Z, Goldstein A, Harpaz Y, Hansel M, Zion-Golumbic E, Bentin S. A magnetoencephalographic study of face processing: M170, gamma-band oscillations and source localization. Hum Brain Mapp 2012; 34:1783-95. [PMID: 22422432 DOI: 10.1002/hbm.22028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/04/2011] [Accepted: 12/05/2011] [Indexed: 11/09/2022] Open
Abstract
EEG studies suggested that the N170 ERP and Gamma-band responses to faces reflect early and later stages of a multiple-level face-perception mechanism, respectively. However, these conclusions should be considered cautiously because EEG-recorded Gamma may be contaminated by noncephalic activity such as microsaccades. Moreover, EEG studies of Gamma cannot easily reveal its intracranial sources. Here we recorded MEG rather than EEG, assessed the sources of the M170 and Gamma oscillations using beamformer, and explored the sensitivity of these neural manifestations to global, featural and configural information in faces. The M170 was larger in response to faces and face components than in response to watches. Scrambling the configuration of the inner components of the face even if presented without the face contour reduced and delayed the M170. The amplitude of MEG Gamma oscillations (30-70 Hz) was higher than baseline during an epoch between 230-570 ms from stimulus onset and was particularly sensitive to the configuration of the stimuli, regardless of their category. However, in the lower part of this frequency range (30-40 Hz) only physiognomic stimuli elevated the MEG above baseline. Both the M170 and Gamma were generated in a posterior-ventral network including the fusiform, inferior-occipital and lingual gyri, all in the right hemisphere. The generation of Gamma involved additional sources in the visual system, bilaterally. We suggest that the evoked M170 manifests a face-perception mechanism based on the global characteristics of face, whereas the induced Gamma oscillations are associated with the integration of visual input into a pre-existent coherent perceptual representation.
Collapse
Affiliation(s)
- Zaifeng Gao
- Department of Psychology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Usakli AB, Susac A, Gurkan S. Fast face recognition: eye blink as a reliable behavioral response. Neurosci Lett 2011; 504:49-52. [PMID: 21911038 DOI: 10.1016/j.neulet.2011.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/17/2022]
Abstract
To investigate how quickly we can recognize faces, we used the onset of eye blinking as a behavioral response. The mean reaction time for the blink response was 188±38ms which was 80ms faster than the motor response. As expected, the subjects were more correct and faster to distinguish between faces and houses than when responding to particular face emotion and identity. Our results suggested that early visual processing before 150ms is very important in face processing. This corroborates previous reports from EEG/MEG studies and intracranial recordings on the face-related response around 100ms after stimulus onset. Our findings indicated that blinking can be used as a fast and reliable behavioral response.
Collapse
Affiliation(s)
- Ali Bulent Usakli
- Department of Technical Sciences, The NCO Academy, Balikesir, Turkey
| | | | | |
Collapse
|
10
|
Susac A, Ilmoniemi RJ, Ranken D, Supek S. Face activated neurodynamic cortical networks. Med Biol Eng Comput 2011; 49:531-43. [PMID: 21305361 DOI: 10.1007/s11517-011-0740-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Previous neuroimaging studies have shown that complex visual stimuli, such as faces, activate multiple brain regions, yet little is known on the dynamics and complexity of the activated cortical networks during the entire measurable evoked response. In this study, we used simulated and face-evoked empirical MEG data from an oddball study to investigate the feasibility of accurate, efficient, and reliable spatio-temporal tracking of cortical pathways over prolonged time intervals. We applied a data-driven, semiautomated approach to spatio-temporal source localization with no prior assumptions on active cortical regions to explore non-invasively face-processing dynamics and their modulation by task. Simulations demonstrated that the use of multi-start downhill simplex and data-driven selections of time intervals submitted to the Calibrated Start Spatio-Temporal (CSST) algorithm resulted in improved accuracy of the source localization and the estimation of the onset of their activity. Locations and dynamics of the identified sources indicated a distributed cortical network involved in face processing whose complexity was task dependent. This MEG study provided the first non-invasive demonstration, agreeing with intracranial recordings, of an early onset of the activity in the fusiform face gyrus (FFG), and that frontal activation preceded parietal for responses elicited by target faces.
Collapse
Affiliation(s)
- Ana Susac
- Department of Physics, Faculty of Science, University of Zagreb, Bijenicka c. 32, Zagreb, Croatia.
| | | | | | | |
Collapse
|
11
|
Susac A, Ilmoniemi RJ, Pihko E, Ranken D, Supek S. Early cortical responses are sensitive to changes in face stimuli. Brain Res 2010; 1346:155-64. [PMID: 20510886 DOI: 10.1016/j.brainres.2010.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 05/03/2010] [Accepted: 05/17/2010] [Indexed: 11/16/2022]
Abstract
Face-related processing has been demonstrated already in the early evoked response around 100 ms after stimulus. The aims of this study were to explore these early responses both at sensor and cortical source level and to explore to what extent they might be modulated by a change in face stimulus. Magnetoencephalographic (MEG) recordings, a visual oddball paradigm, and a semiautomated spatiotemporal source localization method were used to investigate cortical responses to changes in face stimuli. Upright and inverted faces were presented in an oddball paradigm with four conditions; standards and deviants differing in emotion or identity. The task in all conditions was silent counting of the target face with glasses. Deviant face stimuli elicited larger MEG responses at about 100 ms than standard ones did but only for upright faces. Spatiotemporal source localization up to 140 ms after stimulus revealed activation of parietal and temporal sources in addition to occipital ones, all of which demonstrated differences in locations and dynamics for standards, deviants, and targets. Peak latencies of the identified cortical sources were shorter for deviants than standards, again only for upright faces. Our results showed differences in cortical responses to standards and deviants that were more pronounced for upright than for inverted faces, suggesting early detection of face-related changes in visual stimulation. The observed effect provides new evidence for the face sensitivity of the early neuromagnetic response around 100 ms.
Collapse
Affiliation(s)
- Ana Susac
- Department of Physics, Faculty of Science, University of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|