1
|
Cade AE, Turnbull PRK. Cervical Spine Vibration Modifies Oculomotor Function in Young Adults with Traumatic Brain Injury. J Manipulative Physiol Ther 2024:S0161-4754(24)00040-X. [PMID: 39412450 DOI: 10.1016/j.jmpt.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/21/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate if vibrational interference of spinal proprioception affects oculomotor function, visual attention and processing, and selective attention in individuals with mild traumatic brain injury (mTBI) compared to healthy age-matched controls. METHODS This study was a parallel design, single-session intervention with 20 young adults with mTBI and 20 age-matched controls. Each completed a battery of computerized eye-tracking assessments (CEAs), including egocentric localization, fixational stability, smooth pursuit, saccades, Stroop, and the vestibulo-ocular reflex (VOR), and then had their cervical spine function (flexion-relaxation ratio) recorded at baseline. Spinal vibration (100 Hz) was applied to the cervical spine and the CEA battery was repeated. CEA outcomes were compared to baseline and between mTBI and control groups. RESULTS Following cervical vibration, significant pre to post-differences were seen in both the mTBI and control group for egocentric localization, fixation stability, pursuit, saccades, Stroop, and VOR. At baseline, there was a significant difference between the mTBI and control groups across many CEA measures, with the mTBI group performing more poorly in egocentric localization, pursuit, saccades, Stroop, and VOR. The mTBI group also had a poorer flexion-relaxation ratio than the control group. CONCLUSION Cervical spine vibration improved cognitive and oculomotor performance in the mTBI group for VOR, Stroop, and pursuit, but had mixed effects on the control group. These findings suggest that some optometric mTBI symptoms may result from spinal or proprioceptive dysfunction, as altering proprioceptive input appears to positively impact visual outcomes.
Collapse
Affiliation(s)
- Alice E Cade
- Optometry & Vision Science, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
2
|
Harris M, Nguyen A, Brown NJ, Picton B, Gendreau J, Bui N, Sahyouni R, Lin HW. Mild Traumatic Brain Injury and the Auditory System: An Overview of the Mechanisms, Clinical Presentations, and Current Diagnostic Modalities. J Neurotrauma 2024; 41:1524-1532. [PMID: 37742111 DOI: 10.1089/neu.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
The acute and long-term consequences of mild traumatic brain injury (mTBI) are far reaching. Though it may often be overlooked due to the now expansive field of research dedicated to understanding the consequences of mTBI on the brain, recent work has revealed that substantial changes in the vestibulo-auditory system can also occur due to mTBI. These changes, termed "labyrinthine" or "cochlear concussion," include hearing loss, vertigo, and tinnitus that develop after mTBI in the setting of an intact bony labyrinthine capsule (as detected on imaging). In the review that follows, we focus our discussion on the effects of mTBI on the peripheral structures and pathways of the auditory and vestibular systems. Although the effects of indirect trauma (e.g., noise and blast trauma) have been well-investigated, there exists a profound need to improve our understanding of the effects of direct head injury (such as mTBI) on the auditory and vestibular systems. Our aim is to summarize the current evidentiary foundation upon which labyrinthine and/or cochlear concussion are based to shed light on the ways in which clinicians can refine the existing modalities used to diagnose and treat patients experiencing mTBI as it relates to hearing and balance.
Collapse
Affiliation(s)
- Mark Harris
- Department of Neurological Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| | - Andrew Nguyen
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Nolan J Brown
- Department of Neurological Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| | - Bryce Picton
- Department of Neurological Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| | - Julian Gendreau
- Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, USA
| | - Nicholas Bui
- Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Ronald Sahyouni
- Department of Neurological Surgery, University of California, San Diego, San Diego, California, USA
| | - Harrison W Lin
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
3
|
Alnawmasi MM, Khuu SK. Deficits in the pupillary response associated with abnormal visuospatial attention allocation in mild traumatic brain injury. J Clin Exp Neuropsychol 2023; 45:855-873. [PMID: 38368620 DOI: 10.1080/13803395.2024.2314727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/25/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The ability to allocate visual attention is known to be impaired in patients with mild traumatic brain injury (mTBI). In the present study, we investigated a possible neural correlate of this cognitive deficit by examining the pupil response of patients with mTBI whilst performing a modified Posner visual search task. METHOD Two experiments were conducted in which the target location was either not cued (Experiment 1) or cued (Experiment 2). Additionally, in Experiment 2, the type of cue (endogenous vs exogenous cue) and cue validity were treated as independent variables. In both experiments, search efficiency was varied by changing shape similarity between target and distractor patterns. The reaction time required to judge whether the target was present or absent and pupil dilation metrics, particularly the pupil dilation latency (PDL) and amplitude (PDA), were measured. Thirteen patients with chronic mTBI and 21 age-, sex-, and IQ -matched controls participated in the study. RESULTS In Experiment 1, patients with mTBI displayed a similar PDA for both efficient and inefficient search conditions, while control participants had a significantly larger PDA in inefficient search conditions compared to efficient search conditions. As cognitive load is positively correlated with PDA, our findings suggest that mTBI patients were unable to apply more mental effort whilst performing visual search, particularly if the task is difficult when visual search is inefficient. In Experiment 2, when the target location was cued, patients with mTBI displayed no significant pupil dilation response to the target regardless of the efficiency of the search, nor whether the cue was valid or invalid. These results contrasted with control participants, who were additionally sensitive to the validity of the cue in which PDA was smaller for cue-valid conditions than invalid conditions, particularly for efficient search conditions. CONCLUSION Pupillometry provided further evidence of attention allocation deficits following mTBI.
Collapse
Affiliation(s)
- Mohammed M Alnawmasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Sieu K Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Hung Y, Vandewouw M, Emami Z, Bells S, Rudberg N, da Costa L, Dunkley BT. Memory retrieval brain-behavior disconnection in mild traumatic brain injury: A magnetoencephalography and diffusion tensor imaging study. Hum Brain Mapp 2022; 43:5296-5309. [PMID: 35796166 PMCID: PMC9812251 DOI: 10.1002/hbm.26003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mild traumatic brain (mTBI) injury is often associated with long-term cognitive and behavioral complications, including an increased risk of memory impairment. Current research challenges include a lack of cross-modal convergence regarding the underlying neural-behavioral mechanisms of mTBI, which hinders therapeutics and outcome management for this frequently under-treated and vulnerable population. We used multi-modality imaging methods including magnetoencephalography (MEG) and diffusion tensor imaging (DTI) to investigate brain-behavior impairment in mTBI related to working memory. A total of 41 participants were recruited, including 23 patients with a first-time mTBI imaged within 3 months of injury (all male, age = 29.9, SD = 6.9), and 18 control participants (all male, age = 27.3, SD = 5.3). Whole-brain statistics revealed spatially concomitant functional-structural disruptions in brain-behavior interactions in working memory in the mTBI group compared with the control group. These disruptions are located in the hippocampal-prefrontal region and, additionally, in the amygdala (measured by MEG neural activation and DTI measures of fractional anisotropy in relation to working memory performance; p < .05, two-way ANCOVA, nonparametric permutations, corrected). Impaired brain-behavior connections found in the hippocampal-prefrontal and amygdala circuits indicate brain dysregulation of memory, which may leave mTBI patients vulnerable to increased environmental demands exerting memory resources, leading to related cognitive and emotional psychopathologies. The findings yield clinical implications and highlight a need for early rehabilitation after mTBI, including attention- and sensory-based behavioral exercises.
Collapse
Affiliation(s)
- Yuwen Hung
- Martinos Imaging Center at McGovern Institute for Brain Research, Harvard‐MITCambridgeMassachusettsUSA,Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Marlee Vandewouw
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada,Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Zahra Emami
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Sonya Bells
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | | | - Leodante da Costa
- Department of Surgery, Division of NeurosurgerySunnybrook HospitalTorontoOntarioCanada
| | - Benjamin T. Dunkley
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada,Department of Diagnostic ImagingHospital for Sick ChildrenTorontoOntarioCanada,Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Xing J, Ren L, Xu H, Zhao L, Wang ZH, Hu GD, Wei ZL. Single-Cell RNA Sequencing Reveals Cellular and Transcriptional Changes Associated With Traumatic Brain Injury. Front Genet 2022; 13:861428. [PMID: 35846152 PMCID: PMC9282873 DOI: 10.3389/fgene.2022.861428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is currently a substantial public health problem and one of the leading causes of morbidity and mortality worldwide. However, the cellular and transcriptional changes in TBI at single-cell level have not been well characterized. In this study, we reanalyzed a single-cell RNA sequencing (scRNA-seq) dataset of mouse hippocampus to identify the key cellular and transcriptional changes associated with TBI. Specifically, we found that oligodendrocytes were the most abundant cell type in mouse hippocampus, and detected an expanded astrocyte population, which was significantly activated in TBI. The enhanced activity of inflammatory response-related pathways in the astrocytes of TBI samples suggested that the astrocytes, along with microglia, which were the major brain-resident immune cells, were responsible for inflammation in the acute phase of TBI. Hormone secretion, transport, and exocytosis were found upregulated in the excitatory neurons of TBI, which gave us a hint that excitatory neurons might excessively transport and excrete glutamate in response to TBI. Moreover, the ependymal subpopulation C0 was TBI-specific and characterized by downregulated cilium movement, indicating that the attenuated activity of cilium movement following TBI might decrease cerebrospinal fluid flow. Furthermore, we observed that downregulated genes in response to candesartan treatment were preferentially expressed in excitatory neurons and were related to pathways like neuronal systems and neuroactive ligand-receptor interaction, indicating that candesartan might promote recovery of neurons after traumatic brain injury via mediating neuroactive ligand-receptor interactions and reducing excitotoxicity. In conclusion, our study identified key cell types in TBI, which improved our understanding of the cellular and transcriptional changes after TBI and offered an insight into the molecular mechanisms that could serve as therapeutic targets.
Collapse
|
6
|
Wu Z, Cao M, Di X, Wu K, Gao Y, Li X. Regional Topological Aberrances of White Matter- and Gray Matter-Based Functional Networks for Attention Processing May Foster Traumatic Brain Injury-Related Attention Deficits in Adults. Brain Sci 2021; 12:brainsci12010016. [PMID: 35053760 PMCID: PMC8774280 DOI: 10.3390/brainsci12010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent in adults. TBI-related functional brain alterations have been linked with common post-TBI neurobehavioral sequelae, with unknown neural substrates. This study examined the systems-level functional brain alterations in white matter (WM) and gray matter (GM) for visual sustained-attention processing, and their interactions and contributions to post-TBI attention deficits. Task-based functional MRI data were collected from 42 adults with TBI and 43 group-matched normal controls (NCs), and analyzed using the graph theoretic technique. Global and nodal topological properties were calculated and compared between the two groups. Correlation analyses were conducted between the neuroimaging measures that showed significant between-group differences and the behavioral symptom measures in attention domain in the groups of TBI and NCs, respectively. Significantly altered nodal efficiencies and/or degrees in several WM and GM nodes were reported in the TBI group, including the posterior corona radiata (PCR), posterior thalamic radiation (PTR), postcentral gyrus (PoG), and superior temporal sulcus (STS). Subjects with TBI also demonstrated abnormal systems-level functional synchronization between the PTR and STS in the right hemisphere, hypo-interaction between the PCR and PoG in the left hemisphere, as well as the involvement of systems-level functional aberrances in the PCR in TBI-related behavioral impairments in the attention domain. The findings of the current study suggest that TBI-related systems-level functional alterations associated with these two major-association WM tracts, and their anatomically connected GM regions may play critical role in TBI-related behavioral deficits in attention domains.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.C.); (X.D.)
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.C.); (X.D.)
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510630, China;
| | - Yu Gao
- Department of Psychology, Brooklyn College, The City University of New York, New York, NY 11210, USA;
- The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Xiaobo Li
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.C.); (X.D.)
- Correspondence: or ; Tel.: +1-973-596-5880
| |
Collapse
|
7
|
McGowan AL, Bretzin AC, Anderson M, Pontifex MB, Covassin T. Paired cognitive flexibility task with symptom factors improves detection of sports-related concussion in high school and collegiate athletes. J Neurol Sci 2021; 428:117575. [PMID: 34304023 DOI: 10.1016/j.jns.2021.117575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022]
Abstract
Determining the sensitivity and specificity of short neurocognitive assessments to objectively detect concussion will help clinicians more confidently integrate such tools in clinical management decisions. This study quantified the sensitivity and specificity of a computerized cognitive flexibility task isolating shifts of visuospatial attention in combination with clinical symptoms acutely (< 72 h) following concussion. A total of 100 athletes (53 concussed; 47 non-injured control; 42% female) completed computerized neurocognitive testing and clinical symptom reports (Sport Concussion Assessment Tool 3rd edition: SCAT3). Separate discriminant function analyses were performed for individual, combination, and stepwise inclusion of neurocognitive and clinical symptomology assessments. Findings revealed the combination of neurocognitive outcomes (i.e., mean reaction time, response accuracy, and response accuracy cost) with clinical symptom factor scores exhibited the greatest sensitivity (95.7%) and specificity (88.7%) as well as the highest positive predictive value (95.9%) and negative predictive value (88%) relative to other approaches. Further, a stepwise approach predicting concussion status using the discriminant functions improved detection of concussion (98.2% sensitivity, 95.7% specificity, 96.4% positive predictive value, and 97.8% negative predictive value) when clinical symptom factors failed to indicate the presence of a concussion. Incorporating a cognitive flexibility task involving shifts of visuospatial attention combined with clinical symptom factor scores may improve clinical decision-making as this approach exceeds the sensitivity and specificity of widely popular neurocognitive test batteries and takes less than 10 min to administer.
Collapse
Affiliation(s)
- Amanda L McGowan
- Addiction, Health, and Adolescence Lab, Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Abigail C Bretzin
- Penn Injury Science Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Morgan Anderson
- Department of Kinesiology, Michigan State University, East Lansing, MI, United States of America
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI, United States of America
| | - Tracey Covassin
- Department of Kinesiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
8
|
Correlates of Auditory Decision-Making in Prefrontal, Auditory, and Basal Lateral Amygdala Cortical Areas. J Neurosci 2020; 41:1301-1316. [PMID: 33303679 DOI: 10.1523/jneurosci.2217-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
Spatial selective listening and auditory choice underlie important processes including attending to a speaker at a cocktail party and knowing how (or whether) to respond. To examine task encoding and the relative timing of potential neural substrates underlying these behaviors, we developed a spatial selective detection paradigm for monkeys, and recorded activity in primary auditory cortex (AC), dorsolateral prefrontal cortex (dlPFC), and the basolateral amygdala (BLA). A comparison of neural responses among these three areas showed that, as expected, AC encoded the side of the cue and target characteristics before dlPFC and BLA. Interestingly, AC also encoded the choice of the monkey before dlPFC and around the time of BLA. Generally, BLA showed weak responses to all task features except the choice. Decoding analyses suggested that errors followed from a failure to encode the target stimulus in both AC and dlPFC, but again, these differences arose earlier in AC. The similarities between AC and dlPFC responses were abolished during passive sensory stimulation with identical trial conditions, suggesting that the robust sensory encoding in dlPFC is contextually gated. Thus, counter to a strictly PFC-driven decision process, in this spatial selective listening task AC neural activity represents the sensory and decision information before dlPFC. Unlike in the visual domain, in this auditory task, the BLA does not appear to be robustly involved in selective spatial processing.SIGNIFICANCE STATEMENT We examined neural correlates of an auditory spatial selective listening task by recording single-neuron activity in behaving monkeys from the amygdala, dorsolateral prefrontal cortex, and auditory cortex. We found that auditory cortex coded spatial cues and choice-related activity before dorsolateral prefrontal cortex or the amygdala. Auditory cortex also had robust delay period activity. Therefore, we found that auditory cortex could support the neural computations that underlie the behavioral processes in the task.
Collapse
|
9
|
Zhang J, Wang R, Wang H, Li Y, Zhang H, Dong L, Zhang H. Activation of brain regions using task-state FMRI in patients with mild traumatic brain injury: a meta-analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2918-2926. [PMID: 33425093 PMCID: PMC7791386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Activation likelihood estimation meta-analysis was performed to examine the activation characteristics of cognition-related brain regions in patients with mild traumatic brain injury (mTBI). The databases PubMed, Ovid, Cochrane Library, Google Scholar, CNKI, WFSD, and VIP were systematically searched. The software Ginger-ALE 3.0.2 was used for coordinate unification and meta-analysis. Seven studies with a total of 314 subjects were included. Meta-analysis results indicated that compared with healthy subjects, mTBI patients had enhanced activation in the left anterior angular gyrus, left occipital joint visual, left midbrain, right temporal angular gyrus, right cerebellar tonsil, left frontal insula, and right inferior frontal gyrus. mTBI patients had attenuated activation in the right dorsolateral prefrontal lobe, left cerebellar anterior lobe, left dorsolateral prefrontal lobe, right middle frontal gyrus, right posterior cingulate gyrus, left joint visual, left supramarginal gyrus, left middle frontal gyrus, right precuneus, left dorsolateral prefrontal cortex, right frontal eye field, right lower parietal gyrus, corpus callosum, right frontal pole region, and left prefrontal lobe. Further joint analysis revealed that the dorsolateral prefrontal lobe of the right middle frontal gyrus was a region of attenuated co-activation. The dorsolateral prefrontal lobe of the right middle frontal gyrus showing attenuated activation was the main brain region distinguishing mTBI patients from healthy subjects. Cognitive deficits could be associated with attenuated activation in the dorsolateral prefrontal lobe of the right middle frontal gyrus, which could be due to a decline in the recruitment ability of the neural network involved in controlling attention.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
- Department of Clinical Medicine, Dalian Medical UniversityDalian 116044, Liaoning, China
| | - Runpei Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Haili Wang
- Department of Clinical Medicine, Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Neurology, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| |
Collapse
|
10
|
Johnson B, Dodd A, Mayer AR, Hallett M, Slobounov S. Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study. Brain Imaging Behav 2020; 14:110-117. [PMID: 30361946 DOI: 10.1007/s11682-018-9982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accurate identification and classification of patients suffering from mild traumatic brain injury (mTBI) is a significant challenge faced by clinicians and researchers. To examine if there are different pathophysiological responses to concussive injury in different populations, evaluated here comparing collegiate athletes versus age-matched non-athletes. Resting-state fMRI data were acquired in the acute phase of concussion from 30 collegiate athletes and from 30 injury and age matched non-athletes. Resting-state functional connectivity measures revealed group differences with reduced connectivity in the anterior cingulate cortex (p < .05) and posterior cingulate cortex (p < 0.05) hubs of the Default Mode Network in the athletes. Given the known positive effects of exercise on brain functional reserves and neural efficiency concept, we expected less pronounced effect of concussion in athletic population. In contrast, there were significant decreases in functional connectivity in athletes that could be a result of previous repetitive subconcussive impacts and history of concussion.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA
| | - Andrew Dodd
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.,Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Hallett
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA. .,Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Abstract
As awareness on the short-term and long-term consequences of sports-related concussions and repetitive head impacts continues to grow, so too does the necessity to establish biomechanical measures of risk that inform public policy and risk mitigation strategies. A more precise exposure metric is central to establishing relationships among the traumatic experience, risk, and ultimately clinical outcomes. Accurate exposure metrics provide a means to support evidence-informed decisions accelerating public policy mandating brain trauma management through sport modification and safer play.
Collapse
Affiliation(s)
- Clara Karton
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada.
| | - Thomas Blaine Hoshizaki
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
12
|
Hou W, Sours Rhodes C, Jiang L, Roys S, Zhuo J, JaJa J, Gullapalli RP. Dynamic Functional Network Analysis in Mild Traumatic Brain Injury. Brain Connect 2020; 9:475-487. [PMID: 30982332 DOI: 10.1089/brain.2018.0629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is one of the most common neurological disorders for which a subset of patients develops persistent postconcussive symptoms. Previous studies discovered abnormalities and disruptions in the brain functional networks of mTBI patients principally using static functional connectivity measures which assume that neural communication across the brain is static during resting state conditions. In this study, we examine the differences in dynamic neural communication between mTBI and control participants through the application of a combination of dynamic functional analysis and graph theoretic algorithms. Resting state functional magnetic resonance imaging data was obtained on 47 mTBI patients at the acute stage of injury and 30 demographically matched healthy control participants. Results show unique alterations in both the static and dynamic functional connectivity at the acute stage in mTBI patients who suffer persistent symptoms (≥6 months after injury). In addition, mTBI patients with postconcussion syndrome demonstrated a unique allocation of time in various brain states compared to both control participants and mTBI patients with favorable outcomes. These findings suggest that global damage to the overall communication across the brain in the acute stage may contribute to chronic mTBI symptoms. Dynamic functional analysis is a powerful tool that provides insights into the brain states and the innovative analysis methodology utilized may hold the potential to delineate patients predisposed to poor outcomes upon early presentation following injury.
Collapse
Affiliation(s)
- Wenshuai Hou
- 1 Department of Electrical and Computer Engineering, University of Maryland Institute for Advanced Computer Services (UMIACS), College Park, Maryland
| | - Chandler Sours Rhodes
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Li Jiang
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Steven Roys
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jiachen Zhuo
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph JaJa
- 1 Department of Electrical and Computer Engineering, University of Maryland Institute for Advanced Computer Services (UMIACS), College Park, Maryland
| | - Rao P Gullapalli
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Cook MJ, Gardner AJ, Wojtowicz M, Williams WH, Iverson GL, Stanwell P. Task-related functional magnetic resonance imaging activations in patients with acute and subacute mild traumatic brain injury: A coordinate-based meta-analysis. NEUROIMAGE-CLINICAL 2019; 25:102129. [PMID: 31891819 PMCID: PMC6939096 DOI: 10.1016/j.nicl.2019.102129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/28/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
ALE meta-analysis revealed functional activation differences in mTBI. Reduced activation identified within the right middle frontal gyrus. Suggests alteration of prefrontal region, associated with executive functioning. Need for addressing subject- and task-specific variation in future studies.
Task-based functional magnetic resonance imaging (fMRI) has been used to examine neuroanatomical and functional changes following mild traumatic brain injury (mTBI). Prior studies have lacked consistency in identifying common regions of altered neural activity during cognitive tasks. This may be partly due to differences in task paradigm, patient heterogeneity, and methods of fMRI analysis. We conducted a meta-analysis using an activation likelihood estimation (ALE) method to identify regions of differential brain activation in patients with mTBI compared to healthy controls. We included experiments that performed scans from acute to subacute time points post-injury. The seven included studies recruited a total sample of 174 patients with mTBIs and 139 control participants. The results of our coordinate based meta-analysis revealed a single cluster of reduced activation within the right middle frontal gyrus (MFG) that differentiated mTBI from healthy controls. We conclude that the cognitive impairments in memory and attention typically reported in mTBI patients may be associated with a deficit in the right MFG, which impacts the recruitment of neural networks important for attentional control.
Collapse
Affiliation(s)
- Michael J Cook
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Gardner
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Hunter New England Local Health District Sports Concussion Clinic, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Magdalena Wojtowicz
- Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, University of Exeter, Exeter, Devon, UK
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Spaulding Rehabilitation Hospital, and Spaulding Research Institute, Charlestown, MA, USA; MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA; Home Base, A Red Sox Foundation and Massachusetts General Hospital Home Base Program, Charlestown, MA, USA
| | - Peter Stanwell
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
14
|
Bader F, Kochen WR, Kraus M, Wiener M. The dissociation of temporal processing behavior in concussion patients: Stable motor and dynamic perceptual timing. Cortex 2019; 119:215-230. [DOI: 10.1016/j.cortex.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
|
15
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
16
|
The Role of Physical Activity in Recovery From Concussion in Youth: A Neuroscience Perspective. J Neurol Phys Ther 2018; 42:155-162. [PMID: 29864097 DOI: 10.1097/npt.0000000000000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Concussion is a major public health concern and one of the least understood neurological injuries. Children and youth are disproportionally affected by concussion, and once injured, take longer to recover. Current guidelines recommend a period of physical and cognitive rest with a gradual progressive return to activity. Although there is limited high-quality evidence (eg, randomized controlled trials) on the benefit of physical activity and exercise after concussion, most studies report a positive impact of exercise in facilitating recovery after concussion. In this article we characterize the complex and dynamic changes in the brain following concussion by reviewing recent results from neuroimaging studies and to inform physical activity participation guidelines for the management of a younger population (eg, 14-25 years of age) after concussion. SUMMARY OF KEY POINTS Novel imaging methods and tools are providing a picture of the changes in the structure and function of the brain following concussion. These emerging results will, in the future, assist in creating objective, evidence-based pathways for clinical decision-making. Until such time, physical therapists should be aware that current neuroimaging evidence supports participation in physical activity after an initial and brief period of rest, and consider how best to incorporate exercise into rehabilitation to enhance recovery following concussion. RECOMMENDATIONS FOR CLINICAL PRACTICE It is important that physical therapists understand the neurobiological impact of concussion injury and recovery, and be informed of the scientific rationale for the recommendations and guidelines for engagement in physical activity.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A205).
Collapse
|
17
|
Cerebral Hemodynamic Influences in Task-Related Functional Magnetic Resonance Imaging and Near-Infrared Spectroscopy in Acute Sport-Related Concussion: A Review. J Imaging 2018. [DOI: 10.3390/jimaging4040059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Muller AM, Virji-Babul N. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study. ASN Neuro 2018; 10:1759091417753802. [PMID: 29357675 PMCID: PMC5784460 DOI: 10.1177/1759091417753802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.
Collapse
Affiliation(s)
- Angela M. Muller
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Xiao H, Jacobsen A, Chen Z, Wang Y. Detecting social-cognitive deficits after traumatic brain injury: An ALE meta-analysis of fMRI studies. Brain Inj 2017. [DOI: 10.1080/02699052.2017.1319576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hui Xiao
- Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, China
| | - Andre Jacobsen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ziqian Chen
- Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, China
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Wu S, Wang H, Chen C, Zou J, Huang H, Li P, Zhao Y, Xu Q, Zhang L, Wang H, Pandit S, Dahal S, Chen J, Zhou Y, Jiang T, Wang G. Task Performance Modulates Functional Connectivity Involving the Dorsolateral Prefrontal Cortex in Patients with Schizophrenia. Front Psychol 2017; 8:56. [PMID: 28289394 PMCID: PMC5326798 DOI: 10.3389/fpsyg.2017.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/10/2017] [Indexed: 01/25/2023] Open
Abstract
Previous studies have suggested that patients with schizophrenia and healthy controls exhibit differential activation of and connectivity involving the dorsolateral prefrontal cortex (DLPFC) during working memory tasks, though their findings remain inconsistent. The functional integration perspective further suggests that working memory performance also modulates differences in functional interactions of the DLPFC between patients and controls. To explore this possibility, 45 healthy controls and 45 patients with schizophrenia were recruited to perform a 2-back task during functional magnetic resonance imaging (fMRI). Each group was further divided into two subgroups based on task performance to examine the modulatory effect of performance on functional interactions of the DLPFC, as measured via psychophysiological interaction (PPI) analyses. We observed that, in patients with schizophrenia who exhibited impaired working memory capacity and decreased brain activation/deactivation, functional interactions between the right/left DLPFC and angular cortex were decreased relative to those of healthy controls. Furthermore, we observed an interaction effect of working memory performance and diagnosis on functional connectivity between the right/left DLPFC seed region and posterior regions such as the angular cortex, fusiform gyrus, and middle occipital gyrus. This interaction effect was mainly driven by the negative correlation between functional connectivity and performance in healthy controls, and by the positive correlation in patients with schizophrenia. These results demonstrate the effects of inter-individual differences in working memory performance on functional interactions between the DLPFC and posterior regions in patients with schizophrenia as well as healthy controls, which may shed new light on the neural basis of working memory.
Collapse
Affiliation(s)
- Shihao Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan UniversityWuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Jilin Zou
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Peifu Li
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Yilin Zhao
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Qizhong Xu
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Liang Zhang
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Hesheng Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Sanjib Pandit
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Subodh Dahal
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyBeijing, China; Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automatuon, Chinese Academy of SciencesBeijing, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology of ChinaChengdu, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan UniversityWuhan, China; Hubei Institute of Neurology and Psychiatry ResearchWuhan, China; Hubei University of Science and TechnologyXianning, China
| |
Collapse
|
21
|
Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology 2016; 279:693-707. [PMID: 27183405 DOI: 10.1148/radiol.16142535] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Xin Wu
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Ivan I Kirov
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Oded Gonen
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yulin Ge
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Robert I Grossman
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yvonne W Lui
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| |
Collapse
|
22
|
Hyper-connectivity of the thalamus during early stages following mild traumatic brain injury. Brain Imaging Behav 2016; 9:550-63. [PMID: 26153468 DOI: 10.1007/s11682-015-9424-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The thalamo-cortical resting state functional connectivity of seven sub-thalamic regions were examined in a prospectively recruited population of 77 acute mild TBI (mTBI) patients within the first 10 days (mean 6 ± 3 days) of injury and 35 neurologically intact control subjects using the Oxford thalamic connectivity atlas. Neuropsychological assessments were conducted using the Automated Neuropsychological Assessment Metrics (ANAM). A subset of participants received a magentic resonance spectroscopy (MRS) exam to determine metabolite concentrations in the thalamus and the posterior cingulate cortex. Results show that patients performed worse than the control group on various subtests of ANAM and the weighted throughput score, suggesting reduced cognitive performance at this early stage of injury. Both voxel and region of interest based analysis of the resting state fMRI data demonstrated that acute mTBI patients have increased functional connectivity between the various sub-thalamic regions and cortical regions associated with sensory processing and the default mode network (DMN). In addition, a significant reduction in NAA/Cr was observed in the thalamus in the mTBI patients. Furthermore, an increase in Cho/Cr ratio specific to mTBI patients with self-reported sensory symptoms was observed compared to those without self-reported sensory symptoms. These results provide novel insights into the neural mechanisms of the brain state related to internal rumination and arousal, which have implications for new interventions for mTBI patients with persistent symptoms. Furthermore, an understanding of heightened sensitivity to sensory related inputs during early stages of injury may facilitate enhanced prediction of safe return to work.
Collapse
|
23
|
Henry LC, Tremblay S, De Beaumont L. Long-Term Effects of Sports Concussions: Bridging the Neurocognitive Repercussions of the Injury with the Newest Neuroimaging Data. Neuroscientist 2016; 23:567-578. [PMID: 27188455 DOI: 10.1177/1073858416651034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Little is known of the long-term effects of sports-related concussion. Within the scientific literature, conclusions vary substantially where some work suggests there are no long-term consequences at all and other studies show rampant neurodegeneration thought to be caused by sometimes even a single concussive blow to the head. There is growing evidence that supports multiple long-term outcomes, showing both subclinical and clinically relevant changes in the brains of athletes, young and old alike. This article reviews the pathohistology of cerebral concussions and examines the extant literature with a focus on electrophysiological and neuroimaging findings. Neurobehavioral and neurocognitive changes are also reviewed, particularly as they are related to chronic traumatic encephalopathy. Lacunae within the literature are explored, and future research directions are proposed.
Collapse
Affiliation(s)
- Luke C Henry
- 1 Department of Neurological Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sebastien Tremblay
- 2 Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- 3 Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,4 Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Mayer AR, Hanlon FM, Dodd AB, Ling JM, Klimaj SD, Meier TB. A functional magnetic resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain injury. Hum Brain Mapp 2015; 36:4394-406. [PMID: 26493161 DOI: 10.1002/hbm.22930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022] Open
Abstract
Mild traumatic brain injury patients (mTBI) frequently report symptoms of increased distractability and sensory disturbances during mutisensory stimulation. These common post-concussive symptoms could putatively result from dysfunction within the cognitive control network (CCN; top-down) or from unisensory cortex (bottom-up) itself. Functional magnetic resonance imaging (fMRI) and high-resolution structural data were therefore prospectively collected during a multisensory (audio-visual) cognitive control task from 46 mTBI patients within 3 weeks of injury and 46 matched healthy controls (HC), with a subset of participants returning at 4 months. Multisensory stimuli were presented at two frequencies to manipulate cognitive and perceptual load. Patients self-reported more cognitive, emotional, somatic, vestibular and visual symptoms relative to HC, which improved, but did not entirely resolve, over the 4 month follow-up period. There were no group differences in behavior or functional activation during cognitive control (incongruent--congruent trials). In contrast, patients exhibited abnormal activation within different regions of visual cortex that depended on whether attention was focused on auditory or visual information streams. Patients also exhibited increased activation within bilateral inferior parietal lobules during higher cognitive/perceptual loads, suggesting a compensatory mechanism to achieve similar levels of behavioral performance. Functional abnormalities within the visual cortex and inferior parietal lobules were only partially resolved at 4 months post-injury, suggesting that neural abnormalities may take longer to resolve than behavioral measures used in most clinical settings. In summary, current results indicate that abnormalities within unisensory cortex (particularly visual areas) following mTBI, which likely contribute to deficits commonly reported during multisensory stimulation.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Stefan D Klimaj
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Timothy B Meier
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| |
Collapse
|
25
|
Kontos AP, Huppert TJ, Beluk NH, Elbin RJ, Henry LC, French J, Dakan SM, Collins MW. Brain activation during neurocognitive testing using functional near-infrared spectroscopy in patients following concussion compared to healthy controls. Brain Imaging Behav 2015; 8:621-34. [PMID: 24477579 DOI: 10.1007/s11682-014-9289-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is no accepted clinical imaging modality for concussion, and current imaging modalities including fMRI, DTI, and PET are expensive and inaccessible to most clinics/patients. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and low-cost imaging modality that can measure brain activity. The purpose of this study was to compare brain activity as measured by fNIRS in concussed and age-matched controls during the performance of cognitive tasks from a computerized neurocognitive test battery. Participants included nine currently symptomatic patients aged 18-45 years with a recent (15-45 days) sport-related concussion and five age-matched healthy controls. The participants completed a computerized neurocognitive test battery while wearing the fNIRS unit. Our results demonstrated reduced brain activation in the concussed subject group during word memory, (spatial) design memory, digit-symbol substitution (symbol match), and working memory (X's and O's) tasks. Behavioral performance (percent-correct and reaction time respectively) was lower for concussed participants on the word memory, design memory, and symbol match tasks than controls. The results of this preliminary study suggest that fNIRS could be a useful, portable assessment tool to assess reduced brain activation and augment current approaches to assessment and management of patients following concussion.
Collapse
Affiliation(s)
- A P Kontos
- UPMC Sports Medicine Concussion Program/Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period. PLoS One 2015; 10:e0126110. [PMID: 25962067 PMCID: PMC4427352 DOI: 10.1371/journal.pone.0126110] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 03/29/2015] [Indexed: 11/19/2022] Open
Abstract
Functional neuroimaging studies in mild traumatic brain injury (mTBI) have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI) and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures) within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma). The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject’s reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D.) hours after injury (time 1). At follow up (8.7, + 1.2 S.D., days after injury, time 2), 18 of mTBI subjects (64%) reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects compared to controls. Increases in activation were greater in those mTBI subjects without cognitive recovery. As workload increased in mTBI subjects, activation increased in cortical regions in the right hemisphere. In summary, we found neuroimaging evidence for working memory deficits during the first week following mild traumatic brain injury. Subjects with persistent cognitive symptoms after mTBI had increased requirement for posterior cingulate activation to complete memory tasks at 1 week following a brain injury. These results provide insight into functional activation patterns during initial recovery from mTBI and expose the regional activation networks that may be involved in working memory deficits.
Collapse
|
27
|
Diwakar M, Harrington DL, Maruta J, Ghajar J, El-Gabalawy F, Muzzatti L, Corbetta M, Huang MX, Lee RR. Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury. NEUROIMAGE-CLINICAL 2015; 8:210-23. [PMID: 26106545 PMCID: PMC4473731 DOI: 10.1016/j.nicl.2015.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/18/2023]
Abstract
A barrier in the diagnosis of mild traumatic brain injury (mTBI) stems from the lack of measures that are adequately sensitive in detecting mild head injuries. MRI and CT are typically negative in mTBI patients with persistent symptoms of post-concussive syndrome (PCS), and characteristic difficulties in sustaining attention often go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration. Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI patients, especially when tracking an occluded target. This finding suggests deficient internal anticipatory control in mTBI, the neural underpinnings of which are poorly understood. The present study investigated the neuronal bases for deficient anticipatory control during visual tracking in 25 chronic mTBI patients with persistent PCS symptoms and 25 healthy control subjects. The task was performed while undergoing magnetoencephalography (MEG), which allowed us to examine whether neural dysfunction associated with anticipatory control deficits was due to altered alpha, beta, and/or gamma activity. Neuropsychological examinations characterized cognition in both groups. During MEG recordings, subjects tracked a predictably moving target that was either continuously visible or randomly occluded (gap condition). MEG source-imaging analyses tested for group differences in alpha, beta, and gamma frequency bands. The results showed executive functioning, information processing speed, and verbal memory deficits in the mTBI group. Visual tracking was impaired in the mTBI group only in the gap condition. Patients showed greater error than controls before and during target occlusion, and were slower to resynchronize with the target when it reappeared. Impaired tracking concurred with abnormal beta activity, which was suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate and frontal–temporal areas. Regional beta-amplitude demonstrated high classification accuracy (92%) compared to eye-tracking (65%) and neuropsychological variables (80%). These findings show that deficient internal anticipatory control in mTBI is associated with altered beta activity, which is remarkably sensitive given the heterogeneity of injuries. Neuropsychological test performance was impaired in mTBI patients. Visual tracking was impaired in the gap task, where targets were randomly occluded. Impaired visual tracking concurred with abnormal MEG beta activity. Beta was suppressed in parietal and enhanced in caudate and frontal–temporal areas. Regional MEG beta-amplitude demonstrated high classification accuracy (92%).
Collapse
Affiliation(s)
- Mithun Diwakar
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Deborah L Harrington
- Department of Radiology, University of California, San Diego, San Diego, CA, USA ; Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jun Maruta
- Brain Trauma Foundation, New York, NY, USA
| | - Jamshid Ghajar
- Brain Trauma Foundation, New York, NY, USA ; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Fady El-Gabalawy
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Laura Muzzatti
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Ming-Xiong Huang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA ; Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Roland R Lee
- Department of Radiology, University of California, San Diego, San Diego, CA, USA ; Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
28
|
Mayer AR, Ling JM, Allen EA, Klimaj SD, Yeo RA, Hanlon FM. Static and Dynamic Intrinsic Connectivity following Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1046-55. [PMID: 25318005 DOI: 10.1089/neu.2014.3542] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common neurological disorder and is typically characterized by temporally limited cognitive impairment and emotional symptoms. Previous examinations of intrinsic resting state networks in mTBI have primarily focused on abnormalities in static functional connectivity, and deficits in dynamic functional connectivity have yet to be explored in this population. Resting-state data was collected on 48 semi-acute (mean = 14 days post-injury) mTBI patients and 48 matched healthy controls. A high-dimensional independent component analysis (N = 100) was utilized to parcellate intrinsic connectivity networks (ICN), with a priori hypotheses focusing on the default-mode network (DMN) and sub-cortical structures. Dynamic connectivity was characterized using a sliding window approach over 126 temporal epochs, with standard deviation serving as the primary outcome measure. Finally, distribution-corrected z-scores (DisCo-Z) were calculated to investigate changes in connectivity in a spatially invariant manner on a per-subject basis. Following appropriate correction for multiple comparisons, no significant group differences were evident on measures of static or dynamic connectivity within a priori ICN. Reduced (HC > mTBI patients) static connectivity was observed in the DMN at uncorrected (p < 0.005) thresholds. Finally, a trend (p = 0.07) for decreased dynamic connectivity in patients across all ICN was observed during spatially invariant analyses (DisCo-Z). In the semi-acute phase of recovery, mTBI was not reliably associated with abnormalities in static or dynamic functional connectivity within the DMN or sub-cortical structures.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico.,2 Department of Neurology, University of New Mexico School of Medicine , Albuquerque, New Mexico.,3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Elena A Allen
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Stefan D Klimaj
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Ronald A Yeo
- 3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Faith M Hanlon
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| |
Collapse
|
29
|
Xue W, Bowman FD, Pileggi AV, Mayer AR. A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity. Front Comput Neurosci 2015; 9:22. [PMID: 25750621 PMCID: PMC4335182 DOI: 10.3389/fncom.2015.00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/04/2015] [Indexed: 11/29/2022] Open
Abstract
Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC) between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al. (2006a) that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI) data. Our structural connectivity (SC) information is drawn from diffusion tensor imaging (DTI) data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.
Collapse
Affiliation(s)
- Wenqiong Xue
- Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA
| | - F DuBois Bowman
- Department of Biostatistics, Mailman School of Public Health, Columbia University New York, NY, USA
| | - Anthony V Pileggi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University Atlanta, GA, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute Albuquerque, NM, USA ; Neurology Department, University of New Mexico School of Medicine Albuquerque, NM, USA
| |
Collapse
|
30
|
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability, and therefore an important health and socioeconomic problem for our society. Individuals surviving from a moderate to severe TBI frequently suffer from long-lasting cognitive deficits. Such deficits include different aspects of cognition such as memory, attention, executive functions, and awareness of their deficits. This chapter presents a review of the main neuropsychological and neuroimaging studies of patients with TBI. These studies found that patients evolve differently according to the severity of the injury, the mechanism causing the injury, and the lesion location. Further research is necessary to develop rehabilitation methods that enhance brain plasticity and recovery after TBI. In this chapter, we summarize current knowledge and controversies, focusing on cognitive sequelae after TBI. Recommendations from the Common Data Elements are provided, with an emphasis on diagnosis, outcome measures, and studies organization to make data more comparable across studies. Final considerations on neuroimaging advances, rehabilitation approaches, and genetics are described in the final section of the chapter.
Collapse
Affiliation(s)
- Irene Cristofori
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Harvey S Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci Biobehav Rev 2014; 49:8-18. [PMID: 25434880 DOI: 10.1016/j.neubiorev.2014.11.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022]
Abstract
Functional magnetic resonance imaging (fMRI) offers great promise for elucidating the neuropathology associated with a single or repetitive mild traumatic brain injury (mTBI). The current review discusses the physiological underpinnings of the blood-oxygen level dependent response and how trauma affects the signal. Methodological challenges associated with fMRI data analyses are considered next, followed by a review of current mTBI findings. The majority of evoked studies have examined working memory and attentional functioning, with results suggesting a complex relationship between cognitive load/attentional demand and neuronal activation. Researchers have more recently investigated how brain trauma affects functional connectivity, and the benefits/drawbacks of evoked and functional connectivity studies are also discussed. The review concludes by discussing the major clinical challenges associated with fMRI studies of brain-injured patients, including patient heterogeneity and variations in scan-time post-injury. We conclude that the fMRI signal represents a complex filter through which researchers can measure the physiological correlates of concussive symptoms, an important goal for the burgeoning field of mTBI research.
Collapse
|
32
|
Sinopoli KJ, Chen JK, Wells G, Fait P, Ptito A, Taha T, Keightley M. Imaging “Brain Strain” in Youth Athletes with Mild Traumatic Brain Injury during Dual-Task Performance. J Neurotrauma 2014; 31:1843-59. [DOI: 10.1089/neu.2014.3326] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Katia J. Sinopoli
- Department of Psychology, Division of Neurology, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jen-Kai Chen
- McGill University Health Centre and Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Greg Wells
- Department of Kinesiology and Physical Education, University of Toronto, Ontario, Canada
- Department of Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philippe Fait
- Department of Physical Activity Science, University of Quebec at Trois-Rivières, Canada
- Research Group on Neuromusculoskeletal Dysfunctions, University of Quebec at Trois-Rivières, Canada
| | - Alain Ptito
- McGill University Health Centre and Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Tim Taha
- Department of Kinesiology and Physical Education, University of Toronto, Ontario, Canada
| | - Michelle Keightley
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Toronto, Ontario, Canada
- Department of Occupational Science and Occupational Therapy and Graduate Department of Rehabilitation Science and Psychology, University of Toronto, Ontario, Canada
| |
Collapse
|
33
|
|
34
|
Ng TS, Lin AP, Koerte IK, Pasternak O, Liao H, Merugumala S, Bouix S, Shenton ME. Neuroimaging in repetitive brain trauma. ALZHEIMERS RESEARCH & THERAPY 2014; 6:10. [PMID: 25031630 PMCID: PMC3978843 DOI: 10.1186/alzrt239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
Collapse
Affiliation(s)
- Thomas Sc Ng
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Keck School of Medicine of the University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Inga K Koerte
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | - Ofer Pasternak
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Huijun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sai Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Martha E Shenton
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Research and Development, VA Boston Healthcare System, 850 Belmont Street, Brockton, MA 02130, USA
| |
Collapse
|
35
|
Eierud C, Craddock RC, Fletcher S, Aulakh M, King-Casas B, Kuehl D, LaConte SM. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NEUROIMAGE-CLINICAL 2014; 4:283-94. [PMID: 25061565 PMCID: PMC4107372 DOI: 10.1016/j.nicl.2013.12.009] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/02/2013] [Accepted: 12/22/2013] [Indexed: 11/28/2022]
Abstract
This paper broadly reviews the study of mild traumatic brain injury (mTBI), across the spectrum of neuroimaging modalities. Among the range of imaging methods, however, magnetic resonance imaging (MRI) is unique in its applicability to studying both structure and function. Thus we additionally performed meta-analyses of MRI results to examine 1) the issue of anatomical variability and consistency for functional MRI (fMRI) findings, 2) the analogous issue of anatomical consistency for white-matter findings, and 3) the importance of accounting for the time post injury in diffusion weighted imaging reports. As we discuss, the human neuroimaging literature consists of both small and large studies spanning acute to chronic time points that have examined both structural and functional changes with mTBI, using virtually every available medical imaging modality. Two key commonalities have been used across the majority of imaging studies. The first is the comparison between mTBI and control populations. The second is the attempt to link imaging results with neuropsychological assessments. Our fMRI meta-analysis demonstrates a frontal vulnerability to mTBI, demonstrated by decreased signal in prefrontal cortex compared to controls. This vulnerability is further highlighted by examining the frequency of reported mTBI white matter anisotropy, in which we show a strong anterior-to-posterior gradient (with anterior regions being more frequently reported in mTBI). Our final DTI meta-analysis examines a debated topic arising from inconsistent anisotropy findings across studies. Our results support the hypothesis that acute mTBI is associated with elevated anisotropy values and chronic mTBI complaints are correlated with depressed anisotropy. Thus, this review and set of meta-analyses demonstrate several important points about the ongoing use of neuroimaging to understand the functional and structural changes that occur throughout the time course of mTBI recovery. Based on the complexity of mTBI, however, much more work in this area is required to characterize injury mechanisms and recovery factors and to achieve clinically-relevant capabilities for diagnosis. mTBI neuroimaging literature review and meta-analyses of fMRI and DTI. fMRI meta-analysis revealed differences between mTBI and controls in 13 regions. mTBI anisotropy findings are statistically more frequently reported in anterior regions. Anisotropy is elevated in acute mTBI, but depressed in chronic mTBI. We hypothesize a statistical interaction between anisotropy, cognitive score, and time.
Collapse
Affiliation(s)
- Cyrus Eierud
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, USA ; Structural and Computational Biology & Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - R Cameron Craddock
- Child Mind Institute, 445 Park Avenue, New York, NY, USA ; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Sean Fletcher
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA, USA
| | - Manek Aulakh
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA, USA
| | - Brooks King-Casas
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, USA ; Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Damon Kuehl
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stephen M LaConte
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, USA ; Structural and Computational Biology & Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA ; School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA ; Department of Emergency Radiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
36
|
Rabinowitz AR, Li X, Levin HS. Sport and Nonsport Etiologies of Mild Traumatic Brain Injury: Similarities and Differences. Annu Rev Psychol 2014; 65:301-31. [DOI: 10.1146/annurev-psych-010213-115103] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amanda R. Rabinowitz
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104;
| | - Xiaoqi Li
- Physical Medicine and Rehabilitation Alliance, Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas 77030
| | - Harvey S. Levin
- Physical Medicine and Rehabilitation Alliance, Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
37
|
Mayer AR, Toulouse T, Klimaj S, Ling JM, Pena A, Bellgowan PSF. Investigating the properties of the hemodynamic response function after mild traumatic brain injury. J Neurotrauma 2013; 31:189-97. [PMID: 23965000 DOI: 10.1089/neu.2013.3069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Although several functional magnetic resonance imaging (fMRI) studies have been conducted in human models of mild traumatic brain injury (mTBI), to date no studies have explicitly examined how injury may differentially affect both the positive phase of the hemodynamic response function (HRF) as well as the post-stimulus undershoot (PSU). Animal models suggest that the acute and semi-acute stages of mTBI are associated with significant disruptions in metabolism and to the microvasculature, both of which could impact on the HRF. Therefore, fMRI data were collected on a cohort of 30 semi-acute patients with mTBI (16 males; 27.83±9.97 years old; 13.00±2.18 years of education) and 30 carefully matched healthy controls (HC; 16 males; 27.17±10.08 years old; 13.37±2.31 years of education) during a simple sensory-motor task. Patients reported increased cognitive, somatic, and emotional symptoms relative to controls, although no group differences were detected on traditional neuropsychological examination. There were also no differences between patients with mTBI and controls on fMRI data using standard analytic techniques, although mTBI exhibited a greater volume of activation during the task qualitatively. A significant Group×Time interaction was observed in the right supramarginal gyrus, bilateral primary and secondary visual cortex, and the right parahippocampal gyrus. The interaction was the result of an earlier time-to-peak and positive magnitude shift throughout the estimated HRF in patients with mTBI relative to HC. This difference in HRF shape combined with the greater volume of activated tissue may be indicative of a potential compensatory mechanism to injury. The current study demonstrates that direct examination and modeling of HRF characteristics beyond magnitude may provide additional information about underlying neuropathology that is not available with more standard fMRI analyses.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | | | | | | | | | | |
Collapse
|
38
|
Acute and subacute changes in neural activation during the recovery from sport-related concussion. J Int Neuropsychol Soc 2013; 19:863-72. [PMID: 23829951 DOI: 10.1017/s1355617713000702] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To study the natural recovery from sports concussion, 12 concussed high school football athletes and 12 matched uninjured teammates were evaluated with symptom rating scales, tests of postural balance and cognition, and an event-related fMRI study during performance of a load-dependent working memory task at 13 h and 7 weeks following injury. Injured athletes showed the expected postconcussive symptoms and cognitive decline with decreased reaction time (RT) and increased RT variability on a working memory task during the acute period and an apparent full recovery 7 weeks later. Brain activation patterns showed decreased activation of right hemisphere attentional networks in injured athletes relative to controls during the acute period with a reversed pattern of activation (injured > controls) in the same networks at 7 weeks following injury. These changes coincided with a decrease in self-reported postconcussive symptoms and improved cognitive test performance in the injured athletes. Results from this exploratory study suggest that decreased activation of right hemisphere attentional networks mediate the cognitive changes and postconcussion symptoms observed during the acute period following concussion. Conversely, improvement in cognitive functioning and postconcussive symptoms during the subacute period may be mediated by compensatory increases in activation of this same attentional network.
Collapse
|
39
|
Bigler ED. Neuroimaging biomarkers in mild traumatic brain injury (mTBI). Neuropsychol Rev 2013; 23:169-209. [PMID: 23974873 DOI: 10.1007/s11065-013-9237-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA.
| |
Collapse
|
40
|
Abstract
Individuals with mild traumatic brain injury (TBI) often have deficits in processing speed and working memory (WM) and there is a growing literature using functional imaging studies to document these deficits. However, divergent results from these studies revealed both hypoactivation and hyperactivation of neural resources after injury. We hypothesized that at least part of this variance can be explained by distinct demands between WM tasks. Notably, in this literature some WM tasks use discrete periods of encoding, maintenance, and retrieval, whereas others place continuous demands on WM. The purpose of this meta-analysis is to examine the differences in neural recruitment after mTBI to determine if divergent findings can be explained as a function of task demand and cognitive load. A comprehensive literature review revealed 14 studies using functional magnetic resonance imaging to examine brain activity of individuals with mTBI during working memory tasks. Three of the fourteen studies included reported hypoactivity, five reported hyperactivity, and the remaining six reported both hypoactivity and hyperactivity. Studies were grouped according to task type and submitted to GingerALE maximum likelihood meta-analyses to determine the most consistent brain activation patterns. The primary findings from this meta-analysis suggest that the discrepancy in activation patterns is at least partially attributable to the classification of WM task, with hyperactivation being observed in continuous tasks and hypoactivation being observed during discrete tasks. We anticipate that differential task load expressed in continuous and discrete WM tasks contributes to these differences. Implications for the interpretation of fMRI signals in clinical samples are discussed.
Collapse
|
41
|
PTSD modifies performance on a task of affective executive control among deployed OEF/OIF veterans with mild traumatic brain injury. J Int Neuropsychol Soc 2013; 19:792-801. [PMID: 23823533 PMCID: PMC4003877 DOI: 10.1017/s1355617713000544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Individuals with post-traumatic stress disorder (PTSD) show a cognitive bias for threatening information, reflecting dysregulated executive control for affective stimuli. This study examined whether comorbid mild Traumatic Brain Injury (mTBI) with PTSD exacerbates this bias. A computer-administered Affective Go/No-Go task measured reaction times (RTs) and errors of omission and commission to words with a non-combat-related positive or negative valence in 72 deployed United States service members from the wars in Iraq and Afghanistan. Incidents of military-related mTBI were measured with the Boston Assessment of Traumatic Brain Injury-Lifetime. PTSD symptoms were measured with the Clinician-Administered PTSD Scale. Participants were divided into those with (mTBI+, n = 34) and without a history of military-related mTBI (mTBI-, n = 38). Valence of the target stimuli differentially impacted errors of commission and decision bias (criterion) in the mTBI+ and mTBI- groups. Specifically, within the mTBI+ group, increasing severity of PTSD symptoms was associated with an increasingly liberal response pattern (defined as more commission errors to negative distractors and greater hit rate for positive stimuli) in the positive compared to the negative blocks. This association was not observed in the mTBI- group. This study underscores the importance of considering the impact of a military-related mTBI and PTSD severity upon affective executive control.
Collapse
|
42
|
Niskanen JP, Airaksinen AM, Sierra A, Huttunen JK, Nissinen J, Karjalainen PA, Pitkänen A, Gröhn OH. Monitoring functional impairment and recovery after traumatic brain injury in rats by FMRI. J Neurotrauma 2013; 30:546-56. [PMID: 23259713 PMCID: PMC3636591 DOI: 10.1089/neu.2012.2416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study was designed to test a hypothesis that functional magnetic resonance imaging (fMRI) can be used to monitor functional impairment and recovery after moderate experimental traumatic brain injury (TBI). Moderate TBI was induced by lateral fluid percussion injury in adult rats. The severity of brain damage and functional recovery in the primary somatosensory cortex (S1) was monitored for up to 56 days using fMRI, cerebral blood flow (CBF) by arterial spin labeling, local field potential measurements (LFP), behavioral assessment, and histology. All the rats had reduced blood-oxygen-level-dependent (BOLD) responses during the 1st week after trauma in the ipsilateral S1. Forty percent of these animals showed recovery of the BOLD response during the 56 day follow-up. Unexpectedly, no association was found between the recovery in BOLD response and the volume of the cortical lesion or thalamic neurodegeneration. Instead, the functional recovery occurred in rats with preserved myelinated fibers in layer VI of S1. This is, to our knowledge, the first study demonstrating that fMRI can be used to monitor post-TBI functional impairment and consequent spontaneous recovery. Moreover, the BOLD response was associated with the density of myelinated fibers in the S1, rather than with neurodegeneration. The present findings encourage exploration of the usefulness of fMRI as a noninvasive prognostic biomarker for human post-TBI outcomes and therapy responses.
Collapse
Affiliation(s)
- Juha-Pekka Niskanen
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Alejandra Sierra
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Joanna K. Huttunen
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Jari Nissinen
- Department of Neurobiology, Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi A. Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Olli H. Gröhn
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Larrabee GJ, Binder LM, Rohling ML, Ploetz DM. Meta-analytic methods and the importance of non-TBI factors related to outcome in mild traumatic brain injury: response to Bigler et al. (2013). Clin Neuropsychol 2013; 27:215-37. [PMID: 23414416 DOI: 10.1080/13854046.2013.769634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bigler et al. (2013, The Clinical Neuropsychologist) contend that weak methodology and poor quality of the studies comprising our recent meta-analysis led us to miss detecting a subgroup of mild traumatic brain injury (mTBI) characterized by persisting symptomatic complaint and positive biomarkers for neurological damage. Our computation of non-significant Q, tau(2), and I(2) statistics contradicts the existence of a subgroup of mTBI with poor outcome, or variation in effect size as a function of quality of research design. Consistent with this conclusion, the largest single contributor to our meta-analysis, Dikmen, Machamer, Winn, and Temkin (1995, Neuropsychology, 9, 80) yielded an effect size, -0.02, that was smaller than our overall effect size of -0.07 despite using the most liberal definition of mTBI: loss of consciousness less than 1 hour, with no exclusion of subjects who had positive CT scans. The evidence is weak for biomarkers of mTBI, such as diffusion tensor imaging and for demonstrable neuropathology in uncomplicated mTBI. Postconcussive symptoms, and reduced neuropsychological test scores are not specific to mTBI but can result from pre-existing psychosocial and psychiatric problems, expectancy effects and diagnosis threat. Moreover, neuropsychological impairment is seen in a variety of primary psychiatric disorders, which themselves are predictive of persistent complaints following mTBI. We urge use of prospective studies with orthopedic trauma controls in future investigations of mTBI to control for these confounding factors.
Collapse
|
44
|
Dean PJA, Sterr A. Long-term effects of mild traumatic brain injury on cognitive performance. Front Hum Neurosci 2013; 7:30. [PMID: 23408228 PMCID: PMC3569844 DOI: 10.3389/fnhum.2013.00030] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/23/2013] [Indexed: 11/25/2022] Open
Abstract
Although a proportion of individuals report chronic cognitive difficulties after mild traumatic brain injury (mTBI), results from behavioral testing have been inconsistent. In fact, the variability inherent to the mTBI population may be masking subtle cognitive deficits. We hypothesized that this variability could be reduced by accounting for post-concussion syndrome (PCS) in the sample. Thirty-six participants with mTBI (>1 year post-injury) and 36 non-head injured controls performed information processing speed (Paced Visual Serial Addition Task, PVSAT) and working memory (n-Back) tasks. Both groups were split by PCS diagnosis (4 groups, all n = 18), with categorization of controls based on symptom report. Participants with mTBI and persistent PCS had significantly greater error rates on both the n-Back and PVSAT, at every difficulty level except 0-Back (used as a test of performance validity). There was no difference between any of the other groups. Therefore, a cognitive deficit can be observed in mTBI participants, even 1 year after injury. Correlations between cognitive performance and symptoms were only observed for mTBI participants, with worse performance correlating with lower sleep quality, in addition to a medium effect size association (falling short of statistical significance) with higher PCS symptoms, post-traumatic stress disorder (PTSD), and anxiety. These results suggest that the reduction in cognitive performance is not due to greater symptom report itself, but is associated to some extent with the initial injury. Furthermore, the results validate the utility of our participant grouping, and demonstrate its potential to reduce the variability observed in previous studies.
Collapse
|
45
|
Bigler ED, Farrer TJ, Pertab JL, James K, Petrie JA, Hedges DW. Reaffirmed Limitations of Meta-Analytic Methods in the Study of Mild Traumatic Brain Injury: A Response to Rohling et al. Clin Neuropsychol 2013; 27:176-214. [DOI: 10.1080/13854046.2012.693950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Erin D. Bigler
- a Department of Psychology , Brigham Young University , Provo , UT , USA
- b Neuroscience Center, Brigham Young University , Provo , UT , USA
- c Department of Psychiatry , University of Utah , Salt Lake City , UT , USA
- d The Brain Institute of Utah, University of Utah , Salt Lake City , UT , USA
| | - Thomas J. Farrer
- a Department of Psychology , Brigham Young University , Provo , UT , USA
| | - Jon L. Pertab
- a Department of Psychology , Brigham Young University , Provo , UT , USA
- e Veterans Administration Hospital , Salt Lake City , UT , USA
| | - Kelly James
- a Department of Psychology , Brigham Young University , Provo , UT , USA
| | - Jo Ann Petrie
- a Department of Psychology , Brigham Young University , Provo , UT , USA
| | - Dawson W. Hedges
- a Department of Psychology , Brigham Young University , Provo , UT , USA
- b Neuroscience Center, Brigham Young University , Provo , UT , USA
| |
Collapse
|
46
|
Examining the neural impact of pediatric concussion: a scoping review of multimodal and integrative approaches using functional and structural MRI techniques. Curr Opin Pediatr 2012; 24:709-16. [PMID: 23080128 DOI: 10.1097/mop.0b013e3283599a55] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This study presents the findings from a scoping review of recent, original research investigating changes in brain structure and/or function following pediatric concussion or mild traumatic brain injury (mTBI) using MRI and functional MRI techniques. RECENT FINDINGS Our scoping review identified only five studies, two of which were focused specifically on sports-related concussion. A common finding across studies was that traditional structural methods such as anatomical T1, T2, and even susceptibility-weighted MRI failed to reveal abnormalities in brain structure following pediatric concussion/mTBI. Although data suggest alterations in brain function associated with concussion, correlation with changes in performance is inconsistently found, possibly because of the use of compensatory cerebral mechanisms or alternate pathways while the brain is still dysfunctional. SUMMARY In conclusion, the literature describing neuroimaging investigations of pediatric concussion is too scarce to allow the formulation of definitive conclusions regarding the impact of concussion on the developing brain. There is a dire need for longitudinal, multisite investigations focused on a wider age range and recovery period.
Collapse
|
47
|
McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav 2012; 6:193-207. [PMID: 22618832 DOI: 10.1007/s11682-012-9173-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mild traumatic brain injury (mTBI) represents the great majority of traumatic brain injuries, and is a common medical problem affecting cognitive and vocational functioning as well as quality of life in some individuals. Functional MRI (fMRI) is an important research method for investigating the neuroanatomic substrates of cognitive disorders and their treatment. Surprisingly, however, relatively little research has utilized fMRI to examine alterations in brain functioning after mTBI. This article provides a critical overview of the published fMRI research on mTBI to date. These topics include examination of frontal lobe/executive functions such as working memory, as well as episodic memory and resting state/functional connectivity. mTBI has also been investigated in military populations where studies have focused on effects of blast injury and comorbid conditions such as post-traumatic stress disorder and major depressive disorder. Finally, we address fMRI evaluations of response to behavioral or pharmacological challenges and interventions targeting cognitive and behavioral sequelae of mTBI. The review concludes with identification and discussion of gaps in current knowledge and future directions for fMRI studies of mTBI. The authors conclude that fMRI in combination with related methods can be expected to play an increasing role in research related to studies of pathophysiological mechanisms of the sequelae of mTBI as well as in diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Brenna C McDonald
- IU Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
48
|
Slobounov S, Gay M, Johnson B, Zhang K. Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging Behav 2012; 6:224-43. [PMID: 22669496 DOI: 10.1007/s11682-012-9167-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concussion, the most common form of traumatic brain injury, proves to be increasingly complex and not mild in nature as its synonymous term mild traumatic brain injury (mTBI) would imply. Despite the increasing occurrence and prevalence of mTBI there is no universally accepted definition and conventional brain imaging techniques lack the sensitivity to detect subtle changes it causes. Moreover, clinical management of sports induced mild traumatic brain injury has not changed much over the past decade. Advances in neuroimaging that include electroencephalography (EEG), functional magnetic resonance imaging (fMRI), resting-state functional connectivity, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) offer promise in aiding research into understanding the complexities and nuances of mTBI which may ultimately influence clinical management of the condition. In this paper the authors review the major findings from these advanced neuroimaging methods along with current controversy within this field of research. As mTBI is frequently associated with youth and sports injury this review focuses on sports-related mTBI in the younger population.
Collapse
Affiliation(s)
- Semyon Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, 16802, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.
Collapse
Affiliation(s)
- Daniel A Orringer
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
50
|
Yang Z, Yeo RA, Pena A, Ling JM, Klimaj S, Campbell R, Doezema D, Mayer AR. An FMRI study of auditory orienting and inhibition of return in pediatric mild traumatic brain injury. J Neurotrauma 2012; 29:2124-36. [PMID: 22533632 PMCID: PMC3419846 DOI: 10.1089/neu.2012.2395] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies in adult mild traumatic brain injury (mTBI) have shown that two key measures of attention, spatial reorienting and inhibition of return (IOR), are impaired during the first few weeks of injury. However, it is currently unknown whether similar deficits exist following pediatric mTBI. The current study used functional magnetic resonance imaging (fMRI) to investigate the effects of semi-acute mTBI (<3 weeks post-injury) on auditory orienting in 14 pediatric mTBI patients (age 13.50±1.83 years; education: 6.86±1.88 years), and 14 healthy controls (age 13.29±2.09 years; education: 7.21±2.08 years), matched for age and years of education. The results indicated that patients with mTBI showed subtle (i.e., moderate effect sizes) but non-significant deficits on formal neuropsychological testing and during IOR. In contrast, functional imaging results indicated that patients with mTBI demonstrated significantly decreased activation within the bilateral posterior cingulate gyrus, thalamus, basal ganglia, midbrain nuclei, and cerebellum. The spatial topography of hypoactivation was very similar to our previous study in adults, suggesting that subcortical structures may be particularly affected by the initial biomechanical forces in mTBI. Current results also suggest that fMRI may be a more sensitive tool for identifying semi-acute effects of mTBI than the procedures currently used in clinical practice, such as neuropsychological testing and structural scans. fMRI findings could potentially serve as a biomarker for measuring the subtle injury caused by mTBI, and documenting the course of recovery.
Collapse
Affiliation(s)
- Zhen Yang
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Ronald A. Yeo
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Amanda Pena
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Stefan Klimaj
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Richard Campbell
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - David Doezema
- Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|